2,169
Views
3
CrossRef citations to date
0
Altmetric
Original Article

Inhibition of acrylamide in gluten-free quinoa biscuits by supplementation with microbial dextran

Pages 11-23 | Received 28 Jun 2021, Accepted 11 Dec 2021, Published online: 27 Dec 2021

References

  • Falconer, D. J.; Mukerjea, R.; Robyt, J. F. Biosynthesis of Dextrans with Different Molecular Weights by Selecting the Concentration of Leuconostoc Mesenteroides B-512FMC Dextransucrase, the Sucrose Concentration, and the Temperature. Carbohydr. Polym. 2011, 364, 280–284. DOI: 10.1016/j.carres.2010.10.024.
  • Lule, V. K.; Singh, R.; Pophaly, S. D.; Tomar, S. K. Production and Structural Characterisation of Dextran from an Indigenous Strain of Leuconostoc Mesenteroides BA08 in Whey. Int. J. Dairy Technol. 2016, 69, 520–531. DOI: 10.1111/1471-0307.12271.
  • Devi, C. S.; Reddy, S.; Mohanasrinivasan, V. Fermentative Production of Dextran Using Leuconostoc Spp. Isolated from Fermented Food Products. Front Biol. 2014, 9(3), 244–253. DOI: 10.1007/s11515-014-1303-5.
  • Vettori, M. H. P. B.; Franchetti, S. M. M.; Contiero, J. Structural Characterization of a New Dextran with Low Degree of Branching Produced by Leuconostoc Mesenteroides FT045B Dextransucrase. Carbohydr. Polym. 2012, 88, 1440–1444. DOI: 10.1016/j.carbpol.2012.02.048.
  • Regulation HA. Regulation (EC) No 258/97 of the European Parliament and of the Council of 27 January 1997 Concerning Novel Foods and Novel Food Ingredients. Official J. 1997
  • Wolter, A.; Hager, A. S.; Zannini, E.; Czerny, M.; Arendt, E. K. Influence of Dextran Producing Weissella Cibaria on Baking Properties and Sensory Profile of Gluten-free and Wheat Breads. Int. J. Food Microbiol. 2014, 172, 83–89. DOI: 10.1016/j.ijfoodmicro.2013.11.015.
  • Rao, T. J. M.; Goyal, A. A Novel High Dextran Yielding Weissella Cibaria JAG8 for Cereal Food Application. Int. J. Food Sci. Nutr. 2013, 64, 346–354. DOI: 10.3109/09637486.2012.734289.
  • Woomer, J. S.; Adedeji, A. A. Current Applications of Gluten-free Grains–a Review. Critical Rev Food Sci Nutrition 2021, 61, 14–24. DOI: 10.1080/10408398.2020.1713724.
  • Mustalahti, K.; Catassi, C.; Reunanen, A.; Fabiani, E.; Heier, M.; MacMillan, S.; Murray, L.; Metzger, M. H.; Gasparin, M.; Bravi, E., et al. The Prevalence of Celiac Disease in Europe: Results of a Centralized, International Mass Screening Project. Annual Med 2010, 42, 587–595. DOI: 10.3109/07853890.2010.505931.
  • Mousa, R. M. A. Simultaneous Inhibition of Acrylamide Formation and Fat Oxidation in Quinoa Cakes Using Gum Arabic Supplementation Coupled with Fat Reduction. Int. J. Food Prop. 2021, 24, 749–763. DOI: 10.1080/10942912.2021.1924779.
  • Cannas, M.; Pulina, S.; Conte, P.; Del Caro, A.; Urgeghe, P. P.; Piga, A.; Fadda, C. Effect of Substitution of Rice Flour with Quinoa Flour on the Chemical-physical, Nutritional, Volatile and Sensory Parameters of Gluten-free Ladyfinger Biscuits. Foods. 2020, 9, 808. DOI: 10.3390/foods9060808.
  • Atef, A.; El-Faham, S. Y.; Wafaa, H. Use of Quinoa Meal to Produce Bakery Products to Celiac and Autism Stuffs. Int. J. Sci. Res. 2014, 3, 1344–1354.
  • Vega-Galvez, A.; Miranda, M.; Vergara, J.; Uribe, E.; Puente, L.; Martinez, E. A. Nutrition Facts and Functional Potential of Quinoa (Chenopodium Quinoa Willd.), An Ancient Andean Grain: A Review. J. Sci. Food Agric. 2010, 90, 2541–2547. DOI: 10.1002/jsfa.4158.
  • Demir, M. K.; Kilinç, M. Utilization of Quinoa Flour in Cookie Production. Int. Food Res. J. 2017, 24, 2394–2401.
  • Mousa, R. M. A. Simultaneous Inhibition of Acrylamide and Oil Uptake in Deep Fat Fried Potato Strips Using Gum Arabic-based Coating Incorporated with Antioxidants Extracted from Spices. Food Hydrocolloids. 2018, 83, 265–274. DOI: 10.1016/j.foodhyd.2018.05.007.
  • Mousa, R. M. A. Simultaneous Mitigation of 4 (5)‐methylimidazole,acrylamide, and 5‐hydroxymethylfurfural in Ammonia Biscuits by Supplementing with Food Hydrocolloids. Food Sci. Nutr. 2019, 7, 3912–3921. DOI: 10.1002/fsn3.1250.
  • Gao, Z.; Fang, Y.; Cao, Y.; Liao, H.; Nishinari, K.; Phillips, G. O. Hydrocolloid-food Component Interactions. Food Hydrocolloids. 2017, 68, 149–156. DOI: 10.1016/j.foodhyd.2016.08.042.
  • Zeng, X.; Cheng, K.-W.; Du, Y.; Kong, R.; Lo, C.; Chu, I. K.; Chen, F.; Wang, M. Activities of Hydrocolloids as Inhibitors of Acrylamide Formation in Model Systems and Fried Potato Strips. Food Chem. 2010, 121, 424–428. DOI: 10.1016/j.foodchem.2009.12.059.
  • Mhada, M.; Metougui, M. L.; El Hazzam, K.; El Kacimi, K.; Yasri, A. Variations of Saponins, Minerals and Total Phenolic Compounds Due to Processing and Cooking of Quinoa (Chenopodium Quinoa Willd.) Seeds. Foods. 2020, 9, 660. DOI: 10.3390/foods9050660.
  • Ranjan, S.; Kumar, A.; Dasgupta, N.; Arunachalam, S.; Chidambaram, R. Production of Dextran Using Leuconostoc Mesenteroides NCIM-2198 and Its Media Optimization by Response Surface Methodology. J. Pure Appl. Microbiol. 2014, 8(3), 2359–2367.
  • AOAC. Official Methods of Analysis, 18th ed.; Association of Official Analytical Chemists: Washington, USA, 2015.
  • Brito, I. L.; de Souza, E. L.; Felex, S. S. S.; Madruga, M. S.; Yamashita, F.; Magnani, M. Nutritional and Sensory Characteristics of Gluten-free Quinoa (Chenopodium Quinoa Willd)-based Cookies Development Using an Experimental Mixture Design. J. Food Sci. Technol. 2015, 52, 5866–5873. DOI: 10.1007/s13197-014-1659-1.
  • Mogol, B. A.; Gökmen, V. Effect of Chitosan on the Formation of Acrylamide and Hydroxymethylfurfural in Model, Biscuit and Crust Systems. Food Funct. 2016, 7, 3431–3436. DOI: 10.1039/C6FO00755D.
  • Liu, C.; Lin, Q.; Gao, Y.; Ye, L.; Xing, Y.; Xi, T. Characterization and Antitumor Activity of a Polysaccharide from Strongylocentrotus Nudus Eggs. Carbohydr. Polym. 2007, 67(3), 313–318. DOI: 10.1016/j.carbpol.2006.05.024.
  • Cao, W.; Li, X.-Q.; Liu, L.; Yang, T.-H.; Li, C.; Fan, H.-T.; Jia, M.; Lu, Z.-G.; Mei, Q.-B. Structure of an Anti-tumor Polysaccharide from Angelica Sinensis (Oliv.) Diels. Carbohydr. Polym. 2006, 66(2), 149–159. DOI: 10.1016/j.carbpol.2006.02.034.
  • Uzochukwu, S.; Balogh, E.; Loefler, R. T.; Ngoddy, P. O. Structural Analysis by 13 C-nuclear Magnetic Resonance Spectroscopy of Glucan Extracted from Natural Palm Wine. Food Chem. 2002, 76(3), 287–291. DOI: 10.1016/S0308-8146(01)00274-6.
  • Li, F.; Zhang, H.; Li, Y.; Yu, Y.; Chen, Y.; Xie, M.; Duan, G. Simultaneous Identification and Quantification of Dextran 20 and Sucrose in Lyophilized Thrombin Powder by Size Exclusion Chromatography with ELSD. Chromatographia. 2012, 75(3–4), 187–191. DOI: 10.1007/s10337-011-2170-8.
  • Bovey, F. A. Enzymatic Polymerization. I. Molecular Weight and Branching during the Formation of Dextran. J. Polym. Sci. 1959, 35(128), 167–182. DOI: 10.1002/pol.1959.1203512813.
  • Purama, R. K.; Goswami, P.; Khan, A. T.; Goyal, A. Structural Analysis and Properties of Dextran Produced by Leuconostoc Mesenteroides NRRL B-640. Carbohydr. Polym. 2009, 76, 30–34. DOI: 10.1016/j.carbpol.2008.09.018.
  • Conforti, F. D.; Charles, S. A.; Duncan, S. E. Evaluation of a Carbohydrate-based Fat Replacer in a Fat-reduced Baking Powder Biscuit. J. Food Qual. 1997, 20, 247–256. DOI: 10.1111/j.1745-4557.1997.tb00468.x.
  • Nguyen, H. T.; van der Fels-klerx, H. J.; Peters, R. J.; van Boekel, M. A. J. S. Acrylamide and 5-Hydroxymethylfurfural Formation during Baking of Biscuits: Part I: Effects of Sugar Type. Food Chem. 2016, 192, 575–585. DOI: 10.1016/j.foodchem.2015.07.016.
  • Regulation HA. EU Commission Regulation 2017/2158 of 20 November 2017 on Establishing Mitigation Measures and Benchmark Levels for the Reduction of the Presence of Acrylamide in Food. Official J Eur. 2017, 304, 25.
  • Zucco, F.; Borsuk, Y.; Arntfield, S. D. Physical and Nutritional Evaluation of Wheat Cookies Supplemented with Pulse Flours of Different Particle Sizes. LWT Food Sci. Technol. 2011, 44, 2070–2076. DOI: 10.1016/j.lwt.2011.06.007.