1,637
Views
12
CrossRef citations to date
0
Altmetric
Original Article

Antioxidant and acetylcholinesterase inhibition capacity of hyrosols from lamiaceae plants for biopesticide use: role of phenolics

, , , , , & show all
Pages 996-1008 | Received 31 Jan 2022, Accepted 23 Apr 2022, Published online: 05 May 2022

References

  • Acimovic, M. G.; Tesevic, VV; Smiljanic, K. T.; Cvetkovic, M. T.; Stankovic, J. M.; Kiprovski, B. M.; Sikora, V. S.; Tešević, V. Hydrolates: by-products of essential oil distillation: chemical composition, biological activity and potential uses. Adv Technol. 2020, 9(2), 54–70. DOI: 10.5937/savteh2002054A.
  • D’Amato, S.; Serio, A.; Lopez, C. C.; Paparella, A. Hydrosols: biological activity and potential as antimicrobials for food applications. Food Control. 2018, 86, 126–137. DOI: 10.1016/j.foodcont.2017.10.030.
  • Paolini, J.; Leandri, C.; Desjobert, J. M.; Barboni, T., and Costa, J. Comparison of liquid-liquid extraction with headspace methods for the characterization of volatile fractions of commercial hydrolates from typically Mediterranean species. J. Chromatogr. A. 2008, 1193(1–2), 37–49. DOI: 10.1016/j.chroma.2008.04.021.
  • Aazza, S.; Miguel, M. G. Antioxidant activity of some Moroccan hydrosols. J. Med. Plant Res 2011, 5, 6688–6696.
  • Cid-Perez, T. S.; Avila-Sosa, R.; Ochoa-Velasco, C. E.; Rivera-Chavira, B. E.; Nevarez-Moorillon, G. V. Antioxidant and antimicrobial activity of Mexican oregano (Poliomintha longiflora) essential oil, hydrosol and extracts from waste solid residues. Plants. 2019, 8(1), 22. DOI: 10.3390/plants8010022.
  • Prusinowska, R.; Smigielski, K.; Stobiecka, A.; Kunicka-Styczynska, A. Hydrolates from lavender (Lavandula angustifolia) – their chemical composition as well as aromatic, antimicrobial and antioxidant properties. Nat. Prod. Res 2016, 30(4), 386–393. DOI: 10.1080/14786419.2015.1016939.
  • Hay, Y. O. M.; Abril Sierra, M. A.; Tellez, M.; Sequeda, C. L. G.; Tellez, A. A. N.; Bonnafous, C.; Raynaud, C. Phytochemical, antioxidant and antimicrobial parameters of essential oils and hydrosols of Colombian thyme and rosemary obtained using two different steam distillation methods. Int J Phytocos Nat Ingred. 2015, 2(1), 7. DOI: 10.15171/ijpni.2015.07.
  • Belabbes, R.; Dib, M. E. A.; Djabou, N.; Ilias, F.; Tabti, B.; Costa, J., and Muselli, A. Chemical variability, antioxidant and antifungal activities of essential oils and hydrosol extract of Calendula arvensis L. from Western Algeria. Chem. Biodiv 2017, 14(5), e1600482. DOI: 10.1002/cbdv.201600482.
  • Degirmenci, H., and Erkurt, H. Relationship between volatile components, antimicrobial and antioxidant properties of the essential oil, hydrosol and extracts of Citrus aurantium L. flowers. J. Infect Public Health. 2020, 13(1), 58–67. DOI: 10.1016/j.jiph.2019.06.017.
  • Traka, C. K.; Petrakis, E. A.; Kimbaris, A. C.; Polissiou, M. G., and Perdikis, D. C. Effects of Ocimum basilicum and Ruta chalepensis hydrosols on Aphis gossypii and Tetranychus urticae. J Appl Entomol. 2018, 142(4), 413–420. DOI: 10.1111/jen.12486.
  • Politi, M.; Menghini, L.; Conti, B.; Bedini, S.; Farina, P.; Cioni, P. L.; Braca, A.; de, L. M. Reconsidering hydrosols as main products of aromatic plants manufactory: the lavandin (Lavandula intermedia) case study in Tuscany. Molecules. 2020, 25(9), 2225. DOI: 10.3390/molecules25092225.
  • Zekri, N.; Handaq, N.; Caidi, A. E.; Zair, T., and Belghiti, M. A. E. Insecticidal effect of Mentha pulegium L. and Mentha suaveolens Ehrh. hydrosols against a pest of citrusToxoptera aurantii (Aphididae). Res Chem Intermed. 2016, 42(3), 1639–1649. DOI: 10.1007/s11164-015-2108-0.
  • Petrakis, E. A.; Kimbaris, A. C.; Lykouressis, D. P.; Polissiou, M. G., and Perdikis, D. C. Hydrosols evaluation in pest control: insecticidal and settling inhibition potential against Myzus persicae (Sulzer). J Appl Entomol. 2015, 139(4), 260–267. DOI: 10.1111/jen.12176.
  • Poonsri, W.; Pengsook, A.; Pluempanupat, W.; Yooboon, T., and Bullangpoti, V. Evaluation of Alpinia galanga (Zingiberaceae) extracts and isolated trans-cinnamic acid on some mosquitoes larvae. Chem. Biol. Technol. Agric 2019, 6(1), 17. DOI: 10.1186/s40538-019-0157-0.
  • Spochacz, M.; Chowanski, S.; Walkowiak-Nowicka, K.; Szymczak, M.; Adamski, Z. Plant-derived substances used against beetles-pests of stored crops and food and their mode of action: a review. Compr. Rev. Food Sci. Food Saf 2018, 17(5), 1339–1366. DOI: 10.1111/1541-4337.12377.
  • Hernandez-Carlos, B.; Gamboa-Angulo, M. Insecticidal and nematicidal contributions of Mexican flora in the search for safer biopesticides. Molecules. 2019, 24(5), 897–931. DOI: 10.3390/molecules24050897.
  • Szwajgier, D. Anticholinesterase activity of selected phenolic acids and flavonoids-interaction testing in model solutions. Ann. Agric. Environ. Med 2015, 22(4), 690–694. DOI: 10.5604/12321966.1185777.
  • Tornuk, F.; Cankurt, H.; Ozturk, I.; Sagdic, O.; Bayram, O., and Yetim, H. Efficacy of various plant hydrosols as natural food sanitizers in reducing Escherichia coli O157:H7 and Salmonella typhimurium on fresh cut carrots and apples. Int. J. Food Microbiol 2011, 148(1), 30–35. DOI: 10.1016/j.ijfoodmicro.2011.04.022.
  • Georgiev, V.; Ananga, A.; Dincheva, I.; Badjakov, I.; Gochev, V.; Tsolova, V. Chemical composition, in vitro antioxidant potential, and antimicrobial activities of essential oils and hydrosols from native American muscadine grapes. Molecules. 2019, 24(18), 3355–3367. DOI: 10.3390/molecules24183355.
  • Kostyukovsky, M.; Rafaeli, A.; Gileadi, C.; Demchenko, N.; Shaaya, E. Activation of octopaminergic receptors by essential oil constituents isolated from aromatic plants: possible mode of action against insect pests. Pest Manag. Sci 2002, 58(11), 1101–1106. DOI: 10.1002/ps.548.
  • Jankowska, M.; Rogalska, J.; Wyszkowska, J.; Stankiewicz, M. Molecular targets for components of essential oils in the insect nervous system-a review. Molecules. 2017, 23(1), 34. DOI: 10.3390/molecules23010034.
  • Craciunescu, O.; Constantin, D.; Gaspar, A.; Toma, L.; Utoiu, E., and Moldovan, L. Evaluation of antioxidant and cytoprotective activities of Arnica montana L. and Artemisia absinthium L. ethanolic extracts. Chem. Cent. J 2012, 6(1), 97. DOI: 10.1186/1752-153X-6-97.
  • Moldovan, L.; Gaspar, A.; Toma, L.; Craciunescu, O.; Saviuc, C. Comparison of polyphenolic content and antioxidant capacity of five Romanian traditional medicinal plants. Rev. Chim 2011, 62, 299–305.
  • Gaspar, A.; Craciunescu, O.; Trif, M.; Moisei, M., and Moldovan, L. Antioxidant and anti-inflammatory properties of active compounds from Arnica montana L. Rom. Biotechnol. Lett 2014, 19, 9353–9365.
  • Savin, S.; Craciunescu, O.; Oancea, A.; Ilie, D.; Ciucan, T.; Antohi, L. S.; Toma, A.; Nicolescu, A.; Deleanu, C., and Oancea, F. Antioxidant, cytotoxic and antimicrobial activity of chitosan preparations extracted from Ganoderma lucidum mushroom. Chem. Biodiv 2020, 17(7), e2000175. DOI: 10.1002/cbdv.202000175.
  • Sugahara, S.; Ueda, Y.; Fukuhara, K.; Kamamuta, Y.; Matsuda, Y.; Murata, T.; Kuroda, Y.; Kabata, K.; Ono, M., and Igoshi, K., et al. Antioxidant effects of herbal tea leaves from yacon (Smallanthus sonchifolius) on multiple free radical and reducing power assays, especially on different superoxide anion radical generation systems. J. Food Sci 2015, 80(11), C2420–9. DOI: 10.1111/1750-3841.13092.
  • Yang, Y.; Liu, D.; Wu, J.; Chen, Y., and Wang, S. In vitro antioxidant activities of sulfated polysaccharide fractions extracted from Corallina officinalis. Int. J. Biol. Macromol 2011, 49(5), 1031–1037. DOI: 10.1016/j.ijbiomac.2011.08.026.
  • Santos, J. S.; Brizola, V. R. A.; Granato, D. High-throughput assay and standardization for metal chelating capacity screening: a proposal and application. Food Chem 2017, 214, 515–522. DOI: 10.1016/j.foodchem.2016.07.091.
  • Mathew, M.; Subramanian, S.; Forloni, G. In vitro screening for anti-cholinesterase and antioxidant activity of methanolic extracts of ayurvedic medicinal plants used for cognitive disorders. Plos One. 2014, 9(1), e86804. DOI: 10.1371/journal.pone.0086804.
  • Zielinska-Blajet, M.; Feder-Kubis, J. Monoterpenes and their derivatives-recent development in biological and medical applications. Int. J. Mol. Sci 2020, 21(19), 7078. DOI: 10.3390/ijms21197078.
  • Baydar, H.; Sangun, M. K.; Erbas, S.; Kara, N. Comparison of aroma compounds in distilled and extracted products of sage (Salvia officinalis L.). J. Essent. Oil Bear. Plants. 2013, 16(1), 39–44. DOI: 10.1080/0972060X.2013.764175.
  • Ovidi, E.; Laghezza Masci, V.; Zambelli, M.; Tiezzi, A.; Vitalini, S., and Garzoli, S. Laurus nobilis, Salvia sclarea and Salvia officinalis essential oils and hydrolates: evaluation of liquid and vapor phase chemical composition and biological activities. Plants. 2021, 10(4), 707. DOI: 10.3390/plants10040707.
  • Sharma, Y.; Velamuri, R.; Fagan, J.; Schaefer, J.; Streicher, C.; Stimson, J. Identification and characterization of polyphenols and volatile terpenoid compounds in different extracts of garden sage (Salvia officinalis L.). Pharmacogn. Res 2020, 12(2), 149. DOI: 10.4103/pr.pr_92_19.
  • Tomi, K.; Kitao, M.; Konishi, N.; Murakami, H.; Matsumura, Y.; Hayashi, T. Enantioselective GC–MS analysis of volatile components from rosemary (Rosmarinus officinalis L.) essential oils and hydrosols. Biosci. Biotechnol. Biochem 2016, 80(5), 840–847. DOI: 10.1080/09168451.2016.1146066.
  • Garzoli, S.; Laghezza Masci, V.; Franceschi, S.; Tiezzi, A.; Giacomello, P., and Ovidi, E. Headspace/GC–MS analysis and investigation of antibacterial, antioxidant and cytotoxic activity of essential oils and hydrolates from Rosmarinus officinalis l. and Lavandula angustifolia miller. Foods. 2021, 10(8), 1768. DOI: 10.3390/foods10081768.
  • Hay, Y. O.; Abril-Sierra, M. A.; Sequeda-Castaneda, L. G.; Bonnafous, C.; Raynaud, C. Evaluation of combinations of essential oils and essential oils with hydrosols on antimicrobial and antioxidant activities. J Pharm Pharmacogn Res. 2018, 6, 216–230.
  • Jeon, D. H.; Moon, J. Y.; Hyun, H. B., and Cho, K. S. Composition analysis and antioxidant activities of the essential oil and the hydrosol extracted from Rosmarinus officinalis L. and Lavandula angustifolia mill. produced in jeju. J. Appl. Biol. Chem 2013, 56(3), 141–146. DOI: 10.3839/jabc.2013.023.
  • Smigielski, K. B.; Prusinowska, R.; Krosowiak, K., and Sikora, M. Comparison of qualitative and quantitative chemical composition of hydrolate and essential oils of lavender (Lavandula angustifolia). J. Essent. Oil Res 2013, 25(4), 291–299. DOI: 10.1080/10412905.2013.775080.
  • Kunicka-Styczynska, A.; Smigielski, K.; Prusinowska, R.; Rajkowska, K.; Kusmider, B.; Sikora, M. Preservative activity of lavender hydrosols in moisturizing body gels. Lett Appl. Microbiol 2015, 60(1), 27–32. DOI: 10.1111/lam.12346.
  • Silha, D.; Svarcova, K.; Bajer, T.; Kralovec, K.; Tesarova, E.; Mouckova, K.; Bajerova, P., and Bajerová, P. Chemical composition of natural hydrolates and their antimicrobial activity on Arcobacter-like cells in comparison with other microorganisms. Molecules. 2020, 25(23), 5654. DOI: 10.3390/molecules25235654.
  • Beale, D. J.; Morrison, P. D.; Karpe, A. V.; Dunn, M. S. Chemometric analysis of lavender essential oils using targeted and untargeted GC-MS acquired data for the rapid identification and characterization of oil quality. Molecules. 2017, 22(8), 1339. DOI: 10.3390/molecules22081339.
  • Jakubczyk, K.; Tuchowska, A.; Janda-Milczarek, K. Plant hydrolates–antioxidant properties, chemical composition and potential applications. Biomed. Pharmacother 2021, 142, 112033. DOI: 10.1016/j.biopha.2021.112033.
  • Bhattacharyya, A.; Chattopadhyay, R.; Mitra, S.; Crowe, S. E. Oxidative stress: an essential factor in the pathogenesis of gastrointestinal mucosal disease. Physiol. Rev 2014, 94(2), 329–354. DOI: 10.1152/physrev.00040.2012.
  • Francik, S.; Francik, R.; Sadowska, U.; Bystrowska, B.; Zawislak, A.; Knapczyk, A.; Nzeyimana, A. Identification of phenolic compounds and determination of antioxidant activity in extracts and infusions of salvia leaves. Materials. 2020, 13(24), 5811. DOI: 10.3390/ma13245811.
  • Sharopov, F. S.; Wink, M.; Setzer, W. N. Radical scavenging and antioxidant activities of essential oil components-an experimental and computational investigation. Nat. Prod. Commun 2015, 10(1), 153–156.
  • Picciotto, M. R.; Higley, M. J.; Mineur, Y. S. Acetylcholine as a neuromodulator: cholinergic signaling shapes nervous system function and behavior. Neuron. 2012, 76(1), 116–129. DOI: 10.1016/j.neuron.2012.08.036.
  • Isman, M. B. Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Ann. Rev. Entomol. 2006, 51(1), 45–66. DOI: 10.1146/annurev.ento.51.110104.151146.
  • Orhan, I.; Aslan, S.; Kartal, M.; Sener, B., and Baser, K. H. C. Inhibitory effect of Turkish Rosmarinus officinalis L. on acetylcholinesterase and butyrylcholinesterase enzymes. Food Chem 2008, 108(2), 663–668. DOI: 10.1016/j.foodchem.2007.11.023.
  • Ferreira, A.; Proenca, C.; Serralheiro, M. L. M.; Araujo, M. E. M. The in vitro screening for acetylcholinesterase inhibition and antioxidant activity of medicinal plants from Portugal. J. Ethnopharmacol 2006, 108(1), 31–37. DOI: 10.1016/j.jep.2006.04.010.
  • Kharraf, S. E.; Faleiro, M. L.; Abdellah, F.; El-Guendouz, S.; El Hadrami, E. M., and Miguel, M. G. Simultaneous hydrodistillation-steam distillation of Rosmarinus officinalis, Lavandula angustifolia and Citrus aurantium from Morocco, major terpenes: impact on biological activities. Molecules. 2021, 26(18), 5452. DOI: 10.3390/molecules26185452.
  • Abdelgaleil, S. A. M.; Mohamed, M. I. E.; Badawy, M. E. I., and El-Arami, S. A. A. Fumigant and contact toxicities of monoterpenes to Sitophilus oryzae (L.) and Tribolium castaneum (Herbst) and their inhibitory effects on acetylcholinesterase activity. J. Chem. Ecol 2009, 35(5), 518–525. DOI: 10.1007/s10886-009-9635-3.
  • Cutillas, A. B.; Carrasco, A.; Martinez-Gutierrez, R.; Tomas, V.; Tudela, J. Salvia officinalis L. essential oils from Spain: determination of composition, antioxidant capacity, antienzymatic, and antimicrobial bioactivities. Chem. Biodiv 2017, 14(8), e1700102. DOI: 10.1002/cbdv.201700102.
  • Tundis, R.; Leporini, M.; Bonesi, M.; Rovito, S.; Passalacqua, N. G. Salvia officinalis L. from Italy: a comparative chemical and biological study of its essential oil in the mediterranean context. Molecules. 2020, 25(24), 5826. DOI: 10.3390/molecules25245826.
  • da, S. M. R. M.; Ricci-Junior, E. An approach to natural insect repellent formulations: from basic research to technological development. Acta Trop 2020, 212, 105419. DOI: 10.1016/j.actatropica.2020.105419.
  • Gulcin, I.; Scozzafava, A.; Supuran, C. T.; Koksal, Z.; Turkan, F.; Cetinkaya, S.; Bingol, Z.; Huyut, Z.; Alwasel, S. H. Rosmarinic acid inhibits some metabolic enzymes including glutathione S-transferase, lactoperoxidase, acetylcholinesterase, butyrylcholinesterase and carbonic anhydrase isoenzymes. J. Enzyme Inhib. Med. Chem 2016, 31(6), 1698–1702. DOI: 10.3109/14756366.2015.1135914.
  • Vladimir-Knezevic, S.; Blazekovic, B.; Kindl, M.; Vladic, J.; Lower-Nedza, A. D., and Brantner, A. H. Acetylcholinesterase inhibitory, antioxidant and phytochemical properties of selected medicinal plants of the Lamiaceae family. Molecules. 2014, 19(1), 767–782. DOI: 10.3390/molecules19010767.
  • Khan, H.; Amin, S.; Kamal, M. A.; Patel, S. Flavonoids as acetylcholinesterase inhibitors: current therapeutic standing and future prospects. Biomed. Pharmacother 2018, 101, 860–870. DOI: 10.1016/j.biopha.2018.03.007.