4,906
Views
21
CrossRef citations to date
0
Altmetric
Original Article

Microencapsulation of roselle (Hibiscus sabdariffa L.) anthocyanins: Effects of different carriers on selected physicochemical properties and antioxidant activities of spray-dried and freeze-dried powder

ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon
Pages 359-374 | Received 27 Aug 2021, Accepted 16 Feb 2022, Published online: 24 Feb 2022

References

  • Konczak, I.; Zhang, W. Anthocyanins—more than Nature’s Colours. Biomed Res. Int. 2004, 2004(5), 239–240.
  • Wang, W.; Jung, J.; Zhao, Y. Chitosan-cellulose Nanocrystal Microencapsulation to Improve Encapsulation Efficiency and Stability of Entrapped Fruit Anthocyanins. Carbohydr. Polym. 2017, 157, 1246–1253. DOI: 10.1016/j.carbpol.2016.11.005.
  • Fernández-López, J. A.; Angosto, J. M.; Giménez, P. J.; León, G. Thermal Stability of Selected Natural Red Extracts Used as Food Colorants. Plant Foods Human Nutr. 2013, 68(1), 11–17. DOI: 10.1007/s11130-013-0337-1.
  • Yonekura-Sakakibara, K.; Nakayama, T.; Yamazaki, M., and Saito, K. Modification and Stabilization of Anthocyanins. In Anthocyanins: Biosynthesis, Functions, and Applications eds. Gould, K., Davies, K. M., and Winefield, C.; New York: Springer Science & Business Media, 2008; pp 169–190.
  • Cid-Ortega, S.; Guerrero-Beltrán, J. A. Roselle Calyces (Hibiscus Sabdariffa), an Alternative to the Food and Beverages Industries: A Review. J. Food Sci. Technol. 2015, 52(11), 6859–6869. DOI: 10.1007/s13197-015-1800-9.
  • Archaina, D.; Vasile, F.; Jiménez‐Guzmán, J.; Alamilla‐Beltrán, L., and Schebor, C. Physical and Functional Properties of Roselle (Hibiscus Sabdariffa L.) Extract Spray Dried with Maltodextrin‐gum Arabic Mixtures. J. Food Process. Preserv. 43(9) 2019, e14065 doi:10.1111/jfpp.14065.
  • Aurelio, D.; Edgardo, R. G.; Navarro‐Galindo, S. Thermal Kinetic Degradation of Anthocyanins in a Roselle (Hibiscus Sabdariffa L. cv.‘Criollo’) Infusion. Int. J. Food Sci. Technol. 2008, 43(2), 322–325. DOI: 10.1111/j.1365-2621.2006.01439.x.
  • Borrás-Linares, I.; Fernández-Arroyo, S.; Arráez-Roman, D.; Palmeros-Suárez, P. A.; Del Val-Díaz, R.; Andrade-Gonzáles, I.; Fernández-Gutiérrez, A.; Gómez-Leyva, J. F.; Segura-Carretero, A., et al. Characterization of Phenolic Compounds, Anthocyanidin, Antioxidant and Antimicrobial Activity of 25 Varieties of Mexican Roselle (Hibiscus Sabdariffa). Ind. Crops Prod. 2015, 69, 385–394. DOI: 10.1016/j.indcrop.2015.02.053.
  • Ekici, L.; Simsek, Z.; Ozturk, I.; Sagdic, O.; Yetim, H. Effects of Temperature, Time, and pH on the Stability of Anthocyanin Extracts: Prediction of Total Anthocyanin Content Using Nonlinear Models. Food Anal. Methods. 2014, 7(6), 1328–1336. DOI: 10.1007/s12161-013-9753-y.
  • Zhao, J. Nutraceuticals, Nutritional Therapy, Phytonutrients, and Phytotherapy for Improvement of Human Health: A Perspective on Plant Biotechnology Application. Recent patents on biotechnology. 2007, 1(1), 75–97. DOI: 10.2174/187220807779813893.
  • Abou-Arab, A. A.; Abu-Salem, F. M.; Abou-Arab, E. A. Physico-chemical Properties of Natural Pigments (Anthocyanin) Extracted from Roselle Calyces (Hibiscus Subdariffa). J. Am. Sci. 2011, 7(7), 445–456.
  • Hounkpè, L. H., et al. Nutritional Valorization and Chemical Composition of Seeds of Hibiscus Sabdariffa Sabdariffa from Benin. American Journal of Food Science and Technology. 2019, 7(5), 146–151.
  • de Vos, P.; Faas, M. M.; Spasojevic, M.; Sikkema, J. Encapsulation for Preservation of Functionality and Targeted Delivery of Bioactive Food Components. Int. Dairy J. 2010, 20(4), 292–302. DOI: 10.1016/j.idairyj.2009.11.008.
  • Champagne, C. P.; Fustier, P. Microencapsulation for the Improved Delivery of Bioactive Compounds into Foods. Curr. Opin. Biotechnol. 2007, 18(2), 184–190. DOI: 10.1016/j.copbio.2007.03.001.
  • Jafari, S. M.; Assadpoor, E.; He, Y.; Bhandari, B. Encapsulation Efficiency of Food Flavours and Oils during Spray Drying. Drying Technol. 2008, 26(7), 816–835. DOI: 10.1080/07373930802135972.
  • Calvo, P.; Castaño, Á. L.; Hernández, M. T.; González‐Gómez, D. Effects of Microcapsule Constitution on the Quality of Microencapsulated Walnut Oil. Eur. J. Lipid Sci. Technol. 2011, 113(10), 1273–1280. DOI: 10.1002/ejlt.201100039.
  • Gharsallaoui, A.; Roudaut, G.; Chambin, O.; Voilley, A.; Saurel, R. Applications of Spray-drying in Microencapsulation of Food Ingredients: An Overview. Food Res. Int. 2007, 40(9), 1107–1121. DOI: 10.1016/j.foodres.2007.07.004.
  • Angel, R. C. M.; Espinosa-Muñoz, L. C.; Aviles-Aviles, C.; González-García, R.; Moscosa-Santillán, M.; Grajales-Lagunes, A.; Abud-Archila, M., et al. Spray-drying of Passion Fruit Juice Using Lactose-maltodextrin Blends as the Support Material. Braz. Arch. Biol. Technol. 2009, 52(4), 1011–1018.
  • Fang, Z.; Bhandari, B. Comparing the Efficiency of Protein and Maltodextrin on Spray Drying of Bayberry Juice. Food Res. Int. 2012, 48(2), 478–483. DOI: 10.1016/j.foodres.2012.05.025.
  • Augustin, M. A.; Hemar, Y. Nano-and Micro-structured Assemblies for Encapsulation of Food Ingredients. Chem. Soc. Rev. 2009, 38(4), 902–912. DOI: 10.1039/B801739P.
  • Deshmukh, R.; Wagh, P.; Naik, J. Solvent Evaporation and Spray Drying Technique for Micro-and Nanospheres/particles Preparation: A Review. Drying Technol. 2016, 34(15), 1758–1772. DOI: 10.1080/07373937.2016.1232271.
  • Rezvankhah, A.; Emam-Djomeh, Z.; Askari, G. Encapsulation and Delivery of Bioactive Compounds Using Spray and Freeze-drying Techniques: A Review. Drying Technol. 2020, 38(1–2), 235–258. DOI: 10.1080/07373937.2019.1653906.
  • Fang, Z.; Bhandari, B. Encapsulation of Polyphenols–a Review. Trends Food Sci. Technol. 2010, 21(10), 510–523. DOI: 10.1016/j.tifs.2010.08.003.
  • Goula, A. M.; Adamopoulos, K. G. A Method for Pomegranate Seed Application in Food Industries: Seed Oil Encapsulation. Food Bioprod. Process. 2012, 90(4), 639–652. DOI: 10.1016/j.fbp.2012.06.001.
  • Cano-Chauca, M.; Stringheta, P. C.; Ramos, A. M.; Cal-Vidal, J. Effect of the Carriers on the Microstructure of Mango Powder Obtained by Spray Drying and Its Functional Characterization. Innovative Food Sci. Emerg. Technol. 2005, 6(4), 420–428. DOI: 10.1016/j.ifset.2005.05.003.
  • Gabas, A. L.; Telis, V. R. N.; Sobral, P. J. A.; Telis-Romero, J. Effect of Maltodextrin and Arabic Gum in Water Vapor Sorption Thermodynamic Properties of Vacuum Dried Pineapple Pulp Powder. J. Food Eng. 2007, 82(2), 246–252. DOI: 10.1016/j.jfoodeng.2007.02.029.
  • Quek, S. Y.; Chok, N. K.; Swedlund, P. The Physicochemical Properties of Spray-dried Watermelon Powders. Chem. Eng. Process. 2007, 46(5), 386–392. DOI: 10.1016/j.cep.2006.06.020.
  • Finney, J.; Buffo, R.; Reineccius, G. A. Effects of Type of Atomization and Processing Temperatures on the Physical Properties and Stability of Spray‐dried Flavors. J. Food Sci. 2002, 67(3), 1108–1114.
  • Krishnan, S.; Bhosale, R.; Singhal, R. S. Microencapsulation of Cardamom Oleoresin: Evaluation of Blends of Gum Arabic, Maltodextrin and a Modified Starch as Wall Materials. Carbohydr. Polym. 2005, 61(1), 95–102. DOI: 10.1016/j.carbpol.2005.02.020.
  • Williams, P. A.; Idris, O. H. M., and Phillips, G. O. Structural Analysis of Gum from Acacia Senegal (Gum Arabic). In Cell and Developmental Biology of Arabinogalactan-proteins eds. Northnagel, E. A., Bacic, A., and Clarke, A. E.; New York: Springer Science & Business Media, 2012; pp 241–251.
  • Hosseini, A.; Jafari, S. M.; Mirzaei, H.; Asghari, A.; Akhavan, S. Application of Image Processing to Assess Emulsion Stability and Emulsification Properties of Arabic Gum. Carbohydr. Polym. 2015, 126, 1–8. DOI: 10.1016/j.carbpol.2015.03.020.
  • McNamee, B. F.; O’Riorda, E. D.; O’Sullivan, M. Emulsification and Microencapsulation Properties of Gum Arabic. J. Agric. Food Chem. 1998, 46(11), 4551–4555. DOI: 10.1021/jf9803740.
  • Yuan, Y.; Wang, L.; Mu, R.-J.; Gong, J.; Wang, Y.; Li, Y.; Ma, J.; Pang, J.; Wu, C., et al. Effects of Konjac Glucomannan on the Structure, Properties, and Drug Release Characteristics of Agarose Hydrogels. Carbohydr. Polym. 2018, 190, 196–203. DOI: 10.1016/j.carbpol.2018.02.049.
  • Molavi, H.; Behfar, S.; Shariati, M. A.; Kaviani, M.; Atarod, S. A Review on Biodegradable Starch Based Film. J. Microbiol. Biotechnol. Food Sci. 2021, 2021, 456–461.
  • Nair, S. B.; Jyothi, A. N.; Sajeev, M. S., and Misra, R. Starch‐Stärke 63(11) . 2011 Rheological, mechanical and moisture sorption characteristics of cassava starch‐konjac glucomannan blend films , 728–739. doi:10.1002/star.201100051
  • Wang, K.; Gao, S.; Shen, C.; Liu, J.; Li, S.; Chen, J.; Ren, X.; Yuan, Y., et al. Preparation of Cationic Konjac Glucomannan in NaOH/urea Aqueous Solution. Carbohydr. Polym. 2018, 181, 736–743. DOI: 10.1016/j.carbpol.2017.11.084.
  • Chen, H.; Lan, G.; Ran, L.; Xiao, Y.; Yu, K.; Lu, B.; Dai, F.; Wu, D.; Lu, F., et al. A Novel Wound Dressing Based on A Konjac Glucomannan/silver Nanoparticle Composite Sponge Effectively Kills Bacteria and Accelerates Wound Healing. Carbohydr. Polym. 2018, 183, 70–80. DOI: 10.1016/j.carbpol.2017.11.029.
  • Afinjuomo, F.; Fouladian, P.; Parikh, A.; Barclay, T. G.; Song, Y.; Garg, S. Preparation and Characterization of Oxidized Inulin Hydrogel for Controlled Drug Delivery. Pharmaceutics. 2019, 11(7), 356. DOI: 10.3390/pharmaceutics11070356.
  • López-Molina, D.; Chazarra, S.; How, C. W.; Pruidze, N.; Navarro-Perán, E.; García-Cánovas, F.; García-Ruiz, P. A.; Rojas-Melgarejo, F.; Rodríguez-López, J. N., et al. Cinnamate of Inulin as a Vehicle for Delivery of Colonic Drugs. Int. J. Pharmaceutics.2015, 479(1), 96–102. DOI: 10.1016/j.ijpharm.2014.12.064.
  • Jain, A. K.; Sood, V.; Bora, M.; Vasita, R.; Katti, D. S. Electrosprayed Inulin Microparticles for Microbiota Triggered Targeting of Colon. Carbohydr. Polym. 2014, 112, 225–234. DOI: 10.1016/j.carbpol.2014.05.087.
  • Díaz-Bandera, D.; Villanueva-Carvajal, A.; Dublán-García, O.; Quintero-Salazar, B.; Dominguez-Lopez, A. Assessing Release Kinetics and Dissolution of Spray-dried Roselle (Hibiscus Sabdariffa L.) Extract Encapsulated with Different Carrier Agents. LWT Food Sci. Technol. 2015, 64(2), 693–698. DOI: 10.1016/j.lwt.2015.06.047.
  • Idham, Z.; Muhamad, I. I.; Mohd Setapar, S. H., and Sarmidi, M. R. Effect of Thermal Processes on Roselle Anthocyanins Encapsulated in Different Polymer Matrices. J. Food Process. Preserv. 2012, 36(2), 176–184.
  • Farias‐Cervantes, V. S.; Chávez‐Rodríguez, A.; García‐Salcedo, P. A.; García‐López, P. M.; Casas‐Solís, J.; Andrade‐González, I. Antimicrobial Effect and in Vitro Release of Anthocyanins from Berries and Roselle Obtained via Microencapsulation by Spray Drying. J. Food Process. Preserv. 2018, 42(10), e13713. DOI: 10.1111/jfpp.13713.
  • Ballesteros, L. F.; Ramirez, M. J.; Orrego, C. E.; Teixeira, J. A.; Mussatto, S. I. Encapsulation of Antioxidant Phenolic Compounds Extracted from Spent Coffee Grounds by Freeze-drying and Spray-drying Using Different Coating Materials. Food Chem. 2017, 237, 623–631. DOI: 10.1016/j.foodchem.2017.05.142.
  • Laokuldilok, T.; Kanha, N. Effects of Processing Conditions on Powder Properties of Black Glutinous Rice (Oryza Sativa L.) Bran Anthocyanins Produced by Spray Drying and Freeze Drying. LWT Food Sci. Technol. 2015, 64(1), 405–411. DOI: 10.1016/j.lwt.2015.05.015.
  • Rezende, Y. R. R. S.; Nogueira, J. P.; Narain, N. Microencapsulation of Extracts of Bioactive Compounds Obtained from Acerola (Malpighia Emarginata DC) Pulp and Residue by Spray and Freeze Drying: Chemical, Morphological and Chemometric Characterization. Food Chem. 2018, 254, 281–291. DOI: 10.1016/j.foodchem.2018.02.026.
  • Ferrari, C. C.; Pimentel, S.; Germer, M.; Alvim, I. D., and Vissotto, F. Z. Influence of Carrier Agents on the Physicochemical Properties of Blackberry Powder Produced by Spray Drying Int. J. Food Sci . , 47(6) , 1237–1245 2012. doi:10.1111/j.1365-2621.2012.02964.x
  • Sakulnarmrat, K.; Wongsrikaew, D.; Konczak, I. Microencapsulation of Red Cabbage Anthocyanin-rich Extract by Drum Drying Technique. LWT. 2021, 137, 110473. DOI: 10.1016/j.lwt.2020.110473.
  • Pieczykolan, E.; Kurek, M. A. Use of Guar Gum, Gum Arabic, Pectin, Beta-glucan and Inulin for Microencapsulation of Anthocyanins from Chokeberry. Int. J. Biol. Macromol. 2019, 129, 665–671. DOI: 10.1016/j.ijbiomac.2019.02.073.
  • Mahdavi, S. A.; Jafari, S. M.; Assadpoor, E.; Dehnad, D. Microencapsulation Optimization of Natural Anthocyanins with Maltodextrin, Gum Arabic and Gelatin. Int. J. Biol. Macromol. 2016, 85, 379–385. DOI: 10.1016/j.ijbiomac.2016.01.011.
  • Pantelidis, G. E.; Vasilakakis, M.; Manganaris, G. A.; Diamantidis, G. Antioxidant Capacity, Phenol, Anthocyanin and Ascorbic Acid Contents in Raspberries, Blackberries, Red Currants, Gooseberries and Cornelian Cherries. Food Chem. 2007, 102(3), 777–783. DOI: 10.1016/j.foodchem.2006.06.021.
  • ISO, “ISO14502-1: 2005 Determination of Substances Characteristic of Green and Black Tea. Part 1. Content of Total Polyphenols in Tea—colorimetric Method Using Folin–Ciocalteu Reagent.,” 2005.
  • Brand-Williams, W.; Cuvelier, M.-E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT Food Sci. Technol. 1995, 28(1), 25–30. DOI: 10.1016/S0023-6438(95)80008-5.
  • Arnao, M. B.; Cano, A.; Acosta, M. The Hydrophilic and Lipophilic Contribution to Total Antioxidant Activity. Food Chem. 2001, 73(2), 239–244. DOI: 10.1016/S0308-8146(00)00324-1.
  • Benzie, I. F. F.; Strain, J. J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of ‘Antioxidant Power’: The FRAP Assay. Anal. Biochem. 1996, 239(1), 70–76. DOI: 10.1006/abio.1996.0292.
  • Apak, R.; Güçlü, K.; Özyürek, M.; Esin Karademir, S.; Erçağ, E. The Cupric Ion Reducing Antioxidant Capacity and Polyphenolic Content of Some Herbal Teas. Int. J. Food Sci. Nutr. 2006, 57(5–6), 292–304. DOI: 10.1080/09637480600798132.
  • de Almeida Paula, D.; Martins, E. M. F.; de Almeida Costa, N.; de Oliveirade Oliveira, P. M.; de Oliveira, E. B.; Ramos, A. M. Use of Gelatin and Gum Arabic for Microencapsulation of Probiotic Cells from Lactobacillus Plantarum by a Dual Process Combining Double Emulsification Followed by Complex Coacervation. Int. J. Biol. Macromol. 2019, 133, 722–731. DOI: 10.1016/j.ijbiomac.2019.04.110.
  • Ramírez-Rodrigues, M. M.; Plaza, M. L.; Azeredo, A.; Balaban, M. O.; Marshall, M. R. Phytochemical, Sensory Attributes and Aroma Stability of Dense Phase Carbon Dioxide Processed Hibiscus Sabdariffa Beverage during Storage. Food Chem. 2012, 134(3), 1425–1431. DOI: 10.1016/j.foodchem.2012.03.042.
  • Tonon, R. V.; Pedro, R. B.; Grosso, C. R. F.; Hubinger, M. D. Microencapsulation of Flaxseed Oil by Spray Drying: Effect of Oil Load and Type of Wall Material. Drying Technol. 2012, 30(13), 1491–1501. DOI: 10.1080/07373937.2012.696227.
  • Bouyer, E.; Mekhloufi, G.; Rosilio, V.; Grossiord, J.-L.; Agnely, F. Proteins, Polysaccharides, and Their Complexes Used as Stabilizers for Emulsions: Alternatives to Synthetic Surfactants in the Pharmaceutical Field? Int. J. Pharmaceutics. 2012, 436(1–2), 359–378. DOI: 10.1016/j.ijpharm.2012.06.052.
  • Huang, X.; Sormoli, M. E.; Langrish, T. A. G. Review of Some Common Commercial and Noncommercial Lab-scale Spray Dryers and Preliminary Tests for a Prototype New Spray Dryer. Drying Technol. 2018, 36(15), 1900–1912. DOI: 10.1080/07373937.2018.1459679.
  • Sosnik, A.; Seremeta, K. P. Advantages and Challenges of the Spray-drying Technology for the Production of Pure Drug Particles and Drug-loaded Polymeric Carriers. Adv. Colloid Interface Sci. 2015, 223, 40–54. DOI: 10.1016/j.cis.2015.05.003.
  • Rajabi, H.; Ghorbani, M.; Jafari, S. M.; Mahoonak, A. S.; Rajabzadeh, G. Retention of Saffron Bioactive Components by Spray Drying Encapsulation Using Maltodextrin, Gum Arabic and Gelatin as Wall Materials. Food Hydrocolloids. 2015, 51, 327–337. DOI: 10.1016/j.foodhyd.2015.05.033.
  • Kuck, L. S.; Noreña, C. P. Z. Microencapsulation of Grape (Vitis Labrusca Var. Bordo) Skin Phenolic Extract Using Gum Arabic, Polydextrose, and Partially Hydrolyzed Guar Gum as Encapsulating Agents. Food Chem. 2016, 194, 569–576. DOI: 10.1016/j.foodchem.2015.08.066.
  • Saénz, C.; Tapia, S.; Chávez, J.; Robert, P. Microencapsulation by Spray Drying of Bioactive Compounds from Cactus Pear (Opuntia Ficus-indica). Food Chem. 2009, 114(2), 616–622. DOI: 10.1016/j.foodchem.2008.09.095.
  • Tonon, R. V.; Brabet, C.; Pallet, D.; Brat, P.; Hubinger, M. D. Physicochemical and Morphological Characterisation of Açai (Euterpe Oleraceae Mart.) Powder Produced with Different Carrier Agents. Int. J. Food Sci. Technol. 2009, 44(10), 1950–1958. DOI: 10.1111/j.1365-2621.2009.02012.x.
  • Burin, V. M.; Rossa, P. N.; Ferreira‐Lima, N. E.; Hillmann, M. C. R.; Boirdignon‐Luiz, M. T. Anthocyanins: Optimisation of Extraction from Cabernet Sauvignon Grapes, Microcapsulation and Stability in Soft Drink. Int. J. Food Sci. Technol. 2011, 46(1), 186–193. DOI: 10.1111/j.1365-2621.2010.02486.x.
  • Randall, R. C.; Phillips, G. O.; Williams, P. A. The Role of the Proteinaceous Component on the Emulsifying Properties of Gum Arabic. Food Hydrocolloids. 1988, 2(2), 131–140. DOI: 10.1016/S0268-005X(88)80011-0.
  • Tang, B., et al. Kinetic Investigation into pH-dependent Color of Anthocyanin and Its Sensing Performance. Dyes Pigm. 2019, 170, 107643. DOI: 10.1016/j.dyepig.2019.107643.
  • Idham, Z.; Muhamad, I. I.; Sarmidi, M. R. Degradation Kinetics and Color Stability of Spray‐dried Encapsulated Anthocyanins from Hibiscus Sabdariffa L. J. Food Process Eng. 2012, 35(4), 522–542. DOI: 10.1111/j.1745-4530.2010.00605.x.
  • Vaidya, S.; Bhosale, R.; Singhal, R. S. Microencapsulation of Cinnamon Oleoresin by Spray Drying Using Different Wall Materials. Drying Technol. 2006, 24(8), 983–992. DOI: 10.1080/07373930600776159.
  • Adamiec, J.; Borompichaichartkul, C.; Srzednicki, G.; Panket, W.; Piriyapunsakul, S.; Zhao, J. Microencapsulation of Kaffir Lime Oil and Its Functional Properties. Drying Technol. 2012, 30(9), 914–920. DOI: 10.1080/07373937.2012.666777.
  • Moo-Huchin, V. M.; Estrada-Mota, I.; Estrada-León, R.; Cuevas-Glory, L.; Ortiz-Vázquez, E.; Vargas, M. D. L. V. Y.; Betancur-Ancona, D.; Sauri-Duch, E., et al. Determination of Some Physicochemical Characteristics, Bioactive Compounds and Antioxidant Activity of Tropical Fruits from Yucatan, Mexico. Food Chem. 2014, 152, 508–515. DOI: 10.1016/j.foodchem.2013.12.013.
  • Ramírez, M. J.; Giraldo, G. I.; Orrego, C. E. Modeling and Stability of Polyphenol in Spray-dried and Freeze-dried Fruit Encapsulates. Powder Technol. 2015, 277, 89–96. DOI: 10.1016/j.powtec.2015.02.060.
  • Oki, T.; Masuda, M.; Furuta, S.; Nishiba, Y.; Terahara, N.; Suda, I. Involvement of Anthocyanins and Other Phenolic Compounds in Radical‐scavenging Activity of Purple‐fleshed Sweet Potato Cultivars. J. Food Sci. 2002, 67(5), 1752–1756. DOI: 10.1111/j.1365-2621.2002.tb08718.x.
  • Huang, Y.-C.; Chang, Y.-H.; Shao, -Y.-Y. Effects of Genotype and Treatment on the Antioxidant Activity of Sweet Potato in Taiwan. Food Chem. 2006, 98(3), 529–538. DOI: 10.1016/j.foodchem.2005.05.083.
  • Robert, P.; Gorena, T.; Romero, N.; Sepulveda, E.; Chavez, J.; Saenz, C. Encapsulation of Polyphenols and Anthocyanins from Pomegranate (Punica Granatum) by Spray Drying. Int. J. Food Sci. Technol. 2010, 45(7), 1386–1394. DOI: 10.1111/j.1365-2621.2010.02270.x.
  • Pitalua, E.; Jimenez, M.; Vernon-Carter, E. J.; Beristain, C. I. Antioxidative Activity of Microcapsules with Beetroot Juice Using Gum Arabic as Wall Material. Food Bioprod. Process. 2010, 88(2–3), 253–258. DOI: 10.1016/j.fbp.2010.01.002.
  • Samantha, S. C; Bruna, A. S. M.; Adriana, R. M.; Fabio, B.; Sandro, A. R.; Aline, R. C. A. Drying by Spray Drying in the Food Industry: Micro-encapsulation, Process Parameters and Main Carriers Used. Afr. J. Food Sci. 2015, 9(9), 462–470. DOI: 10.5897/AJFS2015.1279.
  • Vardin, H.; Yasar, M. Optimisation of Pomegranate (Punica Granatum L.) Juice Spray‐drying as Affected by Temperature and Maltodextrin Content. Int. J. Food Sci. Technol. 2012, 47(1), 167–176. DOI: 10.1111/j.1365-2621.2011.02823.x.
  • Nayak, C. A.; Rastogi, N. K. Effect of Selected Additives on Microencapsulation of Anthocyanin by Spray Drying. Drying Technol. 2010, 28(12), 1396–1404. DOI: 10.1080/07373937.2010.482705.
  • Barbosa-Cánovas, G. V., and Juliano, P. Physical and Chemical Properties of Food Powders. In Encapsulated and Powdered Foods ed. Onwulata, C.; New York: CRC Press, 2005; pp 51–86.
  • V Tonon, R.; Brabet, C.; Hubinger, M. D. Influence of Process Conditions on the Physicochemical Properties of Açai (Euterpe Oleraceae Mart.) Powder Produced by Spray Drying. J. Food Eng. 2008, 88(3), 411–418. DOI: 10.1016/j.jfoodeng.2008.02.029.
  • Nguyen Q. D., Dang T. T., Nguyen T. V. L., Nguyen T. T. D., and Nguyen N. N. (2022). Microencapsulation of roselle (Hibiscus sabdariffa L.) anthocyanins: Effects of drying conditions on some physicochemical properties and antioxidant activities of spray‐dried powder. Food Science & Nutrition, 10(1), 191–203. 10.1002/fsn3.2659