1,640
Views
7
CrossRef citations to date
0
Altmetric
Original Article

Functional, textural, and sensory properties of milk protein concentrate-based supercritical fluid extrudates made with acid whey

&
Pages 708-721 | Received 08 Jan 2020, Accepted 03 Apr 2020, Published online: 28 Apr 2020

References

  • Kilara, A.; Chandan, R. C. Greek-style Yogurt and Related Products. Manuf. Yogurt Ferment. Milks. Second Ed. 2013, 297–318.DOI: 10.1002/9781118481301.ch13.
  • Erickson, B. Acid Whey: Is the Waste Product an Untapped Goldmine? Chem. Eng. News 95 (6), 26–30, 2017. https://cen.acs.org/articles/95/i6/Acid-whey-waste-product-untapped.html (accessed Jun 6, 2019.
  • Menchik, P.; Zuber, T.; Zuber, A.; Moraru, C. I. Short Communication: Composition of Coproduct Streams from Dairy Processing: Acid Whey and Milk Permeate. J. Dairy Sci. 2019, 102(5), 3978–3984. DOI: 10.3168/jds.2018-15951.
  • IMARC. Greek Yogurt Market: Global Industry Trends, Share, Size, Growth, Opportunity and Forecast 20192024. 2019. https://www.researchandmarkets.com/reports/4763103/greek-yogurt-market-global-industry-trends (accessed Jun 15, 2019).
  • Kyle, C. R.; Amamcharla, J. K. Value Addition of Greek Yogurt Whey Using Magnetic Fluid and Sepiolite Treatments. Food Bioprocess Technol. 2016, 9(4), 553–563. DOI: 10.1007/s11947-015-1653-2.
  • Bayless, T. M.; Brown, E.; Paige, D. M.; Paige, D. M. Lactase Non-persistence and Lactose Intolerance. Curr. Gastroenterol. Rep. 2017, 19 (23). DOI: 10.1007/s11894-017-0558-9.
  • Huang, D.; Rooney, L. Starches for Snack Foods. 2001. DOI: 10.1201/9781420012545.ch5.
  • Tremaine, A.; Schoenfuss, T. C. Twin-screw Extrusion Puffing of Nonfat Dry Milk and Starch - the Effects of Acid Addition, Fluid Addition Rate and Nonfat Dry Milk Concentration on Extruded Products. J. Food Process. Preserv. 2014, 38(1), 232–246. DOI: 10.1111/j.1745-4549.2012.00769.x.
  • Bashir, S.; Sharif, M. K.; Butt, M. S.; Rizvi, S. S. H.; Paraman, I.; Ejaz, R. Preparation of Micronutrients Fortified Spirulina Supplemented Rice-soy Crisps Processed through Novel Supercritical Fluid Extrusion. J. Food Process. Preserv. 2017, 41(3), e12986. DOI: 10.1111/jfpp.12986.
  • Kaisangsri, N.; Kowalski, R. J.; Wijesekara, I.; Kerdchoechuen, O.; Laohakunjit, N.; Ganjyal, G. M. Carrot Pomace Enhances the Expansion and Nutritional Quality of Corn Starch Extrudates. LWT - Food Sci. Technol. 2016, 68, 391–399. DOI: 10.1016/j.lwt.2015.12.016.
  • Shah, F. H.; Sharif, M. K.; Bashir, S.; Ahsan, F. Role of Healthy Extruded Snacks to Mitigate Malnutrition. Food Rev. Int. 2019, 35(4), 299–323. DOI: 10.1080/87559129.2018.1542534.
  • Onwulata, C.; Heymann, H. Sensory Properties of Extruded Corn Meal Related to the Spatial Distribution of Process Conditions. J. Sens. Stud. 1994, 9(1), 101–112. DOI: 10.1111/j.1745-459X.1994.tb00233.x.
  • Alavi, S. H., & Rizvi, S. S. H. (2009). Supercritical fluid extrusion—a novel method for producing microcellular structures in starch-based matrices. In J. Ahmed, H. S. Ramaswamy, S. Kasapis, & J. Boye (Eds.), Novel food processing—effects on rheological and functional..
  • Arêas, J.;. Extrusion of Food Proteins. Crit. Rev. Food Sci. Nutr. 1992, 32(4), 365–392. DOI: 10.1080/10408399209527604.
  • Rizvi, S. S. H.; Mulvaney, S. J., “Extrusion Processing with Supercritical Fluids,” US5120559A, 1992.
  • Rizvi, S. S. H.; Mulvaney, S. J. Supercritical Fluid Extrusion — A New Process. Dev. Food Eng. 1994 (2), 814–816. DOI: 10.1007/978-1-4615-2674-2_265.
  • Alavi, S. H.; Gogoi, B. K.; Khan, M.; Bowman, B. J.; Rizvi, S. S. H. Structural Properties of Protein-stabilized Starch-based Supercritical Fluid Extrudates. Food Res. Int. 1999, 32, 107–118. DOI: 10.1016/S0963-9969(99)00063-0.
  • Menchik, P.; Moraru, C. I. Nonthermal Concentration of Liquid Foods by A Combination of Reverse Osmosis and Forward Osmosis. Acid Whey: A Case Study. J. Food Eng. 2019, 253, 40–48. DOI: 10.1016/j.jfoodeng.2019.02.01.
  • AACC International. Guidelines for Measurement of Volume by Rapeseed Displacement. Approv. Methods Anal., 11th Ed. 2001. DOI: 10.1094/AACCIntMethod-10-05.01.
  • Dogan, H.; Kokini, J. L. Psychophysical Markers for Crispness and Influence of Phase Behavior and Structure. J. Texture Stud. 2007, 38, 324–354. https://doi-org.proxy.library.cornell.edu/10.1111/j.1745-4603.2007.00100.x.
  • Wongsa, J.; Uttapap, D.; Lamsal, B. P.; Rungsardthong, V. Effect of Puffing Conditions on Physical Properties and Rehydration Characteristic of Instant Rice Product. Int. J. Food Sci. 2016, 51, 672–680. DOI: 10.1111/ijfs.13011.
  • Onwulata, C. I.; Smith, P. W.; Konstance, R. P.; Holsinger, V. H. Incorporation of Whey Products in Extruded Corn, Potato or Rice Snacks. Food Res. Int. 2001, 34(8), 679–687. DOI: 10.1016/S0963-9969(01)00088-6.
  • Sun, V. Z.; Paraman, I.; Rizvi, S. S. H. Supercritical Fluid Extrusion of Protein Puff Made with Fruit Pomace and Liquid Whey. Food Bioprocess Technol. 2015, 8(8), 1707–1715. DOI: 10.1007/s11947-015-1526-8.
  • Moore, D.; Sanei, A.; Van Hecke, E.; Bouvier, J. M. Effect of Ingredients on Physical/structural Properties of Extrudates. J. Food Sci. 1990, 55(5), 1383–1387. DOI: 10.1111/j.1365-2621.1990.tb03942.x.
  • Jin, Z.; Hsieh, F.; Huff, H. E. Effects of Soy Fiber, Salt, Sugar and Screw Speed on Physical Properties and Microstructure of Corn Meal Extrudate. J. Cereal Sci. 1995, 22(2), 185–194. DOI: 10.1016/0733-5210(95)90049-7.
  • Pitts, K. F.; McCann, T. H.; Mayo, S.; Favaro, J.; Day, L. Effect of the Sugar Replacement by Citrus Fibre on the Physical and Structural Properties of Wheat-corn Based Extrudates. Food Bioprocess Technol. 2016, 9(11), 1803–1811. DOI: 10.1007/s11947-016-1764-4.
  • Barrett, A.; Kaletunç, G.; Rosenburg, S.; Breslauer, K. Effect of Sucrose on the Structure, Mechanical Strength and Thermal Properties of Corn Extrudates. Carbohydr. Polym. 1995, 26, 261–269. DOI: 10.1016/0144-8617(95)00024-2.
  • Fan, J.; Mitchell, J. R.; Blanshard, J. M. V. The Effect of Sugars on the Extrusion of Maize Grits: I. The Role of the Glass Transition in Determining Product Density and Shape. Int. J. Food Sci. Technol. 1996, 31(1), 55–65. DOI: 10.1111/j.1365-2621.1996.22-317.x.
  • Masavang, S.; Roudaut, G.; Champion, D. Identification of Complex Glass Transition Phenomena by DSC in Expanded Cereal-based Food Extrudates : Impact of Plasticization by Water and Sucrose. J. Food Eng. 2019, 245, 43–52. DOI: 10.1016/j.jfoodeng.2018.10.008.
  • Carvalho, C. W. P.; Mitchell, J. R. Effect of Sucrose on Starch Conversion and Glass Transition of Nonexpanded Maize and Wheat Extrudates. Cereal Chem. 2001, 78(3), 342–348. DOI: 10.1094/CCHEM.2001.78.3.342.
  • Lucey, J. A.; Munro, P. A.; Singh, H. Effects of Heat Treatment and Whey Protein Addition on the Rheological Properties and Structure of Acid Skim Milk Gels. Int. Dairy J. 1999, 9(3–6), 275–279. DOI: 10.1016/S0958-6946(99)00074-6.
  • Spiegel, T.; Huss, M. Whey Protein Aggregation under Shear Conditions - Effects of pH-value and Removal of Calcium. Int. J. Food Sci. Technol. 2002, 37(5), 559–568. DOI: 10.1046/j.1365-2621.2002.00612.x.
  • Mediwaththe, A.; Chandrapala, J.; Vasiljevic, T. Shear-induced Behaviour of Native Milk Proteins Heated at Temperatures above 80°C. Int. Dairy J. 2018, 77, 29–37. DOI: 10.1016/j.idairyj.2017.09.002.
  • Bogahawaththa, D.; Vasiljevic, T. Shearing Accelerates Denaturation of β-lactoglobulin and α-lactalbumin in Skim Milk during Heating. Int. Dairy J. 2020, 105, 104674. DOI: 10.1016/j.idairyj.2020.104674.
  • Anema, S. G.; Li, Y. Effect of pH on the Association of Denatured Whey Proteins with Casein Micelles in Heated Reconstituted Skim Milk. J. Agric. Food Chem. 2003, 51(6), 1640–1646. DOI: 10.1021/jf025673a.
  • Lee, B. K.; Shimanouchi, T.; Umakoshi, H.; Kuboi, R. Evaluation of Carboxylic Acid-induced Conformational Transitions of β-lactoglobulin: Comparison of the Alcohol Effects on β-lactoglobulin. Biochem. Eng. J. 2006, 28, 79–86. DOI: 10.1016/j.bej.2005.08.040.
  • Martínez-Bustos, F.;. Effects of Calcium Hydroxide and Processing Conditions on Corn Meal Extrudates. Cereal Chem. 1998, 75(6), 796–801. DOI: 10.1094/CCHEM.1998.75.6.796.
  • Zazueta-Morales, J. J.; Martínez-Bustos, F.; Jacobo-Valenzuela, N.; Ordorica-Falomir, C.; Paredes-López, O. Effect of the Addition of Calcium Hydroxide on Some Characteristics of Extruded Products from Blue Maize (Zea Mays L) Using Response Surface Methodology. J. Sci. Food Agric. 2001, 81(14), 1379–1386. DOI: 10.1002/jsfa.951.
  • Fontes, C. P. M. L.; da Silva, J. L. A.; Rabelo, M. C.; Rodrigues, S. Development of Low Caloric Prebiotic Fruit Juices by Dexransucrase Acceptor Reaction. J. Food Sci. Technol. 2015, 52(11), 7272–7280. DOI: 10.1007/s13197-015-1836-x.
  • Liu, Q.; Li, J.; Kong, B.; Li, P.; Xia, X. Physicochemical and Antioxidant Properties of Maillard Reaction Products Formed by Heating Whey Protein Isolate and Reducing Sugars. Int. J. Dairy Technol. 2014, 67(2), 220–228. DOI: 10.1111/1471-0307.12110.
  • Korkerd, S.; Wanlapa, S.; Puttanlek, C.; Uttapap, D.; Rungsardthong, V. Expansion and Functional Properties of Extruded Snacks Enriched with Nutrition Sources from Food Processing By-products. J. Food Sci. Technol. 2016, 53(1), 561–570. DOI: 10.1007/s13197-015-2039-1.
  • Barrett, A. H.; Peleg, M. Extrudate Cell Structure‐texture Relationships. J. Food Sci. 1992, 57(5), 1253–1257. DOI: 10.1111/j.1365-2621.1992.tb11311.x.
  • Chang, A. A.; El-Dash, Y. K. Effects of Acid Concentration and Extrusion Variables on Some Physical Characteristics and Energy Requirements of Cassava Starch. Brazilian J. Chem. Eng. 2003, 20(2), 129–137. DOI: 10.1590/S0104-66322003000200006.
  • Ding, Q. B.; Ainsworth, P.; Tucker, G.; Marson, H. The Effect of Extrusion Conditions on the Physicochemical Properties and Sensory Characteristics of Fish-based Expanded Snacks. J. Food Eng. 2005, 66, 283–289. DOI: 10.1016/j.jfoodeng.2004.03.019.
  • Chassagne-Berces, S.; Leitner, M.; Melado, A.; Barreiro, P.; Correa, E. C.; Blank, I.; Gumy, J. C.; Chanvrier, H. Effect of Fibers and Whole Grain Content on Quality Attributes of Extruded Cereals. Procedia Food Sci. 2011, 1, 17–23. DOI: 10.1016/j.profoo.2011.09.004.
  • Chi, A. Y.; Ji, H. W.; Gao, J. L.; Lu, H. Y.; Lan, W. B.; Meng, L. Y. Effects of Different Heating Treatments on Taste-active Components of Litopenaeus Vannamei. Mod. Food Sci. Technol. 2012, 28, 776–779.
  • Schlichtherle-Cerny, H.; Grosch, W. Evaluation of Taste Compounds of Stewed Beef Juice. Zeitschrift für Lebensmitteluntersuchung und -Forschung A. 1998, 207 (5), 369–376. DOI:10.1007/s002170050347.
  • Batenburg, M.; van der Velden, R. Saltiness Enhancement by Savory Aroma Compounds. J. Food Sci. 2011, 76(5), 280–288. DOI: 10.1111/j.1750-3841.2011.02198.x.
  • Moskowitz, H. R. Ratio Scales of Sugar Sweetness. Percept. Psychophys. 1970, 7 (5), 315–320. DOI:10.3758/BF03210175.
  • Mao, Y.; Tian, S.; Qin, Y.; Han, J. A New Sensory Sweetness Definition and Sweetness Conversion Method of Five Natural Sugars, Based on the Weber-Fechner Law. Food Chem. 2019, 281(December 2018), 78–84. DOI: 10.1016/j.foodchem.2018.12.049.
  • Calviño, A. M.;. Perception of Sweetness: The Effects of Concentration and Temperature. Physiol. Behav. 1986, 36(6), 1021–1028. DOI: 10.1016/0031-9384(86)90474-9.
  • Drewnowski, A.; Mennella, J. A.; Johnson, S. L.; Bellisle, F. Sweetness and Food Preference. 2012, 142(7), 1142–1148. DOI: 10.3945/jn.111.149575.