1,700
Views
3
CrossRef citations to date
0
Altmetric
Review

Effect of Rosa roxburghii fruit on blood lipid levels: a systematic review based on human and animal studies

ORCID Icon, , , &
Pages 549-559 | Received 13 Dec 2021, Accepted 10 Mar 2022, Published online: 27 Mar 2022

References

  • Ma, Y.; Wang, W.;, Zhang, J.; Lu, Y.; Wu, W.; Yan, H.; Wang, Y. Hyperlipidemia and Atherosclerotic Lesion Development in Ldlr-deficient Mice on a Long-term High-fat Diet. PloS One. 2012, 7(4), article no. e35835.
  • Poss, J.; Custodis, F.; Werner, C.; Weingartner, O.; Bohm, M.; Laufs, U. Cardiovascular Disease and Dyslipidemia: Beyond LDL. Curr. Pharm. Des. 2011, 17(9), 861–870.
  • Brischetto, C. S.; Connor, W. E.; Connor, S. L.; Matarazzo, J. D. Plasma Lipid and Lipoprotein Profiles of Cigarette Smokers from Randomly Selected Families: Enhancement of Hyperlipidemia and Depression of High-density Lipoprotein. Am. J. Cardiol. 1983, 52(7), 675–680.
  • Virani, S. S.; Alonso, A.; Benjamin, E. J.; Bittencourt, M. S.; Callaway, C. W.; Carson, A. P.; Chamberlain, A. M.; Chang, A. R.; Cheng, S.; Delling, F. N., et al. Heart Disease and Stroke Statistics-2020 Update: A Report from the American Heart Association. Circulation. 2020, 141(9), e139–e596.
  • Chamberlain, J. J.; Johnson, E. J.; Leal, S.; Rhinehart, A. S.; Shubrook, J. H.; Peterson, L. Cardiovascular Disease and Risk Management: Review of the American Diabetes Association Standards of Medical Care in Diabetes 2018. Ann. Intern. Med. 2018, 168(9), 640–650.
  • Susanto, A. D.; Harahap, R. A.; Antariksa, B. The Prevalence and Related Risk Factors of Obstructive Sleep Apnea in Heart Failure Patients at the Indonesian Referral Hospital for Respiratory Diseases. J. Nat. Sci. Biol. Med. 2020, 11(2), 164–168.
  • David, B.; Francisco, G. R. Obstructive Sleep Apnea and Dyslipidemia: From Animal Models to Clinical Evidence. Sleep. 2019, 42(3), zsy236. DOI: 10.1093/sleep/zsy236.
  • Patil, V. C.; Avhad, A. B.; Kulkarni, A. R.; Pandere, K. High-sensitive C-reactive Protein in Patients with Coronary Artery Disease. J. Nat. Sci. Biol. Med. 2020, 11(1), 39–44.
  • Athyros, V. G.; Doumas, M.; Imprialos, K. P.; Stavropoulos, K.; Georgianou, E.; Katsimardou, A.; Karagiannis, A. Diabetes and Lipid Metabolism. Hormones (Athens). 2018, 17(1), 61–67.
  • Khan, W.; Augustine, D.; Rao, R. S.; Patil, S.; Awan, K.; Sowmya, S.; Haragannavar, V.; Prasad, K. Lipid Metabolism in Cancer: A Systematic Review. J. Carcinog. 2021, 20(1), 4.
  • Zhang, X.; Zhao, X. W.; Liu, D. B.; Han, C. Z.; Du, L. L.; Jing, J. X. Lipid Levels in Serum and Cancerous Tissues of Colorectal Cancer Patients. World J. Gastroenterol. 2014, 20(26), 8646–8652.
  • Abid, H. A.; Abid, Z. H.; Abid, S. A. Atherogenic Indices in Clinical Practice and Biomedical Research: A Short Review. Atherogenic Indices and Cardiovascular Diseases. Baghdad J Biochem. Appl Biol Sci. 2021, 2(2), 59–69. DOI: 10.47419/bjbabs.v2i02.52.
  • Sowndarya, K.; Joseph, J. A.; Shenoy, A.; Hegde, A. Evaluation of Triglyceride/high-density Lipoprotein Ratio as a Surrogate Marker for Insulin Resistance in Healthy Young Males. J. Nat. Sci. Biol. Med. 2021, 12(2), 213–217.
  • Rader, D. J.; Davidson, M. H.; Caplan, R. J.; Pears, J. S. Lipid and Apolipoprotein Ratios: Association with Coronary Artery Disease and Effects of Rosuvastatin Compared with Atorvastatin, Pravastatin, and Simvastatin. Am. J. Cardiol. 2003, 91(5A), 20C–24C.
  • Zhou, P.; Li, B.; Liu, B.; Chen, T.; Xiao, J. Prognostic Role of Serum Total Cholesterol and High-density Lipoprotein Cholesterol in Cancer Survivors: A Systematic Review and Meta-analysis. Clin. Chim. Acta. 2018, 477, 94–104. DOI: 10.1016/j.cca.2017.11.039.
  • Davignon, J. Beneficial Cardiovascu Larpleiotropic Effects of Statins. Circulation. 2004, 109(23 Suppl 1), III39–43. DOI: 10.1161/01.CIR.0000131517.20177.5a.
  • Ridker, P. M.; Cannon, C. P.; Morrow, D.; Rifai, N.; Rose, L. M.; McCabe, C. H.; Pfeffer, M. A.; Braunwald, E. C-reactive Protein Levels and Outcomes after Statin Therapy. N. Engl. J. Med. 2005, 352(1), 20–28.
  • Ganji, S. H.; Tavintharan, S.; Zhu, D. M.; Xing, Y.; Kamanna, V. S.; Kashyap, M. L. Niacinnoncom Petitively Inhibits DGAT2 but Not DGAT1 Activity in HepG2 Cells. J. Lipid Res. 2004, 45(10), 1835–1845. DOI: 10.1194/jlr.M300403-JLR200.
  • Pike, N. B.; Wise, A. Identification of a Nicotinic Acid Receptor: Is This the Molecular Target for the Oldest Lipid-lowering Drug? Curr. Opin. Investig. Drugs. 2004, 5(3), 271–275.
  • Wang, L.; Zhang, B.; Xiao, J.; Huang, Q.; Li, C.; Fu, X. Physicochemical, Functional, and Biological Properties of Water-soluble Polysaccharides from Rosa Roxburghii Tratt Fruit. Food Chem. 2018, 249, 127–135. DOI: 10.1016/j.foodchem.2018.01.011.
  • Rensburg, C. J.; Erasmus, E.; Loots, D. T.; Oosthuizen, W.; Jerling, J. C.; Kruger, H. S.; Louw, R.; Brits, M.; van der Westhuizen, F. H. Rosa Roxburghii Supplementation in a Controlled Feeding Study Increases Plasma Antioxidant Capacity and Glutathione Redox State. Eur. J. Nutr. 2005, 44(7), 452–457.
  • Chen, G. J.; Kan, J. Q. Characterization of a Novel Polysaccharide Isolated from Rosa Roxburghii Tratt Fruit and Assessment of Its Antioxidant in Vitro and in Vivo. Int. J. Biol. Macromol. 2018, 107(Pt A), 166–174. DOI: 10.1016/j.ijbiomac.2017.08.160.
  • Zhan, J. H.; Liu, M. J.; Pan, L. J.; He, L.; Guo, Y. Oxidative Stress and TGF- β 1/Smads Signaling are Involved in Rosa Roxburghii Fruit Extract Alleviating Renal Fibrosis. Evid Based Complementary and Altern Med. 2019, 2019, 4946580. DOI: 10.1155/2019/4946580.
  • Ma, Y. X.; Zhu, Y.; Wang, C. F.; Wang, Z. S.; Chen, S. Y.; Shen, M. H.; Gan, J. M.; Zhang, J. G.; Gu, Q.; He, L. The Aging Retarding Effect of ‘Long-life CiLi.’ Mech. Ageing Dev. 1997, 96(1–3), 171–180.
  • Xu, S. J.; Wang, X.; Wang, T. Y.; Lin, Z. Z.; Hu, Y. J.; Huang, Z. L.; Yang, X. J.; Xu, P. Flavonoids from Rosa Roxburghii Tratt Prevent Reactive Oxygen Species-mediated DNA Damage in Thymus Cells Both Combined with and without PARP-1 Expression after Exposure to Radiation in Vivo. Aging (Albany NY). 2020, 12(16), 16368–16389.
  • Xu, S. J.; Zhang, F.; Wang, L. J.; Hao, M. H.; Yang, X. J.; Li, N. N.; Ji, H. L.; Xu, P. Flavonoids of Rosa Roxburghii Tratt Offers Protection against Radiation Induced Apoptosis and Inflammation in Mouse Thymus. Apoptosis. 2018, 23(9–10), 470–483.
  • Chen, Y.; Liu, Z. J.; Liu, J.; Liu, L. K.; Zhang, E. S.; Li, W. L. Inhibition of Metastasis and Invasion of Ovarian Cancer Cells by Crude Polysaccharides from Rosa Roxburghii Tratt in Vitro. Asian Pac. J. Cancer Prev. 2014, 15(23), 10351–10354.
  • Wu, P. H.;, Han, S. C. H.; Wu, M. H. Beneficial Effects of Hydroalcoholic Extract from Rosa Roxburghii Tratt Fruit on Hyperlipidemia in High-Fat-Fed Rats. Acta. Cardiol. Sin. 2020, 36(2), 148–159.
  • Wang, L.; Li, C.; Huang, Q.; Fu, X. Polysaccharide from Rosa Roxburghii Tratt Fruit Attenuates Hyperglycemia and Hyperlipidemia and Regulates Colon Microbiota in Diabetic Db/db Mice. J. Agric. Food Chem. 2020, 68(1), 147–159.
  • Higgins, J. P.; Altman, D. G.; Gotzsche, P. C.; Juni, P.; Moher, D.; Oxman, A. D.; Savovic, J.; Schulz, K. F.; Weeks, L.; Sterne, J. A. C., et al. The Cochrane Collaboration’s Tool for Assessing Risk of Bias in Randomised Trials. BMJ. 2011, 343(oct18 2), d5928.
  • Chen, C.; Tan, S. M.; Wang, H.; Yang, S.; Dai, X. T. Effects of Rosa Roxburghii Tratt and Its Active Ingredients on Glucose and Lipid Metabolism in Type 2 Diabetic Mice. Food Sci. 2021, 2021, 1–14. http://kns.cnki.net/kcms/detail/11.2206.ts.20210723.1740.028.html
  • Chen, M. M.; Zhan, J. H. Clinical Study of Rosa Roxburghii Freeze-dried Powder on the Treatment of CKD3 Stage 3 Dyslipidemia. Electron. J. Clin. Med. Lit. 2020, 7(61), 53–54.
  • Chen, P.; Tan, S. M.; Chen, X. M.; Huang, Y.; Song, C. J. Study on Hypolipidemic Activity of Rosa Roxburghii Tratt, Propolis and Crataegus Oral Liquid. Mod. Food Sci. Technol. 2019, 35(8), 78–83.
  • Cui, J. Y.; Gan, L.; Wan, W. R.; Xiong, R. B.; Zhang, Z.; Luo, B. D. Experimental Study of Rosa Roxburghii Juice’s Antilipidemic Effect in the Different Groups of Hyperlipidemia Model Mice. J. Health Prev. Med. 2014, 25(1), 7–10.
  • Dai, Y. T.; Zhang, Z.; Gao, Z. F.; Zhao, G. X.; Wang, Y.; Li, F. R. Effect of Ci-Li (Rosa Voxburghii Tratt) on Experimental Hyperlipidemia and Atherosclerosis in Quails. Acta Nutrimenta Sinica. 1994, 02, 200–203.
  • Hu, W. Y.; Bai, Y.; Han, X. F.; Zeng, Q.; Zhong, F. S.; He, W. F. Anti-atherosclerosis Effect of Rosa Roxburghii Tratt. Chin. Pharm. J. 2015, 11(8), 10–11.
  • Jian, C. D.; Li, X. B.; Hang, J. M.; Meng, L. Q.; Yuan, S. S. Relationship between Anti-atherosclerosis Effect of Rosa Roxburghii Tratt Juice and Superoxide Dismutase. Inner Mongolia J. Tradit. Chin. Med. 2015, 34(6), 108.
  • Jian, C. D.; Tang, X. L.; Huang, X. H.; Chen, H. Y.; Tang, H. D. Clinical Study on Anti-atherosclerosis Effect of Rosa Roxburghii Juice in Patients with Cerebral Infarction. Asia. Pac. Tradit. Med. 2017, 13(3), 136–137.
  • Song, F. J.; Xu, Y. Z.; Liu, Y. Effect of Compound Rosa Roxburghii Juice on Lowering Blood Lipid. Beijing Med. J. 1989, 2, 72–75.
  • Wang, J. J.; Liu, X. Z.; Liu, X. L.; Zhuang, Y. Y.; Li, L. Y. Effect of Rose Roxburghii Tratt Juice on Atherosclerosis in Hypercholesterolemic Hamsters. Chin. J. Arterioscler. 2001, 9(1), 17–20.
  • Zhang, X. L.;. Investigation on Flavonoid from Rosa Roxburghii Tratt and Its Biological Activity; East China Normal University: Shanghai, 2005.
  • Song, P. P.; Shen, X. C. Proteomic Analysis of Liver in Diet-induced Hyperlipidemic Mice under Fructus Rosa Roxburghii Action. J. Proteomics. 2021, 230, 103982. DOI: 10.1016/j.jprot.2020.103982.
  • Yazdanparast, R.; Bahramikia, S.; Ardestani, A.; Virani, S. S.; Alonso, A.; Benjamin, E. J.; Bittencourt, M. S.; Callaway, C. W.; Carson, A. P.; Chamberlain, A. M. Nasturtium Officinale Reduces Oxidative Stress and Enhances Antioxidant Capacity in Hyper-cholesterolaemic Rats. Chem. Biol. Interact. 2008, 172(3), 176–184. DOI: 10.1016/j.cbi.2008.01.006.
  • McBride, P. Triglycerides and Risk for Coronary Artery Disease. Curr. Atheroscler. Rep. 2008, 10(5), 386–390. DOI: 10.1007/s11883-008-0060-9.
  • Xu, J.; Vidyarthi, S. K.; Bai, W.; Pan, Z. Nutritional Constituents, Health Benefits and Processing of Rosa Roxburghii: A Review. J. Funct. Foods. 2019, 60, 103456. DOI: 10.1016/j.jff.2019.103456.
  • Burke, D. S.; Smidt, C. R.; Vuong, L. T. Momordica Cochinchinensis, Rosa Roxburghii, Wolfberry, and Sea Buckthorn-highly Nutritional Fruits Supported by Tradition and Science. Curr. Top. Nutraceutical Res. 2005, 3(4), 259–266.
  • Chen, J. J.; Xie, J.; Zeng, B. H.; Li, W. W.; Bai, S. J.; Zhou, C.; Chen, W.; Wei, H.; Xie, P. Absence of Gut Microbiota Affects Lipid Metabolism in the Prefrontal Cortex of Mice. Neurol. Res. 2019, 41(12), 1104–1112.
  • Isabel, M. V.; Monica, S. T.; Noriega, L.; Granados-Portillo, O.; Guevara-Cruz, M.; Flores-López, A.; Avila-Nava, A.; Fernández, M. L.; Tovar, A. R.; Torres, N. A Dietary Intervention with Functional Foods Reduces Metabolic Endotoxaemia and Attenuates Biochemical Abnormalities by Modifying Faecal Microbiota in People with Type 2 Diabetes. Diabetes Metab. 2019, 45(2), 122–131.
  • Rabot, S.; Membrez, M.; Bruneau, A.; Gérard, P.; Harach, T.; Moser, M.; Raymond, F., Mansourian, R.; Chou, C. J. Germ-free C57BL/6J Mice are Resistant to High-fat- Diet-induced Insulin Resistance and Have Altered Cholesterol Metabolism. FASEB J. 2010, 24(12), 4948–4959.
  • Allayee, H.; Hazen, S. L. Contribution of Gut Bacteria to Lipid Levels: Another Metabolic Role for Microbes? Circ. Res. 2015, 117(9), 750–754. DOI: 10.1161/CIRCRESAHA.115.307409.
  • Wang, L.; Zhang, P.; Li, C.; Xu, F.; Chen, J. A Polysaccharide from Rosa Roxburghii Tratt Fruit Attenuates High-fat Diet-induced Intestinal Barrier Dysfunction and Inflammation in Mice by Modulating the Gut Microbiota. Food Funct. 2021. DOI: 10.1039/d1fo03190b.
  • Canfora, E. E.; Jocken, J. W.; Blaak, E. E. Short-chain Fatty Acids in Control of Body Weight and Insulin Sensitivity. Nat. Rev. Endocrinol. 2015, 11(10), 577–591. DOI: 10.1038/nrendo.2015.128.
  • Segain, J. P.; Bletiere, R. D.; Bourreille, A.; Leray, V.; Gervois, N.; Rosales, C.; Ferrier, L.; Bonnet, C.; Blottiere, H. M.; Galmiche, J. P. Butyrate Inhibits Inflammatory Responses through NF-kappaB Inhibition: Implications for Crohn’s Disease. Gut. 2000, 47(3), 397–403.
  • Chaplin, A.; Parra, P.; Serra, F.; Palou, A. Conjugated Linoleic Acid Supplementation under a High-fat Diet Modulates Stomach Protein Expression and Intestinal Microbiota in Adult Mice. PLoS One. 2015, 10(4), e0125091.
  • Pathak, P.; Xie, C.; Nichols, R. G.; Ferrell, J. M.; Boehme, S.; Krausz, K. W.; Patterson, A. D., Gonzalez, F. J.; Chiang, J. Y. L. Intestine Farnesoid X Receptor Agonist and the Gut Microbiota Activate G-protein Bile Acid Receptor-1 Signaling to Improve Metabolism. Hepatology. 2018, 68(4), 1574–1588.
  • Oscar, C. T.; Anne, T.; Philippe, L.; Bart, S. Bile Acid Control of Metabolism and Inflammation in Obesity, Type 2 Diabetes, Dyslipidemia, and Nonalcoholic Fatty Liver Disease. Gastroenterology. 2017, 152(7), 1679–1694.
  • Harada, N.; Kusuyama, A.; Morishima, M.; Okada, K.; Takahashi, A.; Nakaya, Y.; Pathak, P.; Xie, C.; Nichols, R. G.; Ferrell, J. M., et al. Bezafibrate Improves Bacterial Lipopolysaccharide-induced Dyslipidemia and Anorexia in Rats. Metabolism. 2007, 56(4), 517–522.
  • Liu, M. H.; Zhang, Q.; Zhang, Y. H.; Lu, X. Y.; Fu, W. M.; He, J. Y. Chemical Analysis of Dietary Constituents in Rosa Roxburghii and Rosa Sterilis Fruits. Molecules. 2016, 21(9), 1204.
  • Wang, L.-T.; Lv, M.-J.; An, J.-Y.; Fan, X.-H.; Dong, M.-Z.; Zhang, S.-D.; Wang, J.-D.; Wang, Y.-Q.; Cai, Z.-H.; Fu, Y.-J., et al. Botanical Characteristics, Phytochemistry and Related Biological Activities of Rosa Roxburghii Tratt Fruit, and Its Potential Use in Functional Foods: A Review. Food Funct. 2021, 12(4), 1432–1451.
  • Westhuizen, F. H.; Rensburg, C. S. J.; Rautenbach, G. S.; Marnewick, J. L.; Loots, D. T.; Huysamen, C.; Louw, R.; Pretorius P. J.; Erasmus, E. In Vitro Antioxidant, Antimutagenic and Genoprotective Activity ofRosa Roxburghii Fruit Extract. Phytother Res. 2008, 22(3), 376–383.