5,153
Views
40
CrossRef citations to date
0
Altmetric
Review

Exploring the multifaceted neuroprotective actions of gallic acid: a review

, &
Pages 736-752 | Received 07 Jan 2020, Accepted 03 Apr 2020, Published online: 28 Apr 2020

References

  • Badhani, B.; Sharma, N.; Kakkar, R. Gallic Acid: A Versatile Antioxidant with Promising Therapeutic and Industrial Applications. RSC. Adv. 2015, 5(35), 27540–27557. DOI: 10.1039/C5RA01911G.
  • Amerine, M. A.; Ough, C. S. Methods for analysis of musts and wines; 1980.
  • KHAN, A. L. I.; NAZAN, M. S.; Mat Jais Am, S. Flavonoids and Anti-oxidant Activity Mediated Gastroprotective Action of Leathery Murdah, Terminalia Coriacea (Roxb.) Wight & Arn. Leaf Methanolic Extract in Rats. Arq. Gastroenterol. 2017, 54(3), 183–191. DOI: 10.1590/s0004-2803.201700000-21.
  • Bakrania, A. K.; Patel, S. S. Combination Treatment for Allergic conjunctivitis–Plant Derived Histidine Decarboxylase Inhibitor and H1 Antihistaminic Drug. Exp. Eye Res. 2015, 137, 32–38. DOI: 10.1016/j.exer.2015.05.020.
  • Locatelli, C.; Filippin-Monteiro, F. B.; Creczynski-Pasa, T. B. Alkyl Esters of Gallic Acid as Anticancer Agents: A Review. Eur. J. Med. Chem. 2013, 60, 233–239. DOI: 10.1016/j.ejmech.2012.10.056.
  • Veluri, R.; Singh, R. P.; Liu, Z.; Thompson, J. A.; Agarwal, R.; Agarwal, C. Fractionation of Grape Seed Extract and Identification of Gallic Acid as One of the Major Active Constituents Causing Growth Inhibition and Apoptotic Death of DU145 Human Prostate Carcinoma Cells. Carcinogenesis. 2006, 27(7), 1445–1453. DOI: 10.1093/carcin/bgi347.
  • Chia, Y. C.; Rajbanshi, R.; Calhoun, C.; Chiu, R. H. Anti-neoplastic Effects of Gallic Acid, a Major Component of Toona Sinensis Leaf Extract, on Oral Squamous Carcinoma Cells. Molecules. 2010, 15(11), 8377–8389. DOI: 10.3390/molecules15118377.
  • Inoue, M.; Suzuki, R.; LI, Z.; Takeda, T.; Ogihara, Y et al. Selective Induction of Cell Death in Cancer Cells by Gallic Acid. Biol. Pharm. Bull. 1995, 18(11), 1526–1530.
  • Ohno, Y.; Fukuda, K.; Takemura, G.; Toyota, M.; Watanabe, M.; Yasuda, N.; Xinbin, Q.; Maruyama, R.; Akao, S.; Gotou, K.;; et al. Induction of Apoptosis by Gallic Acid in Lung Cancer Cells. Anti-cancer Drugs. 1999, 10(9), 845–851.
  • Priscilla, D. H.; Prince, P. S. M. Cardioprotective Effect of Gallic Acid on Cardiac troponin-T, Cardiac Marker Enzymes, Lipid Peroxidation Products and Antioxidants in Experimentally Induced Myocardial Infarction in Wistar Rats. Chem. Biol .Interact. 2009, 179(2–3), 118–124.
  • Patel, S. S.; Goyal, R. K. Cardioprotective Effects of Gallic Acid in Diabetes-induced Myocardial Dysfunction in Rats. Pharmacognosy. Res. 2011, 3(4), 239. DOI: 10.4103/0974-8490.89743.
  • Rasool, M. K.; Sabina, E. P.; Ramya, S. R.; Preety, P. et al. Hepatoprotective and antioxidant effects of gallic acid in paracetamol‐induced liver damage in mice. J. Pharm. Pharmacol. 2010, 62(5), 638–643.
  • Ohno, T.; Inoue, M.; Ogihara, Y. Cytotoxic Activity of Gallic Acid against Liver Metastasis of Mastocytoma Cells P-815. Anticancer. Res. 2001, 21(6A), 3875–3880.
  • Kim, M. J.; Seong, A. R.; Yoo, J. Y. et al. Gallic Acid, a Histone Acetyltransferase Inhibitor, Suppresses β‐amyloid Neurotoxicity by Inhibiting Microglial‐mediated Neuroinflammation. Mol. Nutr Food Res. 2011, 55(12), 1798–1808.
  • Kroes, B. V.; Van den Berg, A.; Van Ufford, H. Q.; Van Dijk, H.; Labadie, R. Anti-inflammatory Activity of Gallic Acid. Planta. Med. 1992, 58(6), 499–504. DOI: 10.1055/s-2006-961535.
  • Sun J, Li Y-z, Ding Y-h. et al. Neuroprotective Effects of Gallic Acid against Hypoxia/reoxygenation-induced Mitochondrial Dysfunctions in Vitro and Cerebral Ischemia/reperfusion Injury in Vivo. Brain. Res. 2014, 1589, 126–139. DOI: 10.1016/j.brainres.2014.09.039.
  • Mansouri, M. T.; Farbood, Y.; Sameri, M. J.; Sarkaki, A.; Naghizadeh, B.; Rafeirad, M. Neuroprotective Effects of Oral Gallic Acid against Oxidative Stress Induced by 6-hydroxydopamine in Rats. Food. Chem. 2013, 138(2–3), 1028–1033. DOI: 10.1016/j.foodchem.2012.11.022.
  • Yu, M.; Chen, X.; Liu, J, et al. Gallic acid disruption of Aβ1–42 aggregation rescues cognitive decline of APP/PS1 double transgenic mouse. Neurobiol. Dis. 2019, 124, 67–80. DOI: 10.1016/j.nbd.2018.11.009.
  • Alzheimer’s, A.;. Alzheimer’s Disease Facts and Figures. Alzheimer’s Dementia. J. Alzheimers Dis. 2015, 11(3), 332.
  • Scapagnini, G.; Caruso, C.; Calabrese, V. Therapeutic potential of dietary polyphenols against brain ageing and neurodegenerative disorders.  Bio-Farms for Nutraceuticals. 2010, 12(2), 27–35.
  • Rabiei, Z.; Rafieian-Kopaei, M.; Heidarian, E.; Saghaei, E.; Mokhtari, S. Effects of Zizyphus Jujube Extract on Memory and Learning Impairment Induced by Bilateral Electric Lesions of the Nucleus Basalis of Meynert in Rat. Neurochem. Res. 2014, 39(2), 353–360. DOI: 10.1007/s11064-013-1232-8.
  • Rabiei, Z.; Setorki, M. Effect of Hydroalcoholic Echium Amoenum Extract on Scopolamine-induced Learning and Memory Impairment in Rats. Pharm. Biol. 2018, 56(1), 672–677. DOI: 10.1080/13880209.2018.1543330.
  • Rabiei, Z.; Rafieian-Kopaei, M. Neuroprotective Effect of Pretreatment with Lavandula Officinalis Ethanolic Extract on Blood-brain Barrier Permeability in a Rat Stroke Model. Asian Pac. J. Trop. Med. 2014, 7, S421–S6. DOI: 10.1016/S1995-7645(14)60269-8.
  • Rabiei, Z.; Bigdeli, M. R.; Rasoulian, B.; Ghassempour, A.; Mirzajani, F. The Neuroprotection Effect of Pretreatment with Olive Leaf Extract on Brain Lipidomics in Rat Stroke Model. Phytomedicine. 2012, 19(10), 940–946. DOI: 10.1016/j.phymed.2012.06.003.
  • Rabiei, Z.; Gholami, M.; Rafieian-Kopaei, M. Antidepressant Effects of Mentha Pulegium in Mice. Bangladesh J. Pharmacol. 2016, 11(3), 711–715. DOI: 10.3329/bjp.v11i3.27318.
  • Rabiei, Z.; Mokhtrari, S.; Babaei, F.; Rafieian, K. M. Effect of Kombucha Tea on Depression and Motor Activity in Mice. J MEDICIN PLANTS.  2017, 16(10), 156–166.
  • Rabiei, Z.; Naderi, S.; Rafieian-Kopaei, M. Study of Antidepressant Effects of Grape Seed Oil in Male Mice Using Tail Suspension and Forced Swim Tests. Bangladesh J. Pharmacol. 2017 Nov 5, 12(4), 397–402. DOI: 10.3329/bjp.v12i4.33520.
  • Rabiei, Z.; Jahanbazi, S.; Alibabaei, Z.; Rafieian-Kopaei, M. Antidepressant Effects of Oleuropein in Male Mice by Forced Swim Test and Tail Suspension Test. Middle. East J. 2018, 7(10), 132.
  • Salehi, A.; Rabiei, Z.; Setorki, M. Effect of Gallic Acid on Chronic Restraint Stress-induced Anxiety and Memory Loss in Male BALB/c Mice. Iran. J. Basic Med. Sci. 2018, 21(12), 1232.
  • Kelsey, N. A.; Wilkins, H. M.; Linseman, D. A. Nutraceutical Antioxidants as Novel Neuroprotective Agents. Molecules. 2010, 15(11), 7792–7814. DOI: 10.3390/molecules15117792.
  • Grammas, P.;. Neurovascular Dysfunction, Inflammation and Endothelial Activation: Implications for the Pathogenesis of Alzheimer’s Disease. J. Neuroinflammation. 2011, 8(1), 26. DOI: 10.1186/1742-2094-8-26.
  • Kade, I.; Rocha, J. Gallic Acid Modulates Cerebral Oxidative Stress Conditions and Activities of Enzyme-dependent Signaling Systems in Streptozotocin-treated Rats. Neurochem. Res. 2013, 38(4), 761–771. DOI: 10.1007/s11064-013-0975-6.
  • Thanyacharoen, T.; Chuysinuan, P.; Techasakul, S.; Nooeaid, P.; Ummartyotin, S. Development of a Gallic Acid-loaded Chitosan and Polyvinyl Alcohol Hydrogel Composite: Release Characteristics and Antioxidant Activity. Int. J. Biol. Macromol. 2018, 107, 363–370. DOI: 10.1016/j.ijbiomac.2017.09.002.
  • Rashid, K. A.; Baldwin, I. I.; Babish, J. G.; Schultz, J. C.; Mumma, R. O. Mutagenicity Tests with Gallic and Tannic Acid in the Salmonella/mammalian Microsome Assay. J. Environ. Sci. Heal. B. 1985, 20(2), 153–165. DOI: 10.1080/03601238509372473.
  • Dollahite, J.; Pigeon, R.; Camp, B. The Toxicity of Gallic Acid, Pyrogallol, Tannic Acid, and Quercus Havardi in the Rabbit. Am. J. Vet. Res. 1962, 23, 1264–1267.
  • Variya, B. C.; Bakrania, A. K.; Madan, P.; Patel, S. S. Acute and 28-days Repeated Dose Sub-acute Toxicity Study of Gallic Acid in Albino Mice. Regul. Toxicol Pharmacol. 2019, 101, 71–78. DOI: 10.1016/j.yrtph.2018.11.010.
  • Niho, N.; Shibutani, M. et al. Subchronic Toxicity Study of Gallic Acid by Oral Administration in F344 Rats. Food. Chem. Toxicol. 2001, 39(11), 1063–1070.
  • .Locatelli, C.; Rosso, R. et al. Ester Derivatives of Gallic Acid with Potential Toxicity toward L1210 Leukemia Cells. Bioorg. Med. Chem. 2008, 16(7), 3791–3799.
  • Bishayee, A.; Darvesh, A. Oxidative Stress in Cancer and Neurodegenerative Diseases: Prevention and Treatment by Dietary Antioxidants. Free RadicalsFormation, Types and Effects. 2010, 34, 1–55.
  • Yen, G.-C.; Duh, P.-D.; Tsai, H.-L. Antioxidant and Pro-oxidant Properties of Ascorbic Acid and Gallic Acid. Food Chem. 2002, 79(3), 307–313. DOI: 10.1016/S0308-8146(02)00145-0.
  • Aruoma, O. I.; Murcia, A.; Butler, J.; Halliwell, B. Evaluation of the Antioxidant and Prooxidant Actions of Gallic Acid and Its Derivatives. J. Agric. Food Chem. 1993, 41(11), 1880–1885. DOI: 10.1021/jf00035a014.
  • Manoharan, S.; Guillemin, G. J.; Abiramasundari, R. S.; Essa, M. M.; Akbar, M.; Akbar, M. D. The Role of Reactive Oxygen Species in the Pathogenesis of Alzheimer’s Disease, Parkinson’s Disease, and Huntington’s Disease: A Mini Review. Oxid. Med. Cell Longev. 2016, 2016, 1–15. DOI: 10.1155/2016/8590578.
  • Liu, Y.-L.; Hsu, -C.-C.; Huang, H.-J.; Chang, C.-J.; Sun, S.-H.; M-Y, L. A. Gallic Acid Attenuated LPS-Induced Neuroinflammation: Protein Aggregation and Necroptosis. Mol. Neurobiol. 2020, 57(1), 96–104. DOI: 10.1007/s12035-019-01759-7.
  • Siddiqui, S.; Kamal, A.; Khan, F.; Jamali, K. S.; Saify, Z. S. Gallic and Vanillic Acid Suppress Inflammation and Promote Myelination in an in Vitro Mouse Model of Neurodegeneration. Mol. Biol. Rep. 2019, 46(1), 997–1011. DOI: 10.1007/s11033-018-4557-1.
  • Selkoe, D. J.; Hardy, J. The Amyloid Hypothesis of Alzheimer’s Disease at 25 Years. EMBO Molecular Med. 2016, 8(6), 595–608. DOI: 10.15252/emmm.201606210.
  • .Ghochikyan, A.; Petrushina, I.; Lees, A et al. A β-Immunotherapy for Alzheimer’s Disease Using Mannan–Amyloid-Beta Peptide Immunoconjugates. DNA Cell Biol. 2006, 25(10), 571–580.
  • Van Marum, R. J.;. Current and Future Therapy in Alzheimer’s Disease. Fund. Clin. Pharmacol. 2008, 22(3), 265–274. DOI: 10.1111/j.1472-8206.2008.00578.x.
  • Tõugu, V.; Tiiman, A.; Palumaa, P. Interactions of Zn (II) and Cu (II) Ions with Alzheimer’s Amyloid-beta Peptide. Metal Ion Binding, Contribution to Fibrillization and Toxicity. Metallomics. 2011, 3(3), 250–261. DOI: 10.1039/c0mt00073f.
  • Savelieff, M. G.; DeToma, A. S.; Derrick, J. S.; Lim, M. H. The Ongoing Search for Small Molecules to Study Metal-associated amyloid-β Species in Alzheimer’s Disease. Acc. Chem. Res. 2014, 47(8), 2475–2482. DOI: 10.1021/ar500152x.
  • Khan, A. N.; Hassan, M. N.; Khan, R. H. Gallic Acid: A Naturally Occurring Bifunctional Inhibitor of Amyloid and Metal Induced Aggregation with Possible Implication in Metal-based Therapy. J. Mol. Liq. 2019, 285, 27–37. DOI: 10.1016/j.molliq.2019.04.059.
  • Bloom, G. S.;. Amyloid-β and Tau: The Trigger and Bullet in Alzheimer Disease Pathogenesis. JAMA neurol. 2014, 71(4), 505–508. DOI: 10.1001/jamaneurol.2013.5847.
  • Ferreira-Vieira, H.; Guimaraes, T. M.; Silva, I. R.; Ribeiro, F. M. Alzheimer’s Disease: Targeting the Cholinergic System. Curr. Neuropharmacol. 2016, 14(1), 101–115. DOI: 10.2174/1570159X13666150716165726.
  • Lipton, S. A.;. The Molecular Basis of Memantine Action in Alzheimer’s Disease and Other Neurologic Disorders: Low-affinity, Uncompetitive Antagonism. Curr. Alzheimer Res. 2005, 2(2), 155–165. DOI: 10.2174/1567205053585846.
  • Salomone, S.; Caraci, F.; Leggio, G. M.; Fedotova, J.; Drago, F. New Pharmacological Strategies for Treatment of Alzheimer’s Disease: Focus on Disease Modifying Drugs. Br. J. Clin. Pharmacol. 2012, 73(4), 504–517. DOI: 10.1111/j.1365-2125.2011.04134.x.
  • Bartolini, M.; Marco‐Contelles, J. Tacrines as Therapeutic Agents for Alzheimer’s Disease. IV. The Tacripyrines and Related Annulated Tacrines. Chem. Rec. 2019, 19(5), 927–937. DOI: 10.1002/tcr.201800155.
  • Ghezzi, L.; Scarpini, E.; Galimberti, D. Disease-modifying Drugs in Alzheimer’s Disease. Drug Des. Dev. Ther. 2013, 7, 1471.
  • Robinson, S. R.; Bishop, G. M.; Lee, H.-G.; Münch, G. Lessons from the AN 1792 Alzheimer Vaccine: Lest We Forget. Neurobiol. Aging. 2004, 25(5), 609–615. DOI: 10.1016/j.neurobiolaging.2003.12.020.
  • Prins, N. D.; Scheltens, P. Treating Alzheimer’s Disease with Monoclonal Antibodies: Current Status and Outlook for the Future. Alzheimer’s Res. Ther. 2013, 5(6), 56. DOI: 10.1186/alzrt220.
  • Salloway,  S.; Sperling,  R.; Fox,  N. C. et al. Two Phase 3 Trials of Bapineuzumab in Mild-to-moderate Alzheimer’s Disease. N. Engl. J. Med. 2014, 370(4), 322–333.
  • Wischik, C. M.; Harrington, C. R.; Storey, J. M. Tau-aggregation Inhibitor Therapy for Alzheimer’s Disease. Biochem Pharmacol. 2014, 88(4), 529–539. DOI: 10.1016/j.bcp.2013.12.008.
  • Hajipour, S.; Sarkaki, A.; Farbood, Y.; Eidi, A.; Mortazavi, P.; Valizadeh, Z. Effect of Gallic Acid on Dementia Type of Alzheimer Disease in Rats: Electrophysiological and Histological Studies. Basic. Clini Neuro. 2016, 7(2), 97.
  • Ferruzzi, M. G.; Lobo, J. K.; Janle, E. M.; Cooper, B.; Simon, J. E.; Wu, Q.-L.; Welch, C.; Ho, L.; Weaver, C.; Pasinetti, G. M.;; et al. Bioavailability of Gallic Acid and Catechins from Grape Seed Polyphenol Extract Is Improved by Repeated Dosing in Rats: Implications for Treatment in Alzheimer’s Disease. J. Alzheimers Dis. 2009, 18(1), 113–124.
  • Liu, Y.; Pukala, T. L.; Musgrave, I. F.; Williams, D. M.; Dehle, F. C.; Carver, J. A. Gallic Acid Is the Major Component of Grape Seed Extract that Inhibits Amyloid Fibril Formation. Bioorg. Med. Chem. Lett. 2013, 23(23), 6336–6340. DOI: 10.1016/j.bmcl.2013.09.071.
  • Mansouri, M. T.; Naghizadeh, B.; Ghorbanzadeh, B.; Farbood, Y.; Sarkaki, A.; Bavarsad, K. Gallic Acid Prevents Memory Deficits and Oxidative Stress Induced by Intracerebroventricular Injection of Streptozotocin in Rats. Pharmacol .Biochem Behav. 2013, 111, 90–96. DOI: 10.1016/j.pbb.2013.09.002.
  • Baziyar, Y.; Edalatmanesh, M. A.; Hosseini, S. A.; Zar, A. The Effects of Endurance Training and Gallic Acid on BDNF and TNF-a in Male Rats with Alzheimer. Int. J. Appl. Exerc. Physiol. 2016, 5(4), 45–54.
  • Nagpal, K.; Singh, S.; Mishra, D. Optimization of Brain Targeted Gallic Acid Nanoparticles for Improved Antianxiety-like Activity. Int. J. Biol. Macromol. 2013, 57, 83–91. DOI: 10.1016/j.ijbiomac.2013.03.022.
  • Ogunsuyi, O. B.; Oboh, G.; Oluokun, O. O, et al. Gallic Acid Protects against Neurochemical Alterations in Transgenic Drosophila Model of Alzheimer’s Disease. Orient. Pharm Exp Med. 2019, 1–10.
  • Lang, A.; Lozano, A. M. Parkinson’s Disease. First of Two Parts. N. Engl. J. Med. 1998, 339(15), 1044–1053. DOI: 10.1056/NEJM199810083391506.
  • De Lau, L. M.; Breteler, M. M. Epidemiology of Parkinson’s Disease. Lancet. Neurol. 2006, 5(6), 525–535. DOI: 10.1016/S1474-4422(06)70471-9.
  • Reckziegel, P.; Peroza, L. R.; Schaffer,  L. F. et al. Gallic Acid Decreases Vacuous Chewing Movements Induced by Reserpine in Rats. Pharmacol. Biochem. Behav. 2013, 104, 132–137. DOI: 10.1016/j.pbb.2013.01.001.
  • Kasture, V. S.; Katti, S. A.; Mahajan, D.; Wagh, R.; Mohan, M.; Kasture, S. B. Antioxidant and Antiparkinson Activity of Gallic Acid Derivatives. Pharmacologyonline. 2009, 1, 385–395.
  • Chandrasekhar, Y.; Kumar, G. P.; Ramya, E.; Anilakumar, K. Gallic Acid Protects 6-OHDA Induced Neurotoxicity by Attenuating Oxidative Stress in Human Dopaminergic Cell Line. Neurochem. Res. 2018, 43(6), 1150–1160. DOI: 10.1007/s11064-018-2530-y.
  • Chen, H.; Yoshioka, H.; Kim, G. S. et al. Oxidative Stress in Ischemic Brain Damage: Mechanisms of Cell Death and Potential Molecular Targets for Neuroprotection. Antioxid. 2011, 14(8), 1505–1517.
  • Christophe, M.; Nicolas, S. Mitochondria: A Target for Neuroprotective Interventions in Cerebral Ischemia-reperfusion. Curr. Pharm. Des. 2006, 12(6), 739–757. DOI: 10.2174/138161206775474242.
  • .White, B. C.; Sullivan, J. M.; DeGracia, D. J. et al. Brain Ischemia and Reperfusion: Molecular Mechanisms of Neuronal Injury. J. Neurol. Sci. 2000, 179(1–2), 1–33.
  • Korani, M. S.; Farbood, Y.; Sarkaki, A.; Moghaddam, H. F.; Mansouri, M. T. Protective Effects of Gallic Acid against Chronic Cerebral Hypoperfusion-induced Cognitive Deficit and Brain Oxidative Damage in Rats. Eur. J Pharmacol. 2014, 733, 62–67. DOI: 10.1016/j.ejphar.2014.03.044.
  • Sarkaki, A.; Fathimoghaddam, H.; Mansouri, S. M. T.; Shahram Korram, M.; Saki, G.; Farbood, Y. Gallic Acid Improves Cognitive, Hippocampal Long-term Potentiation Deficits and Brain Damage Induced by Chronic Cerebral Hypoperfusion in Rats. PJBS. 2014, 17(8), 978–990. DOI: 10.3923/pjbs.2014.978.990.
  • Farbood, Y.; Sarkaki, A.; Hashemi, S.; Mansouri, M. T.; Dianat, M. The Effects of Gallic Acid on Pain and Memory following Transient Global Ischemia/reperfusion in Wistar Rats. Avicenna. J Phytomed. 2013, 3(4), 329.
  • Tsigos, C.; Chrousos, G. P. Hypothalamic–pituitary–adrenal Axis, Neuroendocrine Factors and Stress. J. Psychosom. Res. 2002, 53(4), 865–871. DOI: 10.1016/S0022-3999(02)00429-4.
  • Ago, Y.; Arikawa, S.; Yata, M. et al. Antidepressant-like Effects of the Glucocorticoid Receptor Antagonist RU-43044 are Associated with Changes in Prefrontal Dopamine in Mouse Models of Depression. Neuropharmacol. 2008, 55(8), 1355–1363.
  • Pan, Y.; Kong, L.; Xia, X.; Zhang, W.; Xia, Z.; Jiang, F. Antidepressant-like Effect of Icariin and Its Possible Mechanism in Mice. Pharmacol. Biochem. Behav. 2005, 82(4), 686–694. DOI: 10.1016/j.pbb.2005.11.010.
  • Spiers, J. G.; Chen H-J, C.; Sernia, C.; Lavidis, N. A. Activation of the Hypothalamic-pituitary-adrenal Stress Axis Induces Cellular Oxidative Stress. Front. Neurosci. 2015, 8, 456. DOI: 10.3389/fnins.2014.00456.
  • Lowy, M., . T.; Gault, L.; Yamamoto, B. K. Rapid Communication: Adrenalectomy Attenuates Stress‐induced Elevations in Extracellular Glutamate Concentrations in the Hippocampus. J. Neurochem. 1993, 61(5), 1957–1960. DOI: 10.1111/j.1471-4159.1993.tb09839.x.
  • Amani, M.; Samadi, H.; Doosti, M-H. et al. Neonatal NMDA Receptor Blockade Alters Anxiety-and Depression-related Behaviors in a Sex-dependent Manner in Mice. Neuropharmacol. 2013, 73, 87–97. DOI: 10.1016/j.neuropharm.2013.04.056.
  • Li, N.; Liu, R-J.; Dwyer, J. M. et al. Glutamate N-methyl-D-aspartate Receptor Antagonists Rapidly Reverse Behavioral and Synaptic Deficits Caused by Chronic Stress Exposure. Biol. Psychiatry. 2011, 69(8), 754–761.
  • Dabbagh, A. J.; Mannion, T.; Lynch, S.; Frei, B. The Effect of Iron Overload on Rat Plasma and Liver Oxidant Status in Vivo. Biochem. J. 1994, 300(3), 799–803. DOI: 10.1042/bj3000799.
  • Kawabata, K.; Kawai, Y.; Terao, J. Suppressive Effect of Quercetin on Acute Stress-induced Hypothalamic-pituitary-adrenal Axis Response in Wistar Rats. J. Nutr Biochem. 2010, 21(5), 374–380. DOI: 10.1016/j.jnutbio.2009.01.008.
  • Pereira,  M. M.;  de Morais,  H.;  dos Santos Silva,  E. et al. The Antioxidant Gallic Acid Induces Anxiolytic-, but Not Antidepressant-like Effect, in Streptozotocin-induced Diabetes. Metab. Brain Dis. 2018, 33(5), 1573–1584.
  • Dhingra, D.; Chhillar, R.; Gupta, A. Antianxiety-like Activity of Gallic Acid in Unstressed and Stressed Mice: Possible Involvement of Nitriergic System. Neurochem. Res. 2012, 37(3), 487–494. DOI: 10.1007/s11064-011-0635-7.
  • Mansouri, M. T.; Soltani, M.; Naghizadeh, B.; Farbood, Y.; Mashak, A.; Sarkaki, A. A Possible Mechanism for the Anxiolytic-like Effect of Gallic Acid in the Rat Elevated Plus Maze. Pharmacol. Biochem. Behav. 2014, 117, 40–46. DOI: 10.1016/j.pbb.2013.12.011.
  • Can, Ö. D.; Turan, N.; Özkay, Ü. D.; Öztürk, Y. Antidepressant-like Effect of Gallic Acid in Mice: Dual Involvement of Serotonergic and Catecholaminergic Systems. Life. Sci. 2017, 190, 110–117. DOI: 10.1016/j.lfs.2017.09.023.
  • Chhillar, R.; Dhingra, D. Antidepressant‐like Activity of Gallic Acid in Mice Subjected to Unpredictable Chronic Mild Stress. Fundam. Clin. Pharmacol. 2013, 27(4), 409–418. DOI: 10.1111/j.1472-8206.2012.01040.x.
  • Nagpal, K.; Singh, S. K.; Mishra, D. N. Nanoparticle Mediated Brain Targeted Delivery of Gallic Acid: In Vivo Behavioral and Biochemical Studies for Improved Antioxidant and Antidepressant-like Activity. Drug. Deliv. 2012, 19(8), 378–391. DOI: 10.3109/10717544.2012.738437.
  • Nabavi, S.; Habtemariam, S.; Di Lorenzo, A.; Sureda, A.; Khanjani, S.; Daglia, M. Post-stroke Depression Modulation and in Vivo Antioxidant Activity of Gallic Acid and Its Synthetic Derivatives in a Murine Model System. Nutrients. 2016, 8(5), 48. DOI: 10.3390/nu8050248.
  • Samad, N.; Jabeen, S.; Imran, I.; Zulfiqar, I.; Bilal, K. Protective Effect of Gallic Acid against Arsenic-induced Anxiety−/depression-like Behaviors and Memory Impairment in Male Rats. Metab. Brain Dis. 2019, 34(4), 1091–1102. DOI: 10.1007/s11011-019-00432-1.
  • Huang, H-L.; Lin, C-C.; Jeng, K-CG. et al. Fresh Green Tea and Gallic Acid Ameliorate Oxidative Stress in Kainic Acid-induced Status Epilepticus. J. Agr. Food. Chem. 2012, 60(9), 2328–2336.
  • Sarkaki, A.; Farbood, Y.; Gharib-Naseri, M. K. et al. Gallic Acid Improved Behavior, Brain Electrophysiology, and Inflammation in a Rat Model of Traumatic Brain Injury. Can. J. Physiol. Pharm. 2015, 93(8), 687–694.
  • Mirshekar, M.A.; Sarkaki, A.;  Farbood,  Y. et al. Neuroprotective Effects of Gallic Acid in a Rat Model of Traumatic Brain Injury: Behavioral, Electrophysiological, and Molecular Studies. Iran J. Basic Med. Sci. 2018, 21(10), 1056.
  • Georgieva, A.; Belcheva, S.; Tashev, R.; Valcheva-Kuzmanova, S. Effects of Gallic Acid on Exploratory Behavior and Locomotor Activity in Rats. Trakia J. Sci. 2015, 13(2), 29–33. DOI: 10.15547/tjs.2015.s.02.007.
  • Maya, S.; Prakash, T.; Goli, D. Evaluation of Neuroprotective Effects of Wedelolactone and Gallic Acid on Aluminium-induced Neurodegeneration: Relevance to Sporadic Amyotrophic Lateral Sclerosis. Eur J. Pharmacol. 2018, 835, 41–51. DOI: 10.1016/j.ejphar.2018.07.058.
  • Reckziegel, P.; Dias, V. T.; Benvegnú, D.; Boufleur, N.; Barcelos, R. C. S.; Segat, H. J.; Pase, C. S.; Dos Santos, C. M. M.; Flores, É. M. M.; Bürger, M. E.;; et al. Locomotor Damage and Brain Oxidative Stress Induced by Lead Exposure are Attenuated by Gallic Acid Treatment. Toxicol. Lett. 2011, 203(1), 74–81.
  • Backonja, -M.-M.;. Use of Anticonvulsants for Treatment of Neuropathic Pain. Neurology. 2002, 59(5suppl 2), S14–S7. DOI: 10.1212/WNL.59.5_suppl_2.S14.
  • Chowdhury, M. R.; Moshikur, R. M.; Wakabayashi,  R. et al. Ionic-liquid-based Paclitaxel Preparation: A New Potential Formulation for Cancer Treatment. Mol. Pharm. 2018, 15(6), 2484–2488.
  • Kaur, S.; Muthuraman, A. Ameliorative Effect of Gallic Acid in Paclitaxel-induced Neuropathic Pain in Mice. Toxicol. Rep. 2019, 6, 505–513. DOI: 10.1016/j.toxrep.2019.06.001.
  • Kim, J.; Lee, H. J.; Lee, K. W. Naturally Occurring Phytochemicals for the Prevention of Alzheimer’s Disease. J. Neurochem. 2010, 112(6), 1415–1430. DOI: 10.1111/j.1471-4159.2009.06562.x.
  • Pasinetti, G. M.; Wang, J.; Ho, L.; Zha, W.; Dubner, L. Roles of Resveratrol and Other Grape-derived Polyphenols in Alzheimer’s Disease Prevention and Treatment. Biochim. Biophys. Acta. 2015, 1852(6), 1202–1208. DOI: 10.1016/j.bbadis.2014.10.006.
  • Nagpal, K.; Singh, S.; Mishra, D. Nanoparticle Mediated Brain Targeted Delivery of Gallic Acid: In Vivo Behavioral and Biochemical Studies for Protection against Scopolamine-induced Amnesia. Drug. Deliv. 2013, 20(3–4), 112–119. DOI: 10.3109/10717544.2013.779330.