2,284
Views
7
CrossRef citations to date
0
Altmetric
Original Article

Physicochemical properties, and volatile compounds of blackened jujube vinegar as prepared by optimized fermentation process

ORCID Icon, ORCID Icon, ORCID Icon &
Pages 288-304 | Received 09 Aug 2021, Accepted 18 Jan 2022, Published online: 06 Feb 2022

References

  • Song, J.; Bi, J.; Chen, Q.; Wu, X.; Lyu, Y.; Meng, X. Assessment of Sugar Content, Fatty Acids, Free Amino Acids, and Volatile Profiles in Jujube Fruits at Different Ripening Stages. Food Chem. 2018, 270. DOI: 10.1016/j.foodchem.2018.07.102.
  • Zhang, R.; Sun, X.; Zhang, K.; Zhang, Y.; Song, Y.; Wang, F. Fatty Acid Composition of 21 Cultivars of Chinese Jujube Fruits (Ziziphus Jujuba Mill.). J. Food Meas. Charact. 2021, 15(2), 1225–1240. DOI: 10.1007/s11694-020-00718-4.
  • Gao, Q. H.; Wu, C. S.; Wang, M. The Jujube (Ziziphus Jujuba Mill.) Fruit: A Review of Current Knowledge of Fruit Composition and Health Benefits. J. Agric. Food Chem. 2013, 61(14), 3351–3363. DOI: 10.1021/jf4007032.
  • Reche, J.; Hernández, F.; Almansa, M. S.; Carbonell-Barrachina, Á. A.; Legua, P., and Amorós, A. Effects of Organic and Conventional Farming on the Physicochemical and Functional Properties of Jujube Fruit. LWT Food Sci. Technol. 2019, 99, 438–444. DOI: 10.1016/j.lwt.2018.10.012.
  • Wojdylo, A.; Figiel, A.; Legua, P.; Lech, K.; Carbonell-Barrachina, Á. A., and Hernández, F. Chemical Composition, Antioxidant Capacity, and Sensory Quality of Dried Jujube Fruits as Affected by Cultivar and Drying Method. Food Chem. 2016, 207, 170–179. DOI: 10.1016/j.foodchem.2016.03.099.
  • K, R. A.; Naymul, K.; Islam, S. M. R.; Tao, B.;Yang, L.; Wei, C. Jujube Fruit: A Potential Nutritious Fruit for the Development of Functional Food Products. J. Funct. Foods. . 2020, 75, 104205.
  • Reche, J.; Hernández, F.; Almansa, M. S.; Carbonell-Barrachina, Á. A.; Legua, P., and Amorós, A. Physicochemical and Nutritional Composition, Volatile Profile and Antioxidant Activity Differences in Spanish Jujube Fruits. LWT Food Sci. Technol. 2018, 98, 1–8. DOI: 10.1016/j.lwt.2018.08.023.
  • Xia, T.; Zhang, B.; Duan, W. H.; Zhang, J.; Wang, M. Nutrients and Bioactive Components from Vinegar: A Fermented and Functional Food. J. Funct. Foods. 2020, 64. DOI: 10.1016/j.jff.2019.103681.
  • Gao, L.; Gu, D., Sun, X.; Zhang, R. . Investigation of Processing Technology for Aged Black Jujube. Food Science and Nutrition Studies. 2019,3(4), 107, DOI: 10.22158/fsns.v3n4p107.
  • Sun, X.; Gu, D.; Fu, Q.; Gao, L.; Shi, C., and Zhang, R. , et al. Content Variations in Compositions and Volatile Component in Jujube Fruits during the Blacking Process. Food Sci. Nutr. 2019, 7(4), 1387–1395.
  • Hong, J.-Y.; Nam, H.-S.; Yoon, K.-Y.; Shin, S.-R. Physicochemical Properties and Nutritional Components of Fermented Black Jujube. Korean J. Food Preserv. 2012, 19(2), 243–248.
  • Kharchoufi, S.; Gomez, J.; Lasanta, C.; Castro, R.; Sainz, F.; Hamdi, M. Benchmarking Laboratory-scale Pomegranate Vinegar against Commercial Wine Vinegars: Antioxidant Activity and Chemical Composition. J. Sci. Food Agric. 2018, 98(12), 4749–4758. DOI: 10.1002/jsfa.9011.
  • Men, Y.; Zhu, P.; Zhu, Y. M.; Zheng, Y.; Yang, J. G.; Sun, Y. X. The Development of Low-calorie Sugar and Functional Jujube Food Using Biological Transformation and Fermentation Coupling Technology. Food Sci. Nutr. 2019, 7(4), 1302–1310. DOI: 10.1002/fsn3.963.
  • Zhao, M. N.; Zhang, F.; Zhang, L.; Liu, B. J.; Meng, X. H. Mixed Fermentation of Jujube Juice (Ziziphus Jujuba MilL.) With L. Rhamnosus GG and L. Plantarum-1: Effects on the Quality and Stability. Int. J. Food Sci. Technol. 2019, 54(8), 2624–2631. DOI: 10.1111/ijfs.14174.
  • Cao, M.; Niu, W. T.; Wang, S. H. Study on Flavor Substances of Jujube Fruit Vinegar. Basic Clin. Pharmacol. Toxicol. 2020, 126, 112.
  • Zhao, L. W.; Liu, F. M.; Wu, L. M.; Xue, X. F.; Hou, F. Fate of Triadimefon and Its Metabolite Triadimenol in Jujube Samples during Jujube Wine and Vinegar Processing. Food Control 2017, 73, 468–473. DOI: 10.1016/j.foodcont.2016.08.039.
  • Budak, N. H.; Aykin, E.; Seydim, A. C.; Greene, A. k.; Guzel-Seydim, Z. B. Functional Properties of Vinegar. J. Food Sci. 2014, 79(5), R757–R764. DOI: 10.1111/1750-3841.12434.
  • Ali, Z.; Ma, H. L.; Rashid, M. T.; Wali, A.; Younas, S. Preliminary Study to Evaluate the Phytochemicals and Physiochemical Properties in Red and Black Date’s Vinegar. Food Sci. Nutr. 2019, 7(6), 1976–1985. DOI: 10.1002/fsn3.1009.
  • Ali, Z.; Li, J. K.; Zhang, Y. H.; Naeem, N.; Younas, S.; Javeed, F. Dates (Phoenix Dactylifera) and Date Vinegar: Preventive Role against Various Diseases and Related in Vivo Mechanisms. Food Rev. Int. 2020. DOI: 10.1080/87559129.2020.1735411.
  • Ali, Z.; Wang, Z. B.; Amir, R. M.; Younas, S.; Wali, A.; Adowa, N., et al. Potential Uses of Vinegar as a Medicine and Related in Vivo Mechanisms. Int. J. Vitam. Nutr. Res. 2016, 86(3–4), 140–151. DOI: 10.1024/0300-9831/a000440.
  • Ali, Z. S.; Ma, H. L.; Wali, A.; Ishmael, A.; Sharif, M. N., et al. Daily Date Vinegar Consumption Improves Hyperlipidemia, Beta-carotenoid and Inflammatory Biomarkers in Mildly Hypercholesterolemic Adults. J. Herbal Med. 2019, 17–18. DOI: 10.1016/j.hermed.2019.100265.
  • Zhai, H. Y.; Zhu, W. X.; Jin, J. L.; Liu, E. W. Research Progress in Liquid Fermented Jujube Products. (In Chinese). Farm Prod Process. 2015, 13, 56–59. DOI: 10.3969/j.1671-9646(X).07.017.
  • Chen, Y.; Bai, Y.; Li, D. S.; Wang, C.; Xu, N.; Hu, Y. Improvement of the Flavor and Quality of Watermelon Vinegar by High Ethanol Fermentation Using Ethanol-Tolerant Acetic Acid Bacteria. Int. J. Food Eng. 2017, 13(4. DOI: 10.1515/ijfe-2016-0222.
  • Dias, D. R.; Sliva, M. S.; de Souza, A. C.; Magalhaes-Guedes, K. T.; Ribeiro, F. S. D. Vinegar Production from Jabuticaba (Myrciaria Jaboticaba) Fruit Using Immobilized 2 Acetic Acid Bacteria. Food Technol. Biotechnol. 2016, 54(3), 351–359. DOI: 10.17113/ftb.54.03.16.4416.
  • Luzon-Quintana, L. M.; Castro, R.; Duran-Guerrero, E. Biotechnological Processes in Fruit Vinegar Production. Foods. 2021, 10(5), 945. DOI: 10.3390/foods10050945.
  • Zhang, W. Y.; Zhang, J. S.; Zhang, X. Study on Technological Conditions for One-step Fermentation of Hawthorn Fruit Vinegar. (In Chinese). China Condiment. 2003, 07, 23–25. DOI: 10.1111/j.1365-2621.2010.02413.x.
  • Yang, Y. C.; Yang, X. Y.; Zhou, X. J.; Xue, G. X. Comparative of Quality Characteristics of Citrus Fruit Vinegar Prepared by Two Fermentation Methods. (In Chinese). China Brewing. 2020, 39(9), 152–156. DOI: 10.11882/j.0254-5071.2020.09.029.
  • Kang, X. F.; Huang, Z. W.; Wu, G. F. Study on Technological Conditions for One-step Fermentation of Nanfeng Mandarin Vinegar. (In Chinese). China Condiment. 2015, 40(11), 59–63. DOI: 10.3969/j.100-9973.2015.11.015.
  • Yuan, L.; Li, G.; Yan, N.; Wu, J.; Due, J. Optimization of Fermentation Conditions for Fermented Green Jujube Wine and Its Quality Analysis during Winemaking.J. Food Sci. Technol. 2021, 59, 288–299 , prepublish.
  • Zhao, H.-X.; Zhang, H.-S.; Yang, S.-F. Phenolic Compounds and Its Antioxidant Activities in Ethanolic Extracts from Seven Cultivars of Chinese Jujube. Food Sci. Hum. Wellness. 2014, 3(3), 183–190. DOI: 10.1016/j.fshw.2014.12.005.
  • Wang, B.; Huang, Q.; Venkitasamy, C.; Chai, H.; Gao, H.; Cheng, N.et al. Changes in Phenolic Compounds and Their Antioxidant Capacities in Jujube (Ziziphus Jujuba Miller) during Three Edible Maturity Stages. LWT. Food Sci. Technol. 2016, 66, 56–62. DOI: 10.1016/j.lwt.2015.10.005.
  • Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M. ; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radical Biol. Med. 1999, 26(9), 1231–1237. DOI: 10.1016/S0891-5849(98)00315-3.
  • Feng, C.; Wang, B.; Zhao, A.; Wei, L.; Shao, Y., Wang, Y., et al. Quality Characteristics and Antioxidant Activities of Goat Milk Yogurt with Added Jujube Pulp. Food Chem. 2019, 277, 238–245. DOI: 10.1016/j.foodchem.2018.10.104.
  • Tao, Y.; Sun, D.-W.; Górecki, A.; Błaszczak, W.; Lamparski, G., and Amarowicz, R., et al. A Preliminary Study about the Influence of High Hydrostatic Pressure Processing in Parallel with Oak Chip Maceration on the Physicochemical and Sensory Properties of A Young Red Wine. Food Chem. 2016, 194, 545–554. DOI: 10.1016/j.foodchem.2015.07.041.
  • Butkhup, L.; Jeenphakdee, M.; Jorjong, S.; Samappito, S.; Samappito, W., and Chowtivannakul, S. HS-SPME-GC-MS Analysis of Volatile Aromatic Compounds in Alcohol Related Beverages Made with Mulberry Fruits. Food Sci. Biotechnol. 2011, 20(4), 1021–1032. DOI: 10.1007/s10068-011-0140-4.
  • Sun, X.; Gu, D.; Fu, Q.; Gao, L.; Shi, C., and Zhang, R., et al. Content Variations in Compositions and Volatile Component in Jujube Fruits during the Blacking Process. Food Sci. Nutr. 2019, 7(4), 1387–1395. DOI: 10.1002/fsn3.973.
  • Ra, C. H.; Jeong, G.-T.; Shin, M. K., and Kim, S.-K. Biotransformation of 5-hydroxymethylfurfural (HMF) by Scheffersomyces Stipitis during Ethanol Fermentation of Hydrolysate of the Seaweed Gelidium Amansii. Bioresour. Technol. 2013, 140, 421–425. DOI: 10.1016/j.biortech.2013.04.122.
  • Chen, X.-C.; Bai, J.-X.; Cao, J.-M.; Li, Z.-J.; Xiong, J.; Zhang, L., and Hong, Y., et al. Medium Optimization for the Production of Cyclic Adenosine 3’,5’-monophosphate by Microbacterium Sp. No. 205 Using Response Surface Methodology. Bioresour. Technol. 2009, 100(2), 919–924. DOI: 10.1016/j.biortech.2008.07.062.
  • Li, L.; Chen, X.; Ren, H.; Cao, J.; Xiong, J., and Bai, J. , et al. Dynamic Mathematical Models of Batch Experiments and Fed-batch Cultures for Cyclic Adenosine Monophosphate Production by Arthrobacter A302. World J. Microbiol. Biotechnol. 2011, 27(10), 2379–2385. DOI: 10.1007/s11274-011-0707-5.
  • Wang, D.; Zhao, Y.; Jiao, Y.; Yu, L.; Yang, S.; Yang, X. Antioxidative and Hepatoprotective Effects of the Polysaccharides from Zizyphus Jujube Cv . Shaanbeitanzao. Carbohydrate Polymers. 2012, 88(4), 1453-1459.
  • Surh, Y. J.; Tannenbaum, S. R. Activation of the Maillard Reaction Product 5-(hydroxymethyl)furfural to Strong Mutagens via Allylic Sulfonation and Chlorination. Chem. Res. Toxicol. 1994, 7(3), 313–318. DOI: 10.1021/tx00039a007.
  • Hashim, M. N. M.; Abd-Talib, N.; Yaji, E. L. A.; Kelly, Y. T. L.; Razali, N., and Pa’ee, K. F. The Effect of Frying on Browning, Acrylamide and 5-hydroxymethylfurfural Formation on Malaysian Curry Puff Skin Treated with L-asparaginase. Food Sci. Biotechnol. 2021, 30(1), 149–158. DOI: 10.1007/s10068-020-00849-w.
  • Kim, H. K.; Choi, Y.-W.; Lee, E. N.; Park, J. K.; Kim, S.-G., and Park, D.-J., et al. 5-Hydroxymethylfurfural from Black Garlic Extract Prevents TNF Alpha-induced Monocytic Cell Adhesion to HUVECs by Suppression of Vascular Cell Adhesion Molecule-1 Expression, Reactive Oxygen Species Generation and NF-kappa B Activation. Phytotherapy Res. 2011, 25(7), 965–974. DOI: 10.1002/ptr.3351.
  • Zhao, L.; Su, J.; Li, L.; Chen, J.; Hu, S., and Zhang, X., et al. Mechanistic Elucidation of Apoptosis and Cell Cycle Arrest Induced by 5-hydroxymethylfurfural, the Important Role of ROS-mediated Signaling Pathways. Food Res. Int. 2014, 66, 186–196. DOI: 10.1016/j.foodres.2014.08.051.
  • Jarboe, L. R. YqhD: A Broad-substrate Range Aldehyde Reductase with Various Applications in Production of Biorenewable Fuels and Chemicals. Appl. Microbiol. Biotechnol. 2011, 89(2), 249–257. DOI: 10.1007/s00253-010-2912-9.
  • Tsuge, Y.; Kudou, M.; Kawaguchi, H.; Ishii, J.; Hasunuma, T., and Kondo, A. FudC, a Protein Primarily Responsible for Furfural Detoxification in Corynebacterium Glutamicum. Appl. Microbiol. Biotechnol. 2016, 100(6), 2685–2692. DOI: 10.1007/s00253-015-7115-y.
  • Li, Y. M.; Zhang, X.-Y.; Li, N.; Xu, P.; Lou, W.-Y., and Zong, M.-H. Biocatalytic Reduction of HMF to 2,5-Bis(hydroxymethyl)furan by HMF-Tolerant Whole Cells. Chemsuschem.2017, 10(2), 372–378. DOI: 10.1002/cssc.201601426.
  • Liu, Q.; Tang, G.-Y.; Zhao, C.-N.; Gan, R.-Y., and Li, H.-B. Antioxidant Activities, Phenolic Profiles, and Organic Acid Contents of Fruit Vinegars. Antioxidants.2019, 8(4), 12. DOI: 10.3390/antiox8040078.
  • Kalemba-Drozdz, M.; Kwiecień, I.; Szewczyk, A.; Cierniak, A., and Grzywacz-Kisielewska, A. Fermented Vinegars from Apple Peels, Raspberries, Rosehips, Lavender, Mint, and Rose Petals: The Composition, Antioxidant Power, and Genoprotective Abilities in Comparison to Acetic Macerates, Decoctions, and Tinctures. Antioxidants.2020, 9(11), 18. DOI: 10.3390/antiox9111121.
  • Sun, H. L.; Lu, Z. M.; Bao, R.; Zhao, N.; Bai, W. D. Change of Antioxidant Activity in Persimmon Vinegar during Brewing Process. (In Chinese). Food Sci. 2011, 32(19), 37–41. DOI: 10.1007/s10068-017-0099-x.
  • Wu, J. F.; Jin, Y.; Zhang, M. Evaluation on the Physicochemical and Digestive Properties of Melanoidin from Black Garlic and Their Antioxidant Activities in Vitro. Food Chem. 2021, 340, 10. DOI: 10.1016/j.foodchem.2020.127934.
  • Zhang, C.; Luo, H. T. Advancement of the Study on the Food Melanoidins. (In Chinese). China Food Additiv. 2005, 03, 11–13+29. DOI: 10.3390/foods8100516.