1,415
Views
4
CrossRef citations to date
0
Altmetric
Original Article

Antimicrobial, mechanical, and physicochemical properties of ethylene vinyl alcohol (EVOH) extruded films blended with propolis

, ORCID Icon, &
Pages 2020-2032 | Received 11 May 2020, Accepted 16 Oct 2020, Published online: 08 Nov 2020

References

  • Król, W.; Bankova, V.; Sforcin, J. M.; Szliszka, E.; Czuba, Z.; Kuropatnicki, A. K. Propolis: Properties, Application, and Its Potential. Evid. Based Complement. Altern. Med. 2013, 2013, 807578. DOI: 10.1155/2013/807578.
  • Rambabu, K.; Bharath, G.; Fawzi, B.; Show, P. L.; Cocoletzi, H. H. Mango Leaf Extract Incorporated Chitosan Antioxidant Film for Active Food Packaging. Int. J. Biol. Macromol. 2019, 126, 1234–1243. DOI: 10.1016/j.ijbiomac.2018.12.196.
  • López de Dicastillo, C.; Nerín, C.; Alfaro, P.; Catalá, R.; Gavara, R.; Hernández-Muñoz, P. Development of New Antioxidant Active Packaging Films Based on Ethylene Vinyl Alcohol Copolymer (EVOH) and Green Tea Extract. J. Agric. Food Chem. 2011, 59, 7832–7840. DOI: 10.1021/jf201246g.
  • Suppakul, P.; Miltz, J.; Sonneveld, K.; Bigger, S. W. Active Packaging Technologies with an Emphasis on Antimicrobial Packaging and Its Applications. J. Food Sci. 2003, 68(2), 408–420. DOI: 10.1111/j.1365-2621.2003.tb05687.x.
  • Wang H, Wang W, Jiang S,Jiang S, Zhai L, and JiangQ. Poly (vinyl alcohol)/oxidized starch fibres via electrospinning technique: fabrication and characterization. Iran polym J 2011; 20:551–558.
  • Quintavalla, S.; Vicini, L. Antimicrobial Food Packaging in Meat Industry. Meat Sci. 2002, 62(3), 373–380. DOI: 10.1016/S0309-1740(02)00121-3.
  • Muramatsu, M.; Okura, M.; Kuboyama, K.; Ougizawa, T.; Yamamoto, T.; Nishihara, Y.; Saito, Y.; Ito, K.; Hirata, K.; Kobayashi, Y.;, et al. Oxygen Permeability and Free Volume Hole Size in Ethylene–vinyl Alcohol Copolymer Film: Temperature and Humidity Dependence. Radiat. Phys. Chem. 2003, 68(3–4), 561–564. DOI: 10.1016/S0969-806X(03)00231-7.
  • Sadeghi, K.; Shahedi, M. Physical, Mechanical, and Antimicrobial Properties of Ethylene Vinyl Alcohol copolymer/chitosan/nano-ZnO (Ecnzn) Nanocomposite Films Incorporating Glycerol Plasticizer. J. Food Meas. Charact. 2016, 10(1), 137–147. DOI: 10.1007/s11694-015-9287-7.
  • Kwon, H.; Kim, D.; Seo, J. Thermal and Barrier Properties of EVOH/EFG Nanocomposite Films for Packaging Applications: Effect of the Mixing Method. Polym. Compos. 2016, 37(6), 1744–1753. DOI: 10.1002/pc.23347.
  • Muriel-Galet, V.; Cran, M. J.; Bigger, S. W.; Hernández-Muñoz, P.; Gavara, R. Antioxidant and Antimicrobial Properties of Ethylene Vinyl Alcohol Copolymer Films Based on the Release of Oregano Essential Oil and Green Tea Extract Components. J. Food Eng. 2015, 149, 9–16. DOI: 10.1016/j.jfoodeng.2014.10.007.
  • Mokwena, K.; Tang, J. Ethylene Vinyl Alcohol: A Review of Barrier Properties for Packaging Shelf Stable Foods. Crit. Rev. Food Sci. Nutr. 2012, 52(7), 640–650. DOI: 10.1080/10408398.2010.504903.
  • Yeh, J.-T.; Yao, W.-H.; Du, Q.; Chen, -C.-C. Blending and Barrier Properties of Blends of Modified Polyamide and Ethylene Vinyl Alcohol Copolymer. J. Polym. Sci. B Polym. Phys. 2005, 43, 511–521. DOI: 10.1002/polb.20344.
  • Anjum, S. I.; Ullah, A.; Khan, K. A.; Attaullah, M.; Khan, H.; Ali, H.; Bashir, M. A.; Tahir, M.; Ansari, M. J.; Ghramh, H. A.;, et al. Composition and Functional Properties of Propolis (Bee Glue): A Review. Saudi J. Biol. Sci. 2019, 26, 1695–1703. DOI: 0.1016/j.sjbs.2018.08.013.
  • Muriel-Galet, V.; López-Carballo, G.; Hernández-Muñoz, P.; Gavara, R. Characterization of Ethylene-vinyl Alcohol Copolymer Containing Lauril Arginate (LAE) as Material for Active Antimicrobial Food Packaging. Food Pack. Shelf Life. 2014, 1(1), 10–18. DOI: 10.1016/j.fpsl.2013.09.002.
  • Martı́nez-Abad, A.; Lagaron, J. M.; Ocio, M. J. Development and Characterization of Silver-Based Antimicrobial Ethylene–Vinyl Alcohol Copolymer (EVOH) Films for Food-Packaging Applications. J. Agric. Food Chem. 2012, 60(21), 5350–5359. DOI: 10.1021/jf300334z.
  • Matsuda, N.; Shirasaka, H.; Takayama, K.; Ishikawa, T.; Takeda, K. Thermal Degradation and Flame Retardancy of Ethylene-vinyl Alcohol Copolymer Blended with Ammonium Polyphosphate. Polym. Degrad. Stab. 2003, 79(1), 13–20. DOI: 10.1016/S0141-3910(02)00229-X.
  • Calatayud, M.; López-de-Dicastillo, C.; López-Carballo, G.; Vélez, D.; Hernández Muñoz, P.; Gavara, R. Active Films Based on Cocoa Extract with Antioxidant, Antimicrobial and Biological Applications. Food Chem. 2013, 139(1–4), 51–58. DOI: 10.1016/j.foodchem.2013.01.097.
  • Yildirim S, Röcker B, Pettersen MK, Nilsen-Nygaard J, Ayhan Z, Rutkaite R, Radusin T, Suminska P, Marcos B, and Coma V. Active Packaging Applications for Food. Compr. Rev. Food Sci. Food Saf. 2018; 17:165-199. DOI: 10.1111/1541-4337.12322.
  • Asawahame, C.; Sutjarittangtham, K.; Eitssayeam, S.; Tragoolpua, Y.; Sirithunyalug, B.; Sirithunyalug, J. Antibacterial Activity and Inhibition of Adherence of Streptococcus Mutans by Propolis Electrospun Fibers. AAPS PharmSciTech. 2015, 16(1), 182–191. DOI: 10.1208/s12249-014-0209-5.
  • Siheri W, Alenezi S, Tusiimire J, Watson DG. The Chemical and Biological Properties of Propolis. In: Alvarez-Suarez J. (eds): Bee Products - Chemical and Biological Properties. Cham: Springer; 2017; 137-178. DOI: 10.1007/978-3-319-59689-1_7.
  • Gutiérrez, L.; Escudero, A.; Batlle, R.; Nerín, C. Effect of Mixed Antimicrobial Agents and Flavors in Active Packaging Films. J. Agric. Food Chem. 2009, 57, 8564–8571. DOI: 10.1021/jf901459e.
  • Wang, H.; Chen, M.; Jin, C.; Niu, B.; Jiang, S.; Li, X.; Jiang, S. Antibacterial [2-(Methacryloyloxy) ethyl] Trimethylammonium Chloride Functionalized Reduced Graphene Oxide/Poly(ethylene-co-vinyl alcohol) Multilayer Barrier Film for Food Packaging. J. Agric. Food Chem. 2018, 66, 732–739. DOI: 10.1021/acs.jafc.7b04784.
  • Kumazawa, S.; Hamasaka, T.; Nakayama, T. Antioxidant Activity of Propolis of Various Geographic Origins. Food Chem. 2004, 84(3), 329–339. DOI: 10.1016/S0308-8146(03)00216-4.
  • Kubiliene, L.; Laugaliene, V.; Pavilonis, A.; Maruska, A.; Majiene, D.; Barcauskaite, K.; Kubilius, R.; Kasparaviciene, G.; Savickas, A. Alternative Preparation of Propolis Extracts: Comparison of Their Composition and Biological Activities. BMC Complementary Altern. Med. 2015, 15(1), 156. DOI: 10.1186/s12906-015-0677-5.
  • Mello, B. C. B. S.; Petrus, J. C. C.; Hubinger, M. D. Concentration of Flavonoids and Phenolic Compounds in Aqueous and Ethanolic Propolis Extracts through Nanofiltration. J. Food Eng. 2010, 96, 533–539. DOI: 10.1016/j.jfoodeng.2009.08.040.
  • Pellati, F.; Prencipe, F. P.; Bertelli, D.; Benvenuti, S. An Efficient Chemical Analysis of Phenolic Acids and Flavonoids in Raw Propolis by Microwave-assisted Extraction Combined with High-performance Liquid Chromatography Using the Fused-core Technology. J. Pharm. Biomed. Anal. 2013, 81-82, 126–132. DOI: 10.1016/j.jpba.2013.04.003.
  • de la Cruz-Cervantes JA, Benavides-González F, Sánchez-Martínez JG, de la Luz Vázquez-Sauceda M, and Ruiz-Uribe AJ. Propolis in Aquaculture: A Review of Its Potential. Rev. Fish. Sci. Aquacult. 2018; 26:1-13.DOI: 10.1080/23308249.2018.1424798.
  • Ismail MI, Roslan A, Saari NS, Hashim KH, Kalamullah MR. Ethanolic extract of propolis for biodegradable films packaging enhanced with chitosan. 3rd Electronicand Green Materials International Conference 2017 (EGM 2017), Thailand. AIP Conference Proceedings 2017; 1885(1):020231. DOI: 10.1063/1.5002425
  • Jaganathan SK, Mani MP, Ismail AF, Prabhakaran P, and  Nageswaran G.  Tailor-made multicomponent electrospun polyurethane nanofibrous composite scaffold comprising olive oil, honey, and propolis for bone tissue engineering: Electrospun polyurethane incorporated olive oil/honey/propolis. Polym. Compos. 2018; 40.DOI: 10.1002/pc.24985.
  • Adomavičiūtė E, Baltušnikaitė-Guzaitienė J, Juškaitė V, Žilius M, Briedis V, and  Stanys S. Formation and characterization of melt-spun polypropylene fibers with propolis for medical applications. The J. Text. Inst. 2018; 109:278-284.DOI: 10.1080/00405000.2017.1341295.
  • Hajinezhad, S.; Razavizadeh, B. M.; Niazmand, R. Study of Antimicrobial and Physicochemical Properties of LDPE/Propolis Extruded Films. Polym. Bull. 2020, 77, 4335–4355. DOI: 10.1007/s00289-019-02965-y.
  • Mascheroni, E.; Guillard, V.; Nalin, F.; Mora, L.; Piergiovanni, L. Diffusivity of Propolis Compounds in Polylactic Acid Polymer for the Development of Anti-microbial Packaging Films. J. Food Eng. 2010, 98(3), 294–301. DOI: 10.1016/j.jfoodeng.2009.12.028.
  • Siripatrawan, U.; Vitchayakitti, W. Improving Functional Properties of Chitosan Films as Active Food Packaging by Incorporating with Propolis. Food Hydrocolloids. 2016, 61, 695–702. DOI: 10.1016/j.foodhyd.2016.06.001.
  • Lagaron, J. M.; Powell, A. K.; Bonner, G. Permeation of Water, Methanol, Fuel and Alcohol-containing Fuels in High-barrier Ethylene–vinyl Alcohol Copolymer. Polym. Test. 2001, 20(5), 569–577. DOI: 10.1016/S0142-9418(00)00077-5.
  • ASTM. Standard Test Methods for Water Vapor Transmission of Material; American Society for Testing and Materials: Annual book of ASTM: Philadelphia, PA, 1995.
  • Kołodziejska, I.; Piotrowska, B. The Water Vapour Permeability, Mechanical Properties and Solubility of Fish Gelatin–chitosan Films Modified with Transglutaminase or 1-ethyl-3-(3-dimethylaminopropyl) Carbodiimide (EDC) and Plasticized with Glycerol. Food Chem. 2007, 103(2), 295–300. DOI: 10.1016/j.foodchem.2006.07.049.
  • Byun, Y.; Kim, Y. T.; Whiteside, S. Characterization of an Antioxidant Polylactic Acid (PLA) Film Prepared with α-tocopherol, BHT and Polyethylene Glycol Using Film Cast Extruder. J. Food Eng. 2010, 100, 239–244. DOI: 10.1016/j.jfoodeng.2010.04.005.
  • Ramos, M.; Jiménez, A.; Peltzer, M.; Garrigós, M. C. Characterization and Antimicrobial Activity Studies of Polypropylene Films with Carvacrol and Thymol for Active Packaging. J. Food Eng. 2012, 109(3), 513–519. DOI: 10.1016/j.jfoodeng.2011.10.031.
  • Oliveira RN, Mancini MC, de Oliveira FCS, Passos TM, Quilty B, da Silva Moreira Thiré RM, McGuinness GB. FTIR analysis and quantification of phenols and flavonoids of five commercially available plants extracts used in wound healing. 62;Matéria (Rio de Janeiro)62; 2016; 21:767-779.DOI: 10.1590/S1517-707620160003.0072.
  • JIS, Z.;. 2801. Antimicrobial Products Test for Antimicrobial Activity and Efficacy; Japanese Standards Association: Japan, 2000.
  • Isiri-10899-2. Microbiology of food and animal feeding stuffs - Horizontal method for the enumeration of yeasts and moulds  In Part 2 : Colony count technique in products  with water activity less thanor equal to 0.95. Islamic Republic of Iran: Institute of Standards and Industrial Research of Iran; 2008; 8-20.
  • Meshkani, M.; Mortazavi, A.; Pourfallah, Z. Antimicrobial and Physical Properties of a Chickpea Protein Isolate-based Film Containing Essential Oil of Thyme Using Response Surface Methodology. Iran. J. Nutr. Sci. Food Technol. 2013, 8, 93–104.
  • Cabedo, L.; Giménez, E.; Lagaron, J. M.; Gavara, R.; Saura, J. J. Development of EVOH-kaolinite Nanocomposites. Polymer. 2004, 45(15), 5233–5238. DOI: 10.1016/j.polymer.2004.05.018.
  • Matsuda, A. H.; Machado, L. B.; Del Mastro, N. L. Thermal Analysis Applied to Irradiated Propolis. Radiat. Phys. Chem. 2002, 63(3–6), 353–355. DOI: 10.1016/S0969-806X(01)00524-2.
  • Rosa, M. F.; Chiou, B.-S.; Medeiros, E. S.; Wood, D. F.; Williams, T. G.; Mattoso, L. H. C.; Orts, W. J.; Imam, S. H. Effect of Fiber Treatments on Tensile and Thermal Properties of Starch/ethylene Vinyl Alcohol Copolymers/coir Biocomposites. Bioresour. Technol. 2009, 100(21), 5196–5202. DOI: 10.1016/j.biortech.2009.03.085.
  • Durmuş, A.; Woo, M.; Kaşgöz, A.; Macosko, C. W.; Tsapatsis, M. Intercalated Linear Low Density Polyethylene (Lldpe)/clay Nanocomposites Prepared with Oxidized Polyethylene as a New Type Compatibilizer: Structural, Mechanical and Barrier Properties. Eur. Polym. J. 2007, 43(9), 3737–3749. DOI: 10.1016/j.eurpolymj.2007.06.019.
  • Cui, L.; Xu, L.-P.; Tsai, F.-C.; Zhu, P.; Jiang, T.; Yeh, J.-T. Oxygen Depletion Properties of Glucose-grafted Polyethylene Resins Filled with Sodium Ascorbate/modified Iron Compounds. J. Polym. Res. 2011, 18(6), 1301–1313. DOI: 10.1007/s10965-010-9533-y.
  • López-Rubio, A.; Lagarón, J. M.; Hernández-Muñoz, P.; Almenar, E.; Catalá, R.; Gavara, R.; Pascall, M. A. Effect of High Pressure Treatments on the Properties of EVOH-based Food Packaging Materials. Innovative Food Sci. Emerg. Technol. 2005, 6(1), 51–58. DOI: 10.1016/j.ifset.2004.09.002.
  • Oliveira RN, Mancini MC, de Oliveira FCS, Passos TM, Quilty B, da Silva Moreira Thiré RM, McGuinness GB. FTIR analysis and quantification of phenols and flavonoids of five commercially available plants extracts used in wound healing. Matéria (Rio de Janeiro), 2016; 21(3):767-779. DOI: 10.1590/S1517-707620160003.0072.
  • López-Rubio, A.; Hernández-Muñoz, P.; Gimenez, E.; Yamamoto, T.; Gavara, R.; Lagarón, J. M. Gas Barrier Changes and Morphological Alterations Induced by Retorting in Ethylene Vinyl Alcohol–based Food Packaging Structures. J. Appl. Polym. Sci. 2005, 96, 2192–2202. DOI: 10.1002/app.21690.
  • Shin, Y.; Shin, J.; Lee, Y. S. Preparation and Characterization of Multilayer Film Incorporating Oxygen Scavenger. Macromol. Res. 2011, 19(9), 869. DOI: 10.1007/s13233-011-0912-y.
  • Popova, M.; Silici, S.; Kaftanoglu, O.; Bankova, V. Antibacterial Activity of Turkish Propolis and Its Qualitative and Quantitative Chemical Composition. Phytomedicine. 2005, 12(3), 221–228. DOI: 10.1016/j.phymed.2003.09.007.
  • Dias, L. G.; Pereira, A. P.; Estevinho, L. M. Comparative Study of Different Portuguese Samples of Propolis: Pollinic, Sensorial, Physicochemical, Microbiological Characterization and Antibacterial Activity. Food Chem. Toxicol. 2012, 50(12), 4246–4253. DOI: 10.1016/j.fct.2012.08.056.
  • Razavizadeh, B. M.; Niazmand, R.; Hajinezhad, S.; Akbari, E. Physicochemical and Antimicrobial Properties and Determination of Phenols and Flavonoids Content of Propolis from Bee Hives in Khorasan Razavi Province. J. res. Innovation Food Sci. Technol. 2020, 9, 27–40. DOI: 10.22101/JRIFST.2019.09.17.e1031.