7,955
Views
41
CrossRef citations to date
0
Altmetric
Review

Nutrients and bioactive compounds of Sorghum bicolor L. used to prepare functional foods: a review on the efficacy against different chronic disorders

, , , , , , , , , & show all
Pages 1045-1062 | Received 27 Feb 2022, Accepted 25 Apr 2022, Published online: 05 May 2022

References

  • FAOSTAT FAO Statistics Division. http://faostat.fao.org/2020 ( accessed June 30, 2020).
  • Dahlberg, J. The Role of Sorghum in Renewables and Biofuels. Sorghum. 2019, 269–277. DOI: 10.1007/978-1-4939-9039-9_19.
  • Stutts, L. R.; Vermerris, W. Elucidating Anthracnose Resistance Mechanisms in Sorghum—A Review. Phytopathology®. 2020, 110(12), 1863–1876. DOI: 10.1094/PHYTO-04-20-0132-RVW.
  • Ratnavathi, C. V.; Patil, J. V.; Chavan, U. D. Sorghum Biochemistry: An Industrial Perspective; Academic Press, 2016. DOI: 10.1016/B978-0-12-803157-5.00001-0.
  • Waniska, R. D.; Rooney, L. W. Structure and Chemistry of the Sorghum Caryopsis. Sorghum. 2000, 2, 649–679.
  • Slavin, J. Whole Grains and Human Health. Nutr. Res. Rev. 2004, 17(1), 99–110. DOI: 10.1079/NRR200374.
  • Amarakoon, D.; Lou, Z.; Lee, W. J.; Smolensky, D.; Lee, S. H. A Mechanistic Review: Potential Chronic Disease‐preventive Properties of Sorghum. J. Sci. Food Agric. 2021, 101(7), 2641–2649. DOI: 10.1002/jsfa.10933.
  • Hill, H.; Lee, L. S.; Henry, R. J. Variation in Sorghum Starch Synthesis Genes Associated with Differences in Starch Phenotype. Food Chem. 2012, 131(1), 175–183. DOI: 10.1016/j.foodchem.2011.08.057.
  • Dicko, M. H.; Gruppen, H.; Zouzouho, O. C.; Traoré, A. S.; Van Berkel, W. J.; Voragen, A. G. Effects of Germination on the Activities of Amylases and Phenolic Enzymes in Sorghum Varieties Grouped according to Food End‐use Properties. J. Sci. Food Agric. 2006, 86(6), 953–963. DOI: 10.1002/jsfa.2443.
  • USDA. National Nutrient Database for Standard Reference Legacy Release: Full Report (All Nutrients) 20067, Sorghum Grain. 2019. https://ndb.nal.usda.gov/ndb/foods/show/20067?n1=%7BQv%3D1%7D&fgcd=&man=&lfacet=&count=&max=25&sort=default&qlookup=sorghum&offset=&format=Full&new=&measureby=&Qv=1&ds=&qt=&qp=&qa=&qn=&q=&ing=
  • Palavecino, P. M.; Penci, M. C.; Calderón‐Domínguez, G.; Ribotta, P. D. Chemical Composition and Physical Properties of Sorghum Flour Prepared from Different Sorghum Hybrids Grown in Argentina. Starch‐Stärke. 2016, 68(11–12), 1055–1064. DOI: 10.1002/star.201600111.
  • Mohammed, N. A.; Ahmed, I. A. M.; Babiker, E. E. Nutritional Evaluation of Sorghum Flour (Sorghum Bicolor L. Moench) during Processing of Injera. 2011. http://khartoumspace.uofk.edu/123456789/22249
  • Udachan, I. S.; Sahu, A. K.; Hend, F. M. Extraction and Characterization of Sorghum (Sorghum Bicolor L. Moench) Starch. Int. Food Res. J. 2012, 19(1), 315–319.
  • Martino, H. S. D.; Tomaz, P. A.; Moraes, E. A.; Concei¸c~ao, L. L.; Oliveira, D. S.; Queiroz, V. A. V.; Rodrigues, J. A. S.; Pirozi, M. R.; Pinheiro-Sant’Ana, H. M.; Ribeiro, M. R. Chemical Characterization and Size Distribution of Sorghum Genotypes for Human Consumption. Rev. Inst. Adolfo. Lutz. 2012, 71, 337–344.
  • Sang, Y.; Bean, S.; Seib, P. A.; Pedersen, J.; Shi, Y. C. Structure and Functional Properties of Sorghum Starches Differing in Amylose Content. J. Agric. Food Chem. 2008, 56(15), 6680–6685. DOI: 10.1021/jf800577x.
  • Mkandawire, N. L.; Kaufman, R. C.; Bean, S. R.; Weller, C. L.; Jackson, D. S.; Rose, D. J. Effects of Sorghum (Sorghum Bicolor (L.) Moench) Tannins on α-amylase Activity and in Vitro Digestibility of Starch in Raw and Processed Flours. J. Agric. Food Chem. 2013, 61(18), 4448–4454. DOI: 10.1021/jf400464j.
  • Taylor, J. R.; Emmambux, M. N. Developments in Our Understanding of Sorghum Polysaccharides and Their Health Benefits. Cereal Chem. 2010, 87(4), 263–271. DOI: 10.1094/CCHEM-87-4-0263.
  • U.S. Department of Agriculture, A. R. S. USDA National Nutrient Database for Standard Reference. 25th ed.; Washington, DC, 2012. DOI: 10.1093/ajcn/88.2.324.
  • Shegro, A.; Shargie, N. G.; van Biljon, A.; Labuschagne, M. T. Diversity in Starch, Protein and Mineral Composition of Sorghum Landrace Accessions from Ethiopia. J. Crop. Sci. Biotechnol. 2012, 15(4), 275–280. DOI: 10.1007/s12892-012-0008-z.
  • Singh, H.; Sodhi, N. S.; Singh, N. Characterisation of Starches Separated from Sorghum Cultivars Grown in India. Food Chem. 2010, 119(1), 95–100. DOI: 10.1016/j.foodchem.2009.05.086.
  • Barros, F.; Awika, J. M.; Rooney, L. W. Interaction of Tannins and Other Sorghum Phenolic Compounds with Starch and Effects on in Vitro Starch Digestibility. J. Agric. Food Chem. 2012, 60(46), 11609–11617. DOI: 10.1021/jf3034539.
  • Shewry, P. R.; Tatham, A. S. The Prolamin Storage Proteins of Cereal Seeds: Structure and Evolution. J. Biochem. 1990, 267(1), 1. DOI: 10.1042/bj2670001.
  • Belton, P. S.; Delgadillo, I.; Halford, N. G.; Shewry, P. R. Kafirin Structure and Functionality. J. Cereal Sci. 2006, 44(3), 272–286. DOI: 10.1016/j.jcs.2006.05.004.
  • Pellett, P. L.; Ghosh, S. Lysine Fortification: Past, Present, and Future. Food Nutr. Bull. 2004, 25(2), 107–113. DOI: 10.1177/156482650402500201.
  • Wu, Y.; Yuan, L.; Guo, X.; Holding, D. R.; Messing, J. Mutation in the Seed Storage Protein Kafirin Creates a High-value Food Trait in Sorghum. Nat. Commun. 2013, 4(1), 1–7. DOI: 10.1038/ncomms3217.
  • Galili, G.; Amir, R. Fortifying Plants with the Essential Amino Acids Lysine and Methionine to Improve Nutritional Quality. Plant Biotechnol. J. 2013, 11(2), 211–222. DOI: 10.1111/pbi.12025.
  • Henley, E. C.; Taylor, J. R. N.; Obukosia, S. D. The Importance of Dietary Protein in Human Health: Combating Protein Deficiency in sub-Saharan Africa through Transgenic Biofortified Sorghum. Adv. Food Nutr. Res. 2010, 60, 21–52. DOI: 10.1016/S1043-4526(10)60002-2.
  • Oria, M. P.; Hamaker, B. R.; Axtell, J. D.; Huang, C. P. A Highly Digestible Sorghum Mutant Cultivar Exhibits A Unique Folded Structure of Endosperm Protein Bodies. PNAS. 2000, 97(10), 5065–5070. DOI: 10.1073/pnas.080076297.
  • Mehlo, L.; Mbambo, Z.; Bado, S.; Lin, J.; Moagi, S. M.; Buthelezi, S.; Chikwamba, R.; Chikwamba, R. Induced Protein Polymorphisms and Nutritional Quality of Gamma Irradiation Mutants of Sorghum. Mutat. Res-Fund. Mol. M. 2013, 749(1–2), 66–72. DOI: 10.1016/j.mrfmmm.2013.05.002.
  • Kumar, T.; Dweikat, I.; Sato, S.; Ge, Z.; Nersesian, N.; Chen, H.; Clemente, T.; Bean, S.; Ioerger, B. P.; Tilley, M. Modulation of Kernel Storage Proteins in Grain Sorghum (Sorghum Bicolor (L.) Moench). Plant Biotechnol. J. 2012, 10(5), 533–544. DOI: 10.1111/j.1467-7652.2012.00685.x.
  • Taylor, J.; Bean, S. R.; Ioerger, B. P.; Taylor, J. R. Preferential Binding of Sorghum Tannins with γ-kafirin and the Influence of Tannin Binding on Kafirin Digestibility and Biodegradation. J. Cereal Sci. 2007, 46(1), 22–31. DOI: 10.1016/j.jcs.2006.11.001.
  • Afify, A. E. M. M.; El-BELTAGI, H. S.; Abd El-Salam, S. M.; Omran, A. A. Oil and Fatty Acid Contents of White Sorghum Varieties under Soaking, Cooking, Germination and Fermentation Processing for Improving Cereal Quality. Not. Bot. Horti. Agrobot. Cluj. Napoca. 2012, 40(1), 86–92. DOI: 10.15835/nbha4017585.
  • Punia, H.; Tokas, J.; Malik, A.; Sangwan, S.; Gill, S. C.; Tripathi, S. C.; Gupta, O. P.; Mangrauthia, S. K.; Sundaram, R. M.; Sawant, C. P. Characterization of Phenolic Compounds and Antioxidant Activity in Sorghum [Sorghum Bicolor (L.) Moench] Grains. Cereal Res. Commun. 2021, 1–11. DOI: 10.1007/s42976-020-00118-w.
  • Arshad, M. S.; Khalid, W.; Ahmad, R. S.; Khan, M. K.; Ahmad, M. H.; Safdar, S.; Suleria, H. A. R. Functional Foods and Human Health: An Overview. Funct. Food. 2021, 3.
  • Kang, J.; Price, W. E.; Ashton, J.; Tapsell, L. C.; Johnson, S. Identification and Characterization of Phenolic Compounds in Hydromethanolic Extracts of Sorghum Wholegrains by LC-ESI-MSn. Food Chem. 2016, 211, 215–226. DOI: 10.1016/j.foodchem.2016.05.052.
  • Yang, L.; Allred, K. F.; Geera, B.; Allred, C. D.; Awika, J. M. Sorghum Phenolics Demonstrate Estrogenic Action and Induce Apoptosis in Nonmalignant Colonocytes. Nutr. Cancer. 2012, 64(3), 419–427. DOI: 10.1080/01635581.2012.657333.
  • Zaroug, M.; Orhan, I. E.; Senol, F. S.; Yagi, S. Comparative Antioxidant Activity Appraisal of Traditional Sudanese Kisra Prepared from Two Sorghum Cultivars. Food Chem. 2014, 156, 110–116. DOI: 10.1016/j.foodchem.2014.01.069.
  • Shen, J.; Pang, R.; Weiss, R. J.; Schuster, M.; Jaitly, N.; Yang, Z.; Wu, Y. Natural Tts Synthesis by Conditioning Wavenet on Mel Spectrogram Predictions. In 2018 IEEE international conference on acoustics, speech and signal processing (ICASSP), 2018, pp 4779–4783. IEEE.
  • Xiong, Y.; Zhang, P.; Warner, R. D.; Fang, Z. Sorghum Grain: From Genotype, Nutrition, and Phenolic Profile to Its Health Benefits and Food Applications. Compr. Rev. Food Sci. Food Saf. 2019, 18(6), 2025–2046. DOI: 10.1111/1541-4337.12506.
  • Davidson, D. J. Effect of Different Methods and Timing of Nitrogen (N) Application on Sorghum (Sorghum bicolor L) Grain Yield. Doctoral dissertation, Oklahoma State University, 2019.
  • Althwab, S.; Carr, T. P.; Weller, C. L.; Dweikat, I. M.; Schlegel, V. Advances in Grain Sorghum and Its Co-products as a Human Health Promoting Dietary System. Int. Food Res. 2015, 77, 349–359. DOI: 10.1016/j.foodres.2015.08.011.
  • Vanamala, J. K.; Massey, A. R.; Pinnamaneni, S. R.; Reddivari, L.; Reardon, K. F. Grain and Sweet Sorghum (Sorghum Bicolor L. Moench) Serves as a Novel Source of Bioactive Compounds for Human Health. Crit. Rev. Food Sci. Nutr. 2018, 58(17), 2867–2881. DOI: 10.1080/10408398.2017.1344186.
  • Dykes, L.; Rooney, L. W. Sorghum and Millet Phenols and Antioxidants. J. Cereal Sci. 2006, 44(3), 236–251. DOI: 10.1016/j.jcs.2006.06.007.
  • Wu, G.; Bennett, S. J.; Bornman, J. F.; Clarke, M. W.; Fang, Z.; Johnson, S. K. Phenolic Profile and Content of Sorghum Grains under Different Irrigation Managements. Int. Food Res. J. 2017, 97, 347–355. DOI: 10.1016/j.foodres.2017.04.030.
  • Chiremba, C.; Taylor, J. R.; Rooney, L. W.; Beta, T. Phenolic Acid Content of Sorghum and Maize Cultivars Varying in Hardness. Food Chem. 2012, 134(1), 81–88. DOI: 10.1016/j.foodchem.2012.02.067.
  • Awika, J. M.; McDonough, C. M.; Rooney, L. W. Decorticating Sorghum to Concentrate Healthy Phytochemicals. J. Agric. Food Chem. 2005, 53(16), 6230–6234. DOI: 10.1021/jf0510384.
  • Awika, J. M. Sorghum: Its Unique Nutritional and Health-promoting Attributes. Gluten-free Anci. Grains. 2017, 21–54. Wood head publishing, DOI: 10.1016/B978-0-08-100866-9.00003-0.
  • de Morais Cardoso, L.; Montini, T. A.; Pinheiro, S. S.; Pinheiro-Sant’Ana, H. M.; Martino, H. S. D.; Moreira, A. V. B. Effects of Processing with Dry Heat and Wet Heat on the Antioxidant Profile of Sorghum. Food Chem. 2014, 152, 210–217. DOI: 10.1016/j.foodchem.2013.11.106.
  • Buer, C. S.; Imin, N.; Djordjevic, M. A. Flavonoids: New Roles for Old Molecules. J. Integr. Plant Biol. 2010, 52(1), 98–111. DOI: 10.1111/j.1744-7909.2010.00905.x.
  • Kaufman, R. C.; Herald, T. J.; Bean, S. R.; Wilson, J. D.; Tuinstra, M. R. Variability in Tannin Content, Chemistry and Activity in a Diverse Group of Tannin Containing Sorghum Cultivars. J. Sci. Food Agric. 2013, 93(5), 1233–1241. DOI: 10.1002/jsfa.5890.
  • Wu, Y.; Li, X.; Xiang, W.; Zhu, C.; Lin, Z.; Wu, Y.; Yu, J.; Pandravada, S.; Ridder, D. D.; Bai, G. Presence of Tannins in Sorghum Grains Is Conditioned by Different Natural Alleles of Tannin1. PNAS. 2012, 109(26), 10281–10286. DOI: 10.1073/pnas.1201700109.
  • Schons, P. F.; Ries, E. F.; Battestin, V.; Macedo, G. A. Effect of Enzymatic Treatment on Tannins and Phytate in Sorghum (Sorghum Bicolor) and Its Nutritional Study in Rats. Int. J. Food Sci. 2011, 46(6), 1253–1258. DOI: 10.1111/j.1365-2621.2011.02620.x.
  • Awika, J. M.; Dykes, L.; Gu, L.; Rooney, L. W.; Prior, R. L. Processing of Sorghum (Sorghum Bicolor) and Sorghum Products Alters Procyanidin Oligomer and Polymer Distribution and Content. J. Agric. Food Chem. 2003, 51(18), 5516–5521. DOI: 10.1021/jf0343128.
  • Price, M. L.; Van Scoyoc, S.; Butler, L. G. A Critical Evaluation of the Vanillin Reaction as an Assay for Tannin in Sorghum Grain. J. Agric. Food Chem. 1978, 26(5), 1214–1218. DOI: 10.1021/jf60219a031.
  • Chong, J.; Poutaraud, A.; Hugueney, P. Metabolism and Roles of Stilbenes in Plants. Plant Sci. 2009, 177(3), 143–155. DOI: 10.1016/j.plantsci.2009.05.012.
  • Bröhan, M.; Jerkovic, V.; Collin, S. Potentiality of Red Sorghum for Producing Stilbenoid-enriched Beers with High Antioxidant Activity. J. Agric. Food Chem. 2011, 59(8), 4088–4094. DOI: 10.1021/jf1047755.
  • Kumar, A. A.; Reddy, B. V.; Ramaiah, B.; Sahrawat, K. L.; Pfeiffer, W. H. Gene Effects and Heterosis for Grain Iron and Zinc Concentration in Sorghum [Sorghum Bicolor (L.) Moench]. Field Crops. Res. 2013, 146, 86–95. DOI: 10.1016/j.fcr.2013.03.001.
  • Khan, I.; Yousif, A.; Johnson, S. K.; Gamlath, S. Effect of Sorghum Flour Addition on Resistant Starch Content, Phenolic Profile and Antioxidant Capacity of Durum Wheat Pasta. Int. Food Res. J. 2013, 54(1), 578–586. DOI: 10.1016/j.foodres.2013.07.059.
  • Khan, I.; Yousif, A. M.; Johnson, S. K.; Gamlath, S. Effect of Sorghum Flour Addition on in Vitro Starch Digestibility, Cooking Quality, and Consumer Acceptability of Durum Wheat Pasta. J. Food Sci. 2014, 79(8), S1560–S1567. DOI: 10.1111/1750-3841.12542.
  • Khan, I.; Yousif, A. M.; Johnson, S. K.; Gamlath, S. Acute Effect of Sorghum Flour-containing Pasta on Plasma Total Polyphenols, Antioxidant Capacity and Oxidative Stress Markers in Healthy Subjects: A Randomised Controlled Trial. Clin. Nutr. 2015, 34(3), 415–421. DOI: 10.1016/j.clnu.2014.08.005.
  • Poquette, N. M.; Gu, X.; Lee, S. O. Grain Sorghum Muffin Reduces Glucose and Insulin Responses in Men. Food Funct. 2014, 5(5), 894–899. DOI: 10.1039/C3FO60432B.
  • Wu, G.; Shen, Y.; Qi, Y.; Zhang, H.; Wang, L. I.; Qian, H.; Johnson, S. K. Improvement of in Vitro and Cellular Antioxidant Properties of Chinese Steamed Bread through Sorghum Addition. LWT. 2018, 91, 77–83. DOI: 10.1016/j.lwt.2017.12.074.
  • Di Donfrancesco, B.; Koppel, K.; Aldrich, C. G. Pet and Owner Acceptance of Dry Dog Foods Manufactured with Sorghum and Sorghum Fractions. J. Cereal Sci. 2018, 83, 42–48. DOI: 10.1016/j.jcs.2018.07.011.
  • García, A. C.; Hernández, V. M.; Bonet, J.; Coma, J.; Andrés, M. L. Effects of Inclusion of Sorghum Distillers Dried Grains with Solubles (DDGS) in Diets for Growing and Finishing Pigs. Span. J. Agric. Res. 2012, 4, 1016–1024.
  • Yang, Y.; Shen, Y.; Pan, Y.; Xia, P.; Zhang, D.; He, Z.; Lu, J.; Li, H.; Lu, J. Effects of Dietary Sorghum Dried Distiller’s Grains with Solubles on Growth Performance, Diet Nutrient Digestibility, Carcass Characteristics and Immunity in Growing Rabbits. J. Anim. Physiol. Anim. Nutr. 2019, 103(1), 363–369. DOI: 10.1111/jpn.13008.
  • Pomerenke, J. L.; Souza, L. W. O.; Shurson, G. C. Concentrations of β-glucans and Mannan Oligosaccharides in Corn Dried Distillers Grains with Soluble (DDGS) and Its Relationship to Fiber Components. J. Anim. Sci. 2004, 93(Suppl. 1), 206.
  • Cabral, A. R.; Waters, C.; Laird, H. L.; Cavitt, L. C.; Miller, R. K.; Rooney, W. L.; Kerth, C. R. Sorghum Bran as an Antioxidant in Pork and Poultry Products. Muscle Biol. 2018, 2(2), 2010. DOI: 10.221751/rmc2018.073.
  • Awika, J. M.; Rooney, L. W.; Waniska, R. D. Properties of 3-deoxyanthocyanins from Sorghum. J. Agric. Food Chem. 2004, 52(14), 4388–4394. DOI: 10.1021/jf049653f.
  • Palacios, C. E.; Nagai, A.; Torres, P.; Rodrigues, J. A.; Salatino, A. Contents of Tannins of Cultivars of Sorghum Cultivated in Brazil, as Determined by Four Quantification Methods. Food Chem. 2021, 337, 127970. DOI: 10.1016/j.foodchem.2020.127970.
  • Moraes, É. A.; Natal, D. I. G.; Queiroz, V. A. V.; Schaffert, R. E.; Cecon, P. R.; de Paula, S. O.; Martino, H. S. D.; Ribeiro, S. M. R.; Martino, H. S. D. Sorghum Genotype May Reduce Low-grade Inflammatory Response and Oxidative Stress and Maintains Jejunum Morphology of Rats Fed a Hyperlipidic Diet. Int. Food Res. J. 2012, 49(1), 553–559. DOI: 10.1016/j.foodres.2012.07.029.
  • Kim, J.; Park, Y. Anti-diabetic Effect of Sorghum Extract on Hepatic Gluconeogenesis of Streptozotocin-induced Diabetic Rats. Nutr. Metab. 2012, 9(1), 1–7. DOI: 10.1186/1743-7075-9-106.
  • Shim, T. J.; Kim, T. M.; Jang, K. C.; Ko, J. Y., and Kim, D. J. Toxicological Evaluation and Anti-inflammatory Activity of a Golden Gelatinous Sorghum Bran Extract. Biosci. Biotechnol. Biochem. 2013 DOI: 10.1271/bbb.120731.
  • Burdette, A.; Garner, P. L.; Mayer, E. P.; Hargrove, J. L.; Hartle, D. K.; Greenspan, P. Anti-inflammatory Activity of Select Sorghum (Sorghum Bicolor) Brans. J. Med. Food. 2010, 13(4), 879–887. DOI: 10.1089/jmf.2009.0147.
  • Takabe, W.; Matsukawa, N.; Kodama, T.; Tanaka, K.; Noguchi, N. Chemical Structure–dependent Gene Expression of Proteasome Subunits via Regulation of the Antioxidant Response Element. Free Radic. Res. 2006, 40(1), 21–30. DOI: 10.1080/10715760500354430.
  • Awika, J. M.; Yang, L.; Browning, J. D.; Faraj, A. Comparative Antioxidant, Antiproliferative and Phase II Enzyme Inducing Potential of Sorghum (Sorghum Bicolor) Varieties. LWT. 2009, 42(6), 1041–1046. DOI: 10.1016/j.lwt.2009.02.003.
  • Woo, H. J.; Oh, I. T.; Lee, J. Y.; Seu, M. C.; Woo, K. S.; Nam, M. H.; Kim, Y. H.; Kim, Y. H. Apigeninidin Induces Apoptosis through Activation of Bak and Bax and Subsequent Mediation of Mitochondrial Damage in Human Promyelocytic Leukemia HL-60 Cells. Process Biochem. 2012, 47(12), 1861–1871. DOI: 10.1016/j.procbio.2012.06.012.
  • Shih, C. H.; Siu, S. O.; Ng, R.; Wong, E.; Chiu, L. C.; Chu, I. K.; Lo, C. Quantitative Analysis of Anticancer 3-deoxyanthocyanidins in Infected Sorghum Seedlings. J. Agric. Food Chem. 2007, 55(2), 254–259. DOI: 10.1021/jf062516t.
  • Suganyadevia, P.; Saravanakumara, K. M.; Mohandasb, S. Identification of 3- Deoxyanthocyanins from Red Sorghum (Sorghum Bicolor) Bran and Its Biological Properties. Afr. J. Pure Appl. Chem. 2011, 5, 181–193.
  • Hwang, J. M.; Choi, K. C.; Bang, S. J.; Son, Y. O.; Kim, B. T.; Kim, D. H.; Lee, J. C.; Kim, D. H.; Shi, X.; Lee, J.-C. Anti-oxidant and Anti-inflammatory Properties of Methanol Extracts from Various Crops. Food Sci. Biotechnol. 2013, 22(1), 265–272. DOI: 10.1007/s10068-013-0076-y.
  • Suganyadevia, P.; Saravanakumara, K. M.; Mohandasb, S. Evaluation of Antiproliferative Activity of Red Sorghum Bran Anthocyanin on a Human Breast Cancer Cell Line (MCF-7). Int. J. Breast Cancer. 2011, 1–6.
  • Huang, W. Y.; Cai, Y. Z.; Zhang, Y. Natural Phenolic Compounds from Medicinal Herbs and Dietary Plants: Potential Use for Cancer Prevention. Nutr. Cancer. 2009, 62(1), 1. DOI: 10.1080/01635580903191585.
  • Dowsett, M.; Cuzick, J.; Ingle, J.; Coates, A.; Forbes, J.; Bliss, J.; Peto, R.; Baum, M.; Buzdar, A.; Colleoni, M. Meta-analysis of Breast Cancer Outcomes in Adjuvant Trials of Aromatase Inhibitors versus Tamoxifen. Am. J. Clin. Oncol. 2010, 28(3), 509–518. DOI: 10.1200/JCO.2009.23.1274.
  • Lewis, J. B. Effects of bran from sorghum grains containing different classes and levels of bioactive compounds in colon carcinogenesis. Doctoral dissertation, Texas A & M University, 2010.
  • Chung, I. M.; Kim, E. H.; Yeo, M. A.; Kim, S. J.; Seo, M. C.; Moon, H. I. Antidiabetic Effects of Three Korean Sorghum Phenolic Extracts in Normal and Streptozotocin-induced Diabetic Rats. Int. Food Res. J. 2011, 44(1), 127–132. DOI: 10.1016/j.foodres.2010.10.051.
  • Kim, J. S.; Hyun, T. K.; Kim, M. J. The Inhibitory Effects of Ethanol Extracts from Sorghum, Foxtail Millet and Proso Millet on α-glucosidase and α-amylase Activities. Food Chem. 2011, 124(4), 1647–1651. DOI: 10.1016/j.foodchem.2010.08.020.
  • Ofosu, F. K.; Elahi, F.; Daliri, E. B. M.; Yeon, S. J.; Ham, H. J.; Kim, J. H.; Oh, D. H.; Oh, D.-H. Flavonoids in Decorticated Sorghum Grains Exert Antioxidant, Antidiabetic and Antiobesity Activities. Molecules. 2020, 25(12), 2854. DOI: 10.3390/molecules25122854.
  • Carr, T. P.; Weller, C. L.; Schlegel, V. L.; Cuppett, S. L.; Guderian, D. M., Jr; Johnson, K. R. Grain Sorghum Lipid Extract Reduces Cholesterol Absorption and Plasma non-HDL Cholesterol Concentration in Hamsters. J. Nutr. 2005, 135(9), 2236–2240. DOI: 10.1093/jn/135.9.2236.
  • Hoi, J. T.; Weller, C. L.; Schlegel, V. L.; Cuppett, S. L.; Lee, J. Y.; Carr, T. P. Sorghum Distillers Dried Grain Lipid Extract Increases Cholesterol Excretion and Decreases Plasma and Liver Cholesterol Concentration in Hamsters. J. Funct. Foods. 2009, 1(4), 381–386. DOI: 10.1016/j.jff.2009.09.005.
  • Martínez, I.; Wallace, G.; Zhang, C.; Legge, R.; Benson, A. K.; Carr, T. P.; Walter, J.; Walter, J. Diet-induced Metabolic Improvements in a Hamster Model of Hypercholesterolemia are Strongly Linked to Alterations of the Gut Microbiota. Appl. Environ. Microbiol. 2009, 75(12), 4175–4184. DOI: 10.1128/AEM.00380-09.
  • Kamath, V.; Niketh, S.; Chandrashekar, A.; Rajini, P. S. Chymotryptic Hydrolysates of α-kafirin, the Storage Protein of Sorghum (Sorghum Bicolor) Exhibited Angiotensin Converting Enzyme Inhibitory Activity. Food Chem. 2007, 100(1), 306–311. DOI: 10.1016/j.foodchem.2005.10.004.
  • Green, P. H.; Lebwohl, B.; Greywoode, R. Celiac Disease. J. Allergy Clin. Immunol. 2015, 135(5), 1099–1106. DOI: 10.1016/j.jaci.2015.01.044.
  • Koehler, P., and Wieser, H. Chemistry of Cereal Grains. In Handbook on Sourdough Biotechnology; Springer: Boston, MA, 2013; pp 11–45. 2013. DOI: 10.1007/978-1-4614-5425-0_2.
  • Garzón, A. G.; Torres, R. L.; Drago, S. R. Changes in Phenolics, γ‐aminobutyric Acid Content and Antioxidant, Antihypertensive and Hypoglycaemic Properties during Ale White Sorghum (Sorghum Bicolor (L.) Moench) Brewing Process. Int. J. Food Sci. 2019, 54(5), 1901–1908. DOI: 10.1111/ijfs.14102
  • Babar, Q.; Ali, A.; Saeed, A., and Tahir, M. F. 2021. Novel Treatment Strategy against COVID-19 through Anti-Inflammatory, Antioxidant and Immunostimulatory Properties of the B Vitamin Complex. Intechopen. DOI: 10.5772/intechopen.100251.
  • Ali, A.; Ain, Q.; Saeed, A.; Khalid, W.; Ahmed, M.; Bostani, A. Bio-Molecular Characteristics of Whey Proteins with Relation to Inflammation. Intechopen. DOI: 10.5772/intechopen.99220.