851
Views
1
CrossRef citations to date
0
Altmetric
Original Article

Mechanism of bluish pigment formation in lotus rhizome starch with ferrous sulfate and its application in rapid detection of adulteration

, , , , &
Pages 1203-1214 | Received 04 Mar 2022, Accepted 02 May 2022, Published online: 15 May 2022

References

  • Man, J.; Cai, J.; Cai, C.; Xu, B.; Huai, H.; Wei, C. Comparison of Physicochemical Properties of Starches from Seed and Rhizome of Lotus. Carbohydr. Polym. 2012, 88(2), 676–683. DOI: 10.1016/j.carbpol.2012.01.016.
  • Bao, N.; Wang, D.; Fu, X.; Xie, H.; Gao, G.; Luo, Z. Green Extraction of Phenolic Compounds from Lotus Seedpod (Receptaculum Nelumbinis) Assisted by Ultrasound Coupled with Glycerol. Foods. 2021, 10(2). DOI: 10.3390/foods10020239.
  • Pei, H.; Su, W.; Gui, M.; Dou, M.; Zhang, Y.; Wang, C.; Lu, D. Comparative Analysis of Chemical Constituents in Different Parts of Lotus by UPLC and QToF-MS. Molecules. 2021, 26(7), 1855. DOI: 10.3390/molecules26071855.
  • Min, Y.; Chen, Z.; Zhong, G.; Chen, L.; Wang, C. Processing Properties of Lotus Starch. Trans. Chin. Soc. Agric. Eng. 2007, 23(1), 259–263. DOI: 10.3321/j.1002-6819.2007.01.051.
  • Liu, J.; Wen, Y.; Dong, N.; Lai, C.; Zhao, G. Authentication of Lotus Root Powder Adulterated with Potato Starch And/or Sweet Potato Starch Using Fourier Transform Mid-infrared Spectroscopy. Food Chem. 2013, 141(3), 3103–3109. DOI: 10.1016/j.foodchem.2013.05.155.
  • Xu, L.; Shi, P. T.; Ye, Z. H.; Yan, S. M.; Yu, X. P. Rapid Analysis of Adulterations in Chinese Lotus Root Powder (LRP) by Near-infrared (NIR) Spectroscopy Coupled with Chemometric Class Modeling Techniques. Food Chem. 2013, 141(3), 2434–2439. DOI: 10.1016/j.foodchem.2013.05.104.
  • Wang, S. Q.; Gao, X.; Lan, Q. F.; Li, L.; Wang, L. L.; Yang, Y. L.; Sun, H. B.; Yang, J. J.; Ren, H. Y.; Cao, H. Detection of Cassava and Sweet Potato Starch in Adulterated Lotus Root Starch by Differential Scanning Calorimetry. Sci. Technol. Food Industry. 2015, 036, 325–328. DOI:10.13386/j.1002-0306.2015.13.059.
  • Qin, Z.; Xu, R.; Wang, Q.; Zheng, L. Study on Properties of Lotus Root Starch Granule and Identification of Oufen Products. Food. Ferment. Ind. 2005, 31(1), 136–138. DOI: 10.1007/s11769-005-0030-x.
  • Lin, L.; Huang, J.; Zhao, L.; Wang, J.; Wang, Z.; Wei, C. Effect of Granule Size on the Properties of Lotus Rhizome C-type Starch. Carbohydr. Polym. 2015, 134, 448–457. DOI: 10.1016/j.carbpol.2015.08.026.
  • Nilghaz, A.; Mousavi, S. M.; Li, M. S.; Tian, J. F.; Cao, R.; Wang, X. G. Paper-based Microfluidics for Food Safety and Quality Analysis. Trends Food Sci. Technol. 2021, 118, 273–284. DOI: 10.1016/j.tifs.2021.08.029.
  • Guan, T.; Xu, Z.; Wang, J.; Liu, Y.; Shen, X.; Li, X.; Sun, Y.; Lei, H. Multiplex Optical Bioassays for Food Safety Analysis: Toward On-site Detection. Compr. Rev. Food Sci. Food Saf. 2022, 21(2), 1627–1656. DOI: 10.1111/1541-4337.12914.
  • Cardoso, T.; Channon, R. B.; Adkins, J. A.; Talhavini, M.; Coltro, W.; Henry, C. S. A Paper-based Colorimetric Spot Test for the Identification of Adulterated Whiskeys. Chem. Commun. 2017, 56, 7957. DOI: 10.1039/c7cc02271a.
  • Yi, Y.; Sun, J.; Xie, J.; Min, T.; Wang, L. M.; Wang, H. X. Phenolic Profiles and Antioxidant Activity of Lotus Root Varieties. Molecules. 2016, 21(7), 863. DOI: 10.3390/molecules21070863.
  • Bertleff-Zieschang, N.; Rahim, M. A.; Ju, Y.; Braunger, J. A.; Suma, T.; Dai, Y.; Pan, S.; Cavalieri, F.; Caruso, F. Biofunctional Metal–phenolic Films from Dietary Flavonoids. Chem. Commun. 2017, 53(6), 1068–1071. DOI: 10.1039/c6cc08607a.
  • Ganguly, S.; Mantha, S.; Panda, K.; Mukhopadhyay, P. Simultaneous Determination of Black Tea-derived Catechins and Theaflavins in Tissues of Tea Consuming Animals Using Ultra-Performance Liquid-chromatography Tandem Mass Spectrometry. PLoS ONE. 2016, 11(10), e0163498. DOI: 10.1371/journal.pone.0163498.
  • Yu, H.; Cheng, L.; Yin, J.; Yan, S.; Liu, K.; Zhang, F.; Xu, B.; Li, L. Structure and Physicochemical Properties of Starches in Lotus (Nelumbo Nucifera Gaertn.) Rhizome. Food Sci. Nutr. 2013, 1(4), 273–283. DOI: 10.1002/fsn3.37.
  • Lee, D.-B.; Kim, D.-H.; Je, J.-Y. Antioxidant and Cytoprotective Effects of Lotus (Nelumbo Nucifera) Leaves Phenolic Fraction. Preventive Nutr. Food Sci. 2015, 20(1), 22–28. DOI: 10.3746/pnf.2015.20.1.22.
  • Lv, Q.; Luo, F.; Zhao, X.; Liu, Y.; Hu, G.; Sun, C.; Li, X.; Chen, K. Identification of Proanthocyanidins from Litchi (Litchi Chinensis Sonn.) Pulp by LC-ESI-Q-TOF-MS and Their Antioxidant Activity. PLoS ONE. 2015, 10(3), e0120480. DOI: 10.1371/journal.pone.0120480.
  • Zhu, F. Interactions between Starch and Phenolic Compound. Trends Food Sci. Technol 43, 2, 129–143). Elsevier Ltd. 2015. DOI:10.1016/j.tifs.2015.02.003.
  • Deng, J. et al . (2021). Identification and Quantification of Free, Esterified, and Insoluble-Bound Phenolics in Grains of Hulless Barley Varieties and Their Antioxidant Activities. Lwt, 151 112001 10.1016/j.lwt.2021.112001
  • Li, Y.-F.; Ouyang, S.-H.; Chang, Y.-Q.; Wang, T.-M.; Li, W.-X.; Tian, H.-Y.; Cao, H.; Kurihara, H.; He, -R.-R. A Comparative Analysis of Chemical Compositions in Camellia Sinensis Var. Puanensis Kurihara, A Novel Chinese Tea, by HPLC and UFLC-Q-TOF-MS/MS. Food Chem. 2017, 216, 282–288. DOI: 10.1016/j.foodchem.2016.08.017.
  • Erdogan, G.; Karadag, R.; Dolen, E. Potentiometrie and Spectrophotometric Determination of the Stability Constants of Quercetin Complexes with Aluminium(III) and Iron(II). Rev. Anal. Chem. 2005, 24(4). DOI: 10.1515/REVAC.2005.24.4.247.
  • Perron, N. R.; Brumaghim, J. L. A Review of the Antioxidant Mechanisms of Polyphenol Compounds Related to Iron Binding. Cell Biochem. Biophys. 2009, 53(2), 75–100. DOI: 10.1007/s12013-009-9043-x.
  • Andjelković, M.; Vancamp, J.; Demeulenaer, B.; Depaemelaere, G.; Socaciu, C.; Verloo, M.; Verhe, R. Iron-chelation Properties of Phenolic Acids Bearing Catechol and Galloyl Groups. Food Chem. 2006, 98(1), 23–31. DOI: 10.1016/j.foodchem.2005.05.044.
  • Perron, N. R.; Wang, H. C.; DeGuire, S. N.; Jenkins, M.; Lawson, M.; Brumaghim, J. L. (2010). Kinetics of Iron Oxidation Upon Polyphenol Binding. Dalton Trans., 39(41), 9982. DOI:10.1039/c0dt00752h
  • South, P. K.; Miller, D. D. Iron Binding by Tannic Acid: Selected Ligands. Food Chemistry. 1998, 63, 2. DOI: 10.1016/S0308-8146(98)00040-5
  • Dueik, V.; Chen, B. K.; Diosady, L. L. Iron-polyphenol Interaction Reduces Iron Bioavailability in Fortified Tea: Competing Complexation to Ensure Iron Bioavailability. J. Food Qual. 2017, 2017, 1–7. DOI: 10.1155/2017/1805047.
  • Habeych, E.; van Kogelenberg, V.; Sagalowicz, L.; Michel, M.; Galaffu, N. Strategies to Limit Colour Changes When Fortifying Food Products with Iron. Food Res. Int. 2016, 88, 122–128. DOI: 10.1016/j.foodres.2016.05.017.
  • Mellican, R. I.; Li, J.; Mehansho, H.; Nielsen, S. S. The Role of Iron and the Factors Affecting Off-color Development of Polyphenols. J. Agric. Food Chem. 2003, 51(8), 2304–2316. DOI: 10.1021/jf020681c.
  • Zhang, Y. N.; Zhu, S. J.; Li, N.; Jing, Y. N.; Yue, X. F. Screening and Identification of the Active Components from Puerariae Radix by HUVEC/CMC-LC-MS2. J Chromatogr B: Anal. Technol. Biomed. Life Sci. 2019, 1132. DOI: 10.1016/j.jchromb.2019.121825.
  • Chai, Y.; Wang, M.; Zhang, G. Interaction between Amylose and Tea Polyphenols Modulates the Postprandial Glycemic Response to High-amylose Maize Starch. J. Agric. Food Chem. 2013, 61(36), 8608–8615. DOI: 10.1021/jf402821r.
  • Hu, X.; Lin, C.; Lin, Z. Study on the Identification of Real and Fake Lotus Root Starch. Jiangsu Condiment Subsidiary Food. 2010, 276, 1–3. DOI:10.16782/j.cnki.32-1235/ts.2010.06.001.
  • Chang, Y. C.; Hu, H. Y.; Ren, S. C. Study on Particle Characteristics and Adulteration Detection of Edible Starches. J. Henan Univ. Technol. 2019, 40, 45–52. DOI: 10.16433/j.cnki.1673-2383.2019.05.008.