8,069
Views
43
CrossRef citations to date
0
Altmetric
Review

Traditional and innovative approaches for the extraction of bioactive compounds

, ORCID Icon, , ORCID Icon, ORCID Icon, , , , ORCID Icon & show all
Pages 1215-1233 | Received 24 Jan 2022, Accepted 02 May 2022, Published online: 15 May 2022

References

  • Saeed, F.; Hussain, M.; Arshad, M. S.; Afzaal, M.; Munir, H.; Imran, M.; Tufail, T.; Anjum, F. M. Functional and Nutraceutical Properties of Maize Bran Cell Wall Non-starch Polysaccharides. Int. J. Food Prop. 2021, 24(1), 233–248. DOI: 10.1080/10942912.2020.1858864.
  • Gomes-Araújo, R.; Martínez-Vázquez, D. G.; Charles-Rodríguez, A. V.; Rangel-Ortega, S.; Robledo-Olivo, A. Bioactive Compounds from Agricultural Residues, Their Obtaining Techniques, and the Antimicrobial Effect as Postharvest Additives. Int. J. Food Sci. 2021, 2021. DOI: 10.1155/2021/9936722.
  • Ben-Othman, S.; Jõudu, I.; Bhat, R. Bioactives from Agri-food Wastes: Present Insights and Future Challenges. Molecules. 2020, 25(3), 510. DOI: 10.3390/molecules25030510.
  • Azmir, J.; Zaidul, I. S. M.; Rahman, M. M.; Sharif, K. M.; Mohamed, A.; Sahena, F.; Jahurul, M. H. A.; Ghafoor, K.; Norulaini, N. A. N.; Omar, A. K. M. Techniques for Extraction of Bioactive Compounds from Plant Materials: A Review. J. Food Eng. 2013, 117(4), 426–436. DOI: 10.1016/j.jfoodeng.2013.01.014.
  • Koçak, E.; Pazır, F. Effect of Extraction Methods on Bioactive Compounds of Plant Origin. Turkish Journal of Agriculture-Food Science and Technology (TURJAF). 2018, 6(6), 663–675. DOI: 10.24925/turjaf.v6i6.663-675.1527.
  • Sasidharan, S.; Chen, Y.; Saravanan, D.; Sundram, K. M.; Latha, L. Y. Extraction, Isolation and Characterization of Bioactive Compounds from Plants’ Extracts. Afr. J. Tradit. Complement. Altern. Med. 2011, 8(1), 1–10. DOI: 10.4314/ajtcam.v8i1.60483.
  • Li, S.; Zhang, R.; Lei, D.; Huang, Y.; Cheng, S.; Zhu, Z.; Cravotto, G.; Cravotto, G. Impact of Ultrasound, Microwaves and High-pressure Processing on Food Components and Their Interactions. Trends Food Sci. Technol. 2021, 109, 1–15. DOI: 10.1016/j.tifs.2021.01.017.
  • Hussain, M.; Ullah Khan, A.; Saeed, F.; Afzaal, M.; Mushtaq, Z.; Niaz, B.; Anjum, F. M.; Mohamed, A. A.; Alamri, M. S.; Anjum, F. M. Physicochemical Characterization of Cereal Bran Cell Wall with Special Reference to Its Rheological and Functional Properties. Int. J. Food Prop. 2022, 25(1), 305–314. DOI: 10.1080/10942912.2022.2032138.
  • Rahim, M. A.; Saeed, F.; Khalid, W.; Hussain, M.; Anjum, F. M. Functional and Nutraceutical Properties of Fructo-oligosaccharides Derivatives: A Review. Int. J. Food Prop. 2021, 24(1), 1588–1602. DOI: 10.1080/10942912.2021.1986520.
  • Jideani, A. I.; Silungwe, H.; Takalani, T.; Omolola, A. O.; Udeh, H. O.; Anyasi, T. A. Antioxidant-rich Natural Fruit and Vegetable Products and Human Health. Int. J. Food Prop. 2021, 24(1), 41–67. DOI: 10.1080/10942912.2020.1866597.
  • Afzaal, M.; Saeed, F.; Rasheed, R.; Hussain, M.; Aamir, M.; Hussain, S.; Anjum, F. M.; Alamri, M. S.; Anjum, F. M. Nutritional, Biological, and Therapeutic Properties of Black Garlic: A Critical Review. Int. J. Food Prop. 2021, 24(1), 1387–1402. DOI: 10.1080/10942912.2021.1967386.
  • Carpena, M.; Pereira, R. D.; Garcia-Perez, P.; Otero, P.; Soria-Lopez, A.; Chamorro, F.;, and Simal-Gandara, J. An Overview of Food Bioactive Compounds and Their Properties. Membrane Separation of Food Bioactive Ingredients. 2021, 39–79. https://link.springer.com/book/10.1007/978-3-030-84643-5
  • Hill, R. A.; Connolly, J. D. Triterpenoids. Nat. Prod. Rep. 2018, 35(12), 1294–1329. DOI: 10.1039/C8NP00029H.
  • Moreau, R. A.; Nyström, L.; Whitaker, B. D.; Winkler-Moser, J. K.; Baer, D. J.; Gebauer, S. K.; Hicks, K. B. Phytosterols and Their Derivatives: Structural Diversity, Distribution, Metabolism, Analysis, and Health-Promoting Uses.Prog. Lipid Res 2018, 70, 35–61. DOI: 10.1016/j.plipres.2018.04.001.
  • Multari, S.; Carlin, S.; Sicari, V.; Martens, S. Differences in the Composition of Phenolic Compounds, Carotenoids, and Volatiles between Juice and Pomace of Four Citrus Fruits from Southern Italy. Eur. Food Res. Technol. 2020, 246(10), 1991–2005. DOI: 10.1007/s00217-020-03550-8.
  • Câmara, J. S.; Albuquerque, B. R.; Aguiar, J.; Corrêa, R. C.; Gonçalves, J. L.; Granato, D.; Pereira, J. A.; Barros, L.; Ferreira, I. C. Food Bioactive Compounds and Emerging Techniques for Their Extraction: Polyphenols as a Case Study. Foods. 2021, 10(1), 37. DOI: 10.3390/foods10010037.
  • Porter, N. T.; Martens, E. C. The Critical Roles of Polysaccharides in Gut Microbial Ecology and Physiology. Annu. Rev. Microbiol. 2017, 71, 349–369. Doi:10.1146/annurev-micro-102215-095316.
  • Saini, R. K.; Keum, Y. S. Omega-3 and Omega-6 Polyunsaturated Fatty Acids: Dietary Sources, Metabolism, and significance—A Review. Life Sci. 2018, 203, 255–267. DOI: 10.1016/j.lfs.2018.04.049.
  • Calder, P. C. Polyunsaturated Fatty Acids and Inflammation. Prostag. Leukotr ESS. 2006, 75(3), 197–202. DOI: 10.1016/j.plefa.2006.05.012.
  • Ferreira, I. C.; Barros, L.; Abreu, R. Antioxidants in Wild Mushrooms. Curr. Med. Chem. 2009, 16(12), 1543–1560. DOI: 10.2174/092986709787909587.
  • Abbas, M.; Saeed, F.; Anjum, F. M.; Afzaal, M.; Tufail, T.; Bashir, M. S.; Ishtiaq, A.; Hussain, S.; Suleria, H. A. R. Natural Polyphenols: An Overview. Int. J. Food Prop. 2017, 20(8), 1689–1699. DOI: 10.1080/10942912.2016.1220393.
  • Majdi, C.; Pereira, C.; Dias, M. I.; Calhelha, R. C.; Alves, M. J.; Rhourri-Frih, B.; Ferreira, I. C.; Barros, L.; Amaral, J. S.; Ferreira, I. C. F. R. Phytochemical Characterization and Bioactive Properties of Cinnamon Basil (Ocimum basilicum cv.‘cinnamon’) and Lemon Basil (Ocimum× Citriodorum). Antioxidants. 2020, 9(5), 369. DOI: 10.3390/antiox9050369.
  • Rein, M. J.; Renouf, M.; Cruz‐Hernandez, C.; Actis‐Goretta, L.; Thakkar, S. K.; da Silva Pinto, M. Bioavailability of Bioactive Food Compounds: A Challenging Journey to Bioefficacy. Br. J. Clin. Pharmacol. 2013, 75(3), 588–602. DOI: 10.1111/j.1365-2125.2012.04425.x.
  • McClements, D. J. Advances in Nanoparticle and Microparticle Delivery Systems for Increasing the Dispersibility, Stability, and Bioactivity of Phytochemicals. Biotechnol. Adv. 2020, 38, 107287. DOI: 10.1016/j.biotechadv.2018.08.004.
  • Kamiloglu, S. Effect of Different Freezing Methods on the Bioaccessibility of Strawberry Polyphenols. Int. J. Food Sci. 2019, 54(8), 2652–2660. DOI: 10.1111/ijfs.14249.
  • Brglez Mojzer, E.; Knez Hrnčič, M.; Škerget, M.; Knez, Ž.; Bren, U. Polyphenols: Extraction Methods, Antioxidative Action, Bioavailability and Anticarcinogenic Effects. Molecules. 2016, 21(7), 901. DOI: 10.3390/molecules21070901.
  • Bart, H. J., and Pilz, S., Eds. Industrial Scale Natural Products Extraction; Wiley Online Library: John Wiley & Sons, 2011.
  • Altemimi, A.; Lakhssassi, N.; Baharlouei, A.; Watson, D. G.; Lightfoot, D. A. Phytochemicals: Extraction, Isolation, and Identification of Bioactive Compounds from Plant Extracts. Plants. 2017, 6(4), 42. DOI: 10.3390/plants6040042.
  • Bleakley, S.; Hayes, M. Algal Proteins: Extraction, Application, and Challenges Concerning Production. Foods. 2017, 6(5), 33. DOI: 10.3390/foods6050033.
  • Tomsone, L.; Kruma, Z.; Galoburda, R. Comparison of Different Solvents and Extraction Methods for Isolation of Phenolic Compounds from Horseradish Roots (Armoracia rusticana). World Acad. Sci. Eng. Technol. 2012, 64(4), 903–908. https://www.researchgate.net/publication/285076719.
  • Bouchard, A.; Jovanović, N.; Jiskoot, W.; Mendes, E.; Witkamp, G. J.; Crommelin, D. J.; Hofland, G. W. Lysozyme Particle Formation during Supercritical Fluid Drying: Particle Morphology and Molecular Integrity. J. Supercrit. Fluids. 2007, 40(2), 293–307. DOI: 10.1016/j.supflu.2006.07.005.
  • Cañadas, R.; Gonzalez-Miquel, M.; González, E. J.; Díaz, I.; Rodriguez, M. Overview of Neoteric Solvents as Extractants in Food Industry: A Focus on Phenolic Compounds Separation from Liquid Streams. Int. Food Res. J. 2020, 136, 109558. DOI: 10.1016/j.foodres.2020.109558.
  • Wells, M. J. Principles of Extraction and the Extraction of SemivolatileOrganics from Liquids. CHEMICAL ANALYSIS-NEW YORK-INTERSCIENCE THEN JOHN WILEY-.2003, 37–138. https://books.google.com.pk/books
  • Yahya, N. A.; Attan, N.; Wahab, R. A. An Overview of CosmeceuticallyRelevant Plant Extracts and Strategies for Extraction of Plant-Based Bioactive Compounds. Processing Food Bioprod. Process 2018, 112, 69–85. DOI: 10.1016/j.fbp.2018.09.002.
  • Conde-Hernández, L. A.; Botello-Ojeda, A. G.; Alonso-Calderón, A. A.; Osorio-Lama, M. A.; Bernabé-Loranca, M. B.; Chavez-Bravo, E. Optimization of Extraction of Essential Oils Using Response Surface Methodology: A Review. Essent. Oil-Bear. Plants. 2021, 24(5), 937–982. DOI: 10.1080/0972060X.2021.1976286.
  • Bidari, A.; Ganjali, M. R.; Norouzi, P.; Hosseini, M. R. M.; Assadi, Y. Sample Preparation Method for the Analysis of Some Organophosphorus Pesticides Residues in Tomato by Ultrasound-Assisted Solvent Extraction Followed by Dispersive Liquid–Liquid Microextraction. Food Chem. 2011, 126(4), 1840–1844. DOI: 10.1016/j.foodchem.2010.11.142.
  • Murakami, H.; Omiya, M.; Miki, Y.; Umemura, T.; Esaka, Y.; Inoue, Y.; Teshima, N. Evaluation of the Adsorption Properties of Nucleobase-modified Sorbents for a Solid-phase Extraction of Water-soluble Compounds. Talanta. 2020, 217, 121052. DOI: 10.1016/j.talanta.2020.121052.
  • Poole, C. F. New Trends in Solid-Phase Extraction. Trends Analyt Che 2003, 22(6), 362–373. DOI: 10.1016/S0165-9936(03)00605-8.
  • Tan, S. C.; Leow, J. W. S.; Lee, H. K. Emulsification-assisted Micro-solid-phase Extraction Using a Metal-organic Framework as Sorbent for the Liquid Chromatography-tandem Mass Spectrometric Analysis of Polar Herbicides from Aqueous Samples. Talanta. 2020, 216, 120962. DOI: 10.1016/j.talanta.2020.120962.
  • Merkle, S.; Kleeberg, K. K.; Fritsche, J. Recent Developments and Applications of Solid Phase Microextraction (SPME) in Food and Environmental Analysis—A Review. Chromatography. 2015, 2(3), 293–381. DOI: 10.3390/chromatography2030293.
  • Osorio-Tobón, J. F. Recent Advances and Comparisons of Conventional and Alternative Extraction Techniques of Phenolic Compounds. J. Food Sci. Technol. 2020, 57, 4299–4315. DOI: 10.1007/s13197-020-04433-2.
  • Caldas, T. W.; Mazza, K. E.; Teles, A. S.; Mattos, G. N.; Brígida, A. I. S.; Conte-Junior, C. A.; Tonon, R. V.; Godoy, R. L. O.; Cabral, L. M. C.; Tonon, R. V. Phenolic Compounds Recovery from Grape Skin Using Conventional and Non-Conventional Extraction Methods. Ind. Crops Prod. 2018, 111, 86–91. DOI: 10.1016/j.indcrop.2017.10.012.
  • Alara, O. R.; Abdurahman, N. H.; Ukaegbu, C. I. Soxhlet Extraction of Phenolic Compounds from Vernonia cinerea Leaves and Its Antioxidant Activity. J. Appl. Res. Med. Aromat. Plants. 2018, 11, 12–17. DOI: 10.1016/j.jarmap.2018.07.003.
  • Ji, Y.; Hou, Y.; Ren, S.; Yao, C.; Wu, W. Highly Efficient Extraction of Phenolic Compounds from Oil Mixtures by Trimethylamine-Based DicationicIonic Liquids via Forming Deep Eutectic Solvents. Fuel Process. Technol. 2018, 171, 183–191. DOI: 10.1016/j.fuproc.2017.11.015.
  • Jambrak, A. R.; Mason, T. J.; Lelas, V.; Herceg, Z.; Herceg, I. L. Effect of Ultrasound Treatment on Solubility and Foaming Properties of Whey Protein Suspensions. J. Food Eng. 2008, 86(2), 281–287. DOI: 10.1016/j.jfoodeng.2007.10.004.
  • Chemat, F.; Tomao, V., and Virot, M. Ultrasound-Assisted Extraction in Food Analysis. Semih, Otles Eds. Handbook of Food Analysis Instruments. 2008, 85–103; Routledge. https://d1wqtxts1xzle7.cloudfront.net/54933605/Semih_Otles-Handbook_of_food_analysis_instruments-CRC_Press_2009-with-cover-page-
  • Alarcon-Rojo, A. D.; Janacua, H.; Rodriguez, J. C.; Paniwnyk, L.; Mason, T. J. Power Ultrasound in Meat Processing. Meat Sci. 2015, 107, 86–93. DOI: 10.1016/j.meatsci.2015.04.015.
  • Li, S.; Lei, D.; Zhu, Z.; Cai, J.; Manzoli, M.; Jicsinszky, L.; Grillo, G.; Cravotto, G. Complexation of Maltodextrin-based Inulin and Green Tea Polyphenols via Different Ultrasonic Pretreatment. Ultrason. Sonochem. 2021, 74, 105568. DOI: 10.1016/j.ultsonch.2021.105568.
  • Sumere, B. R.; de Souza, M. C.; Dos Santos, M. P.; Bezerra, R. M. N.; da Cunha, D. T.; Martinez, J.; Rostagno, M. A. Combining Pressurized Liquids with Ultrasound Improves the Extraction of Phenolic Compounds from Pomegranate Peel (Punica granatum L.). UltrasonSonochem. 2018, 48, 151–162. DOI: 10.1016/j.ultsonch.2018.05.028.
  • Santos-Zea, L.; Gutiérrez-Uribe, J. A.; Benedito, J. Effect of Ultrasound Intensification on the Supercritical Fluid Extraction of Phytochemicals from Agave Salmiana Bagasse. J. Supercrit. Fluids. 2019, 144, 98–107. DOI: 10.1016/j.supflu.2018.10.013.
  • de Aguiar, A. C.; da Fonseca Machado, A. P.; Angolini, C. F. F.; de Morais, D. R.; Baseggio, A. M.; Eberlin, M. N.; Martinez, J.; Martínez, J. Sequential High-Pressure Extraction to Obtain Capsinoids and Phenolic Compounds from Biquinho Pepper (Capsicum Chinense). J. Supercrit. Fluids. 2019, 150, 112–121. DOI: 10.1016/j.supflu.2019.04.016.
  • Mounir, S.; Besombes, C.; Al-Bitar, N.; Allaf, K. Study of Instant Controlled Pressure Drop DIC Treatment in Manufacturing Snack and Expanded Granule Powder of Apple and Onion. Dry. 2011, 29(3), 331–341. DOI: 10.1080/07373937.2010.491585.
  • Mkaouar, S.; Bahloul, N.; Gelicus, A.; Allaf, K.; Kechaou, N. Instant Controlled Pressure Drop Texturing for Intensifying Ethanol Solvent Extraction of Olive (Oleaeuropaea) Leaf Polyphenols. Sep. Purif. Technol. 2015, 145, 139–146. DOI: 10.1016/j.seppur.2015.03.014.
  • Alonzo-Macías, M.; Cardador-Martínez, A.; Mounir, S.; Montejano-Gaitán, G.; Allaf, K. Comparative Study of the Effects of Drying Methods on Antioxidant Activity of Dried Strawberry (Fragaria Var. Camarosa). J. Food Res. 2013, 2(2), 92–107. DOI: 10.5539/jfr.v2n2p92.
  • Saulis, G. Electroporation of Cell Membranes: The Fundamental Effects of Pulsed Electric Fields in Food Processing. Food Eng. Rev. 2010, 2(2), 52–73. Accessed 16 May 2010. https://link.springer.com/article/10.1007/s12393-010-9023-3
  • Toepfl, S.; Mathys, A.; Heinz, V.; Knorr, D. Potential of High Hydrostatic Pressure and Pulsed Electric Fields for Energy Efficient and Environmentally Friendly Food Processing. Food Rev. Int. 2006, 22(4), 405–423. DOI: 10.1080/87559120600865164.
  • Barba, F. J.; Parniakov, O.; Pereira, S. A.; Wiktor, A.; Grimi, N.; Boussetta, N.; Vorobiev, E. Current Applications and New Opportunities for the Use of Pulsed Electric Fields in Food Science and Industry. Int. Food Res. J. 2015, 77, 773–798. DOI: 10.1016/j.foodres.2015.09.015.
  • Puértolas, E.; Luengo, E.; Álvarez, I.; Raso, J. Improving Mass Transfer to Soften Tissues by Pulsed Electric Fields: Fundamentals and Applications. Annu. Rev. Food Sci. Technol. 2012, 3, 263–282. DOI: 10.1146/annurev-food-022811-101208.
  • Loginova, K. V.; Vorobiev, E.; Bals, O.; Lebovka, N. I. Pilot Study of Countercurrent Cold and Mild Heat Extraction of Sugar from Sugar Beets, Assisted by Pulsed Electric Fields. J. Food Eng. 2011, 102(4), 340–347. DOI: 10.1016/j.jfoodeng.2010.09.010.
  • El Darra, N.; Turk, M. F.; Ducasse, M. A.; Grimi, N.; Maroun, R. G.; Louka, N.; Vorobiev, E. Changes in Polyphenol Profiles and Color Composition of Freshly Fermented Model Wine Due to Pulsed Electric Field, Enzymes, and Thermovinification Pretreatments. Food Chem. 2016, 194, 944–950. DOI: 10.1016/j.jfoodeng.2010.09.010.
  • Abenoza, M.; Benito, M.; Saldaña, G.; Álvarez, I.; Raso, J., and Sánchez-Gimeno, A. C. Effects of Pulsed Electric Field on Yield Extraction and Quality of Olive Oil. Food Bioproc. Tech. 2013, 6(6), 1367–1373. Accessed 14 March 2012. https://link.springer.com/article/10.1007/s11947-012-0817-6
  • Turk, M. F.; Vorobiev, E.; Baron, A. Improving Apple Juice Expression and Quality by Pulsed Electric Field on an Industrial Scale. Food Sci. Technol. 2012, 49(2), 245–250. DOI: 10.1016/j.lwt.2012.07.024.
  • Nadar, S. S.; Rao, P.; Rathod, V. K. Enzyme Assisted Extraction of Biomolecules as an Approach to Novel Extraction Technology: A Review. Food Res. Int. 2018, 108, 309–330. DOI: 10.1016/j.foodres.2018.03.006.
  • Gligor, O.; Mocan, A.; Moldovan, C.; Locatelli, M.; Crișan, G.; Ferreira, I. C. Enzyme-assisted Extractions of polyphenols–A Comprehensive Review. Trends Food Sci. Technol. 2019, 88, 302–315. DOI: 10.1016/j.tifs.2019.03.029.
  • Malik, J., and Mandal, S. C. Extraction of Herbal Biomolecules. In Subhash, C., Mandal, Amit Kumar Nayak, Amal Kumar Dhara, Eds. Herbal Biomolecules in Healthcare Applications; Academic Press, 2022; pp 21–46.
  • Pasrija, D., and Anandharamakrishnan, C. Techniques for Extraction of Green Tea Polyphenols: A Review. Food Bioproc. Tech. 2015, 8(5), 935–950. Accessed 10 February 2015. https://link.springer.com/article/10.1007/s11947-015-1479-y
  • Hossain, M. B.; Rawson, A.; Aguiló-Aguayo, I.; Brunton, N. P.; Rai, D. K. Recovery of Steroidal Alkaloids from Potato Peels Using Pressurized Liquid Extraction. Molecules. 2015, 20(5), 8560–8573. DOI: 10.3390/molecules20058560.
  • de Sousa Sabino, L. B.; Alves Filho, E. G.; Fernandes, F. A. N.; de Brito, E. S.; da Silva Júnior, I. J. Optimization of Pressurized Liquid Extraction and Ultrasound Methods for Recovery of Anthocyanins Present in JambolanFruit (Syzygium cumini L.). Food Bioprod. Process.2021 2021, 127, 77–89. DOI: 10.1016/j.fbp.2021.02.012.
  • Mukhopadhyay, M.; Panja, P. Pressurized Hot Water as a Novel Extractant of Natural Products: AReview. Indian Chem. Eng 2010, 51(4), 311–324. DOI: 10.1080/00194500903430655.
  • Brunner, G. Supercritical Fluids: Technology and Application to Food Processing. J. Food Eng. 2005, 67(1–2), 21–33. DOI: 10.1016/j.jfoodeng.2004.05.060.
  • Pawliszyn, J.;. Comprehensive Sampling and Sample Preparation: Analytical Techniques for Scientists; Academic Press, 2012. Accessed 1 June 2012.
  • Willems, P.; Kuipers, N. J. M.; De Haan, A. B. Hydraulic Pressing of Oilseeds: Experimental Determination and Modeling of Yield and Pressing Rates. J. Food Eng. 2008, 89(1), 8–16. DOI: 10.1016/j.jfoodeng.2008.03.023.
  • Bandarra, N. M.; Batista, I.; Bispo, P.; Nunes, M. L.; Venegas-Venegas, E.; Rincón-Cervera, M. A.; Guil-Guerrero, J. Fish Oil: Production, Consumption and Health Benefits. Fish Oil: Production, Consumption and Health Benefits. 2012, 1–39.
  • Temelli, F. Perspectives on Supercritical Fluid Processing of Fats and Oils. J. Supercrit. Fluids. 2009, 47(3), 583–590. DOI: 10.1016/j.supflu.2008.10.014.
  • Pérez-Martínez, B. T.; Aboudzadeh, M. A.; Schubert, U. S.; Leiza, J. R.; Tomovska, R. Microwave Irradiation versus Conventional Heating Assisted Free-radical Copolymerization in Solution. Chem. Eng. J. 2020, 399, 125761. DOI: 10.1016/j.cej.2020.125761.
  • Ganzler, K.; Salgó, A.; Valkó, K. Microwave Extraction: A Novel Sample Preparation Method for Chromatography. J. Chromatogr. A. 1986, 371, 299–306. DOI: 10.1016/S0021-9673(01)94714-4.
  • Saini, R. K.; Keum, Y. S. Carotenoid Extraction Methods: A Review of Recent Developments. Food Chem. 2018, 240, 90–103. DOI: 10.1016/j.foodchem.2017.07.099.
  • Cardoso-Ugarte, G. A.; Sosa-Morales, M. E.; Ballard, T.; Liceaga, A.; San Martín-González, M. F. Microwave-Assisted Extraction of Betalains from Red Beet (Beta Vulgaris). Food Sci. Technol. 2014, 59(1), 276–282. DOI: 10.1016/j.lwt.2014.05.025.
  • Chemat, F., and Cravotto, G. Eds. Microwave-assisted Extraction for Bioactive Compounds: Theory and Practice; New York: Springer Science & Business Media: Vol. 4, 2012.
  • Molino, A.; Mehariya, S.; Di Sanzo, G.; Larocca, V.; Martino, M.; Leone, G. P.; Marino, T.; Chianese, S.; Balducchi, R.; Musmarra, D. Recent Developments in Supercritical Fluid Extraction of Bioactive Compounds from Microalgae: Role of Key Parameters, Technological Achievements and Challenges. J. CO2 Util. 2020, 36, 196–209. DOI: 10.1016/j.jcou.2019.11.014.
  • Gardossi, L.; Poulsen, P. B.; Ballesteros, A.; Hult, K.; Švedas, V. K.; Vasić-Rački, Đ.; Halling, P. J.; Magnusson, A.; Schmid, A.; Wohlgemuth, R. Guidelines for Reporting of Biocatalytic Reactions. Trends Biotechnol. 2010, 28(4), 171–180. DOI: 10.1016/j.tibtech.2010.01.001.
  • Mushtaq, M.; Sultana, B.; Anwar, F.; Adnan, A.; Rizvi, S. S. Enzyme-Assisted Supercritical Fluid Extraction of Phenolic Antioxidants from Pomegranate Peel. J. Supercrit. Fluids. 2015, 104, 122–131. DOI: 10.1016/j.supflu.2015.05.020.
  • Chemat, F.; Vian, M. A.; Fabiano-Tixier, A. S.; Nutrizio, M.; Jambrak, A. R.; Munekata, P. E.; Lorenzo, J. M.; Barba, F. J.; Binello, A.; Cravotto, G. A Review of Sustainable and Intensified Techniques for Extraction of Food and Natural Products. Green Chem. 2020, 22(8), 2325–2353. DOI: 10.1039/C9GC03878G.
  • Yao, X. H.; Zhang, D. Y.; Luo, M.; Jin, S.; Zu, Y. G.; Efferth, T.; Fu, Y. J. Negative Pressure Cavitation-Microwave Assisted Preparation of Extract of Pyrola Incarnata Fisch. Rich in Hyperin, 2′-O-Galloylhyperin and Chimaphilin and Evaluation of Its Antioxidant Activity. Food Chem. 2015, 169, 270–276. DOI: 10.1016/j.foodchem.2014.07.115.
  • Panda, D.; Manickam, S. Cavitation technology—The Future of Greener Extraction Method: A Review on the Extraction of Natural Products and Process Intensification Mechanism and Perspectives. Appl. Sci. 2019, 9(4), 766. DOI: 10.3390/app9040766.
  • Tzanova, M.; Atanasov, V.; Yaneva, Z.; Ivanova, D.; Dinev, T. Selectivity of Current Extraction Techniques for Flavonoids from Plant Materials. Processes. 2020, 8(10), 1222. DOI: 10.3390/pr8101222.
  • Jun, X.; Deji, S.; Shou, Z.; Bingbing, L.; Ye, L.; Rui, Z. Characterization of Polyphenols from Green Tea Leaves Using a High Hydrostatic Pressure Extraction. Int. J. Pharm. 2009, 382, 139–143. DOI: 10.1016/j.ijpharm.2009.08.023.
  • Sarkis, J. R.; Boussetta, N.; Tessaro, I. C.; Marczak, L. D. F.; Vorobiev, E. Application of Pulsed Electric Fields and High Voltage Electrical Discharges for Oil Extraction from Sesame Seeds. J. Food Eng. 2015, 153, 20–27. DOI: 10.1016/j.jfoodeng.2014.12.003.
  • Cardoso, C. L.; Serrano, C. M.; Quintero, E. T.; Lopez, C. P.; Antezana, R. M.; Martinez de la Ossa, E. J. High Pressure Extraction of Antioxidants from Solanum Stenotomun Peel. Molecules. 2013, 18, 3137–3151. DOI: 10.3390/molecules18033137.
  • Phongthai, S.; Lim, S. T.; Rawdkuen, S. Optimization of Microwave-Assisted Extraction of Rice Bran Protein and Its Hydrolysates Properties. J. Cereal Sci. 2016, 70, 146–154. DOI: 10.1016/j.jcs.2016.06.001.
  • Kannan, V. Extraction of Bioactive Compounds from Whole Red Cabbage and Beetroot Using Pulsed Electric Fields and Evaluation of Their Functionality. Dissertations and Theses in Food Science and Technology. Paper. 2011. 11. 147 pages. 67–95. Available at; http://digitalcommons.unl.edu/foodscidiss/11 [accessed on 08 Dec 2017]
  • Sun, M.; Temelli, F. Supercritical Carbon Dioxide Extraction of Carotenoids from Carrot Using Canola Oil as a Continuous Co-solvent. J. Supercrit. Fluids. 2006, 37(3), 397–408. DOI: 10.1016/j.supflu.2006.01.008.
  • Jun, X. Application of High Hydrostatic Pressure Processing of Food to Extracting Lycopene from Tomato Paste Waste. High Press. Res. 2006, 26(1), 33–41. DOI: 10.1080/08957950600608741.
  • Adil, I.; Bayındırlı, A. Pressurized Liquid Extraction of Phenolic Compounds from Fruit Pomaces. Natural and Applied Sciences, Middle East Technical University. Ph. D. Thesis, 2006, 122 pp, Ankara, TURKEY. http://etd.lib.metu.edu.tr/upload/3/12607525/index.pdf
  • Luthria, D. L.; Biswas, R.; Natarajan, S. Comparison of Extraction Solvents and Techniques Used for the Assay of Isoflavones from Soybean. Food Chem. 2007, 105, 325–333. DOI: 10.1016/j.foodchem.2006.11.047.
  • Zuorro, A.; Lavecchia, R.; González-Delgado, Á. D.; García-Martinez, J. B.; L’Abbate, P. Optimization of Enzyme-assisted Extraction of Flavonoids from Corn Husks. Processes. 2019, 7(11), 804. DOI: 10.3390/pr7110804.
  • Min, J. Y.; Kang, S. M.; Park, D. J.; Kim, Y. D.; Jung, H. N.; Yang, J. K.; Seo, W. T.; Kim, S. W.; Karigar, C. S., and Choi, M. S. Enzymatic Release of Ferulic Acid from LpomoeaBatatas (Sweet Potato) Stem. Biotech. Bioprocessing. 2006, 11(August 2006), 372–376. https://link.springer.com/content/pdf/10.1007/BF03026256.pdf
  • Hussain, M.; Qamar, A.; Saeed, F.; Rasheed, R.; Niaz, B.; Afzaal, M.; Mushtaq, Z.; Anjum, F. Biochemical Properties of Maize Bran with Special Reference to Different Phenolic Acids. Int. J. Food Prop. 2021, 24(1), 1468–1478. DOI: 10.1080/10942912.2021.1973026.
  • Dias, R.; Oliveira, H.; Fernandes, I.; Simal-Gandara, J.; Perez-Gregorio, R. Recent Advances in Extracting Phenolic Compounds from Food and Their Use in Disease Prevention and as Cosmetics. Crit. Rev Food Sci. Nutr. 2020, 1–22. DOI: 10.1080/10408398.2020.1754162.
  • Das, A. K.; Rajkumar, V.; Nanda, P. K.; Chauhan, P.; Pradhan, S. R.; Biswas, S. Antioxidant Efficacy of Litchi (Litchi chinensisSonn.) Pericarp Extract in Sheep Meat Nuggets. Antioxidants. 2016, 5(2), 16. DOI: 10.3390/antiox5020016.
  • Martillanes, S.; Rocha-Pimienta, J.; Gil, M. V.; Ayuso-Yuste, M. C.; Delgado-Adámez, J. Antioxidant and Antimicrobial Evaluation of Rice Bran (Oryza Sativa L.) Extracts in a Mayonnaise-Type Emulsion. Food Chem. 2020, 308, 125633. DOI: 10.1016/j.foodchem.2019.125633.
  • Albuquerque, B. R.; Oliveira, M. B. P.; Barros, L.; Ferreira, I. C. Could Fruits Be a Reliable Source of Food Colorants? Pros and Cons of These Natural Additives. Crit. Rev Food Sci. Nutr. 2020, 1–31. DOI: 10.1080/10408398.2020.1746904.
  • Baldin, J. C.; Michelin, E. C.; Polizer, Y. J.; Rodrigues, I.; de Godoy, S. H. S.; Fregonesi, R. P.; Trindade, M. A.; Carvalho, L. T.; Fávaro-Trindade, C. S.; de Lima, C. G. Microencapsulated Jabuticaba (Myrciaria cauliflora) Extract Added to Fresh Sausage as Natural Dye with Antioxidant and Antimicrobial Activity. Meat Sci. 2016, 118, 15–21. DOI: 10.1016/j.meatsci.2016.03.016.
  • Caleja, C.; Ribeiro, A.; Filomena Barreiro, M.; CFR Ferreira, I. Phenolic Compounds as Nutraceuticals or Functional Food Ingredients. Curr. Pharm. Des. 2017, 23(19), 2787–2806. DOI: 10.2174/1381612822666161227153906.
  • Wang, S.; Xia, P.; Wang, S.; Liang, J.; Sun, Y.; Yue, P.; Gao, X. Packaging Films Formulated with Gelatin and Anthocyanins Nanocomplexes: Physical Properties, Antioxidant Activity and Its Application for Olive Oil Protection. Food Hydrocoll. 2019, 96, 617–624. DOI: 10.1016/j.foodhyd.2019.06.004.
  • Cano, A.; Andres, M.; Chiralt, A.; González-Martinez, C. Use of Tannins to Enhance the Functional Properties of Protein-Based Films. Food Hydrocoll. 2020, 100, 105443. DOI: 10.1016/j.foodhyd.2019.105443.
  • Herrero, M.; Del Pilar Sánchez-Camargo, A.; Cifuentes, A.; Ibáñez, E. Plants, Seaweeds, Microalgae, and Food By-products as Natural Sources of Functional Ingredients Obtained Using Pressurized Liquid Extraction and Supercritical Fluid Extraction. TrAC - Trends Anal. Chem. 2015, 71, 26–38. DOI: 10.1016/j.trac.2015.01.018.
  • Wu, K.; Ju, T.; Deng, Y.; Xi, J. Mechanochemical Assisted Extraction: A Novel, Efficient, Eco-friendly Technology. Trends Food Sci. Technol. 2017, 66, 166–175. DOI: 10.1016/j.tifs.2017.06.011.
  • Roselló-Soto, E.; Galanakis, C. M.; Brnčić, M.; Orlien, V.; Trujillo, F. J.; Mawson, R.; Knoerzer, K.; Tiwari, B. K.; Barba, F. J. Clean Recovery of Antioxidant Compounds from Plant Foods, By-products and Algae Assisted by Ultrasounds Processing. Modeling Approaches to Optimize Processing Conditions. Trends Food Sci. Technol. 2015, 42(2), 134–149. DOI: 10.1016/j.tifs.2015.01.002.
  • Roohinejad, S.; Koubaa, M.; Barba, F. J.; Greiner, R.; Orlien, V.; Lebovka, N. I. Negative Pressure Cavitation Extraction: A Novel Method for Extraction of Food Bioactive Compounds from Plant Materials. Trends Food Sci. Technol. 2016, 52, 98–108. DOI: 10.1016/j.tifs.2016.04.005.