1,394
Views
8
CrossRef citations to date
0
Altmetric
Original Article

nondestructive detection of kiwifruit textural characteristic based on near infrared hyperspectral imaging technology

ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, & show all
Pages 1697-1713 | Received 03 May 2022, Accepted 02 Jul 2022, Published online: 13 Jul 2022

References

  • Huang, Z.; Jian, L.; Zhang, J.; Gao, Y.; Hui, G. Physicochemical Properties Enhancement of Chinese Kiwi Fruit (Actinidia Chinensis Planch) via Chitosan Coating Enriched with Salicylic Acid Treatment. J. Food Meas. Charact 2017, 11(1), 184–191. DOI: 10.1007/s11694-016-9385-1.
  • Liu, D.; Guo, W. Identifying CPPU-Treated Kiwifruits Using Near-Infrared Hyperspectral Imaging Technology. Food Anal. Methods. 2017, 10(5), 1273–1283. DOI: 10.1007/s12161-016-0681-5.
  • Nødtvedt, Ø. O.; Hansen, A. L.; Bjorvatn, B.; Pallesen, S. The Effects of Kiwi Fruit Consumption in Students with Chronic Insomnia Symptoms: A Randomized Controlled Trial. Sleep Biol. Rhythms. 2017, 15(2), 159–166. DOI: 10.1007/s41105-017-0095-9.
  • Levine, H., and Finley, J.W. Texture. In Principles of Food Chemistry Dennis, R., Jonhn, Coupland, Mario, Ferryzzi, Richard, W. Hartel, Rubén, Morawicki, S.Suzanne, Nielsen, Juan, L. Silva; Springer International Publishing: Cham, 2018; pp 329–363.
  • Liu, Y.-X.; Cao, M.-J., and Liu, G.-M. 17 - Texture Analyzers for Food Quality Evaluation. In Evaluation Technologies for Food Quality Xichang, Zhong, Xichang, Wang; Woodhead Publishing, 2019; pp 441–463.
  • Paula, A. M.; Conti-Silva, A. C. Texture Profile and Correlation between Sensory and Instrumental Analyses on Extruded Snacks. J. Food Eng 2014, 121(1), 9–14. DOI: 10.1016/j.jfoodeng.2013.08.007.
  • Meenu, M.; Xu, B. Application of Vibrational Spectroscopy for Classification, Authentication and Quality Analysis of Mushroom: A Concise Review. Food Chem 2019, 289, 545–557. DOI: 10.1016/j.foodchem.2019.03.091.
  • Vejarano, R.; Siche, R.; Tesfaye, W. Evaluation of Biological Contaminants in Foods by Hyperspectral Imaging: A Review. Int. J. Food Prop 2017, 20(sup2), 1264–1297. DOI: 10.1080/10942912.2017.1338729.
  • Feng, C.-H.; Makino, Y.; Oshita, S.; García Martín, J. F. Hyperspectral Imaging and Multispectral Imaging as the Novel Techniques for Detecting Defects in Raw and Processed Meat Products: Current state-of-the-art Research Advances. Food Control. 2018, 84, 165–176. DOI: 10.1016/j.foodcont.2017.07.013.
  • Lan, W.; Jaillais, B.; Renard, C. M. G. C.; Leca, A.; Chen, S.; Le Bourvellec, C.; Bureau, S. A Method Using near Infrared Hyperspectral Imaging to Highlight the Internal Quality of Apple Fruit Slices. Postharvest. Biol. Technol 2021, 175, 111497. DOI: 10.1016/j.postharvbio.2021.111497.
  • ElMasry, M. G.; Nakauchi, S. Image Analysis Operations Applied to Hyperspectral Images for non-invasive Sensing of Food Quality – A Comprehensive Review. Biosyst. Eng 2016, 142, 53–82. DOI: 10.1016/j.biosystemseng.2015.11.009.
  • Weng, S.; Yu, S.; Dong, R.; Pan, F.; Liang, D. Nondestructive Detection of Storage Time of Strawberries Using visible/near-infrared Hyperspectral Imaging. Int. J. Food Prop 2020, 23(1), 269–281. DOI: 10.1080/10942912.2020.1716793.
  • Li, Y.; Ma, B.; Li, C.; Yu, G. Accurate Prediction of Soluble Solid Content in Dried Hami Jujube Using SWIR Hyperspectral Imaging with Comparative Analysis of Models. Comput. Electron. Agric 2022, 193, 106655. DOI: 10.1016/j.compag.2021.106655.
  • Phuangsombut, K.; Ma, T.; Inagaki, T.; Tsuchikawa, S.; Terdwongworakul, A. Near-infrared Hyperspectral Imaging for Classification of Mung Bean Seeds. Int. J. Food Prop 2018, 21(1), 799–807. DOI: 10.1080/10942912.2018.1476378.
  • Steinbrener, J.; Posch, K.; Leitner, R. Hyperspectral Fruit and Vegetable Classification Using Convolutional Neural Networks. Comput. Electron. Agric 2019, 162, 364–372. DOI: 10.1016/j.compag.2019.04.019.
  • Li, J.; Zhang, Y.; Liu, M.; Chen, J.; Xue, L. Rapid Detection and Visualization of Mechanical Bruises on “Nanfeng” Mandarin Using the Hyperspectral Imaging Combined with ICA_LSQ Method. Food Anal. Methods. 2019, 12(9), 2025–2034. Available. DOI: 10.1007/s12161-019-01546-z.
  • Fazari, A.; Pellicer-Valero, O. J.; Gómez-Sanchıs, J.; Bernardi, B.; Cubero, S.; Benalia, S.; Zimbalatti, G.; Blasco, J. Application of Deep Convolutional Neural Networks for the Detection of Anthracnose in Olives Using VIS/NIR Hyperspectral Images. Comput. Electron. Agric 2021, 187, 106252. DOI: 10.1016/j.compag.2021.106252.
  • Garhwal, A. S.; Pullanagari, R. R.; Li, M.; Reis, M. M.; Archer, R. Hyperspectral Imaging for Identification of Zebra Chip Disease in Potatoes. Biosyst. Eng 2020, 197, 306–317. DOI: 10.1016/j.biosystemseng.2020.07.005.
  • Pieczywek, P. M.; Cybulska, J.; Szymańska-Chargot, M.; Siedliska, A.; Zdunek, A.; Nosalewicz, A.; Baranowski, P.; Kurenda, A. Early Detection of Fungal Infection of Stored Apple Fruit with Optical Sensors – Comparison of Biospeckle, Hyperspectral Imaging and Chlorophyll Fluorescence. Food Control. 2018, 85, 327–338. DOI: 10.1016/j.foodcont.2017.10.013.
  • Siedliska, A.; Baranowski, P.; Zubik, M.; Mazurek, W.; Sosnowska, B. Detection of Fungal Infections in Strawberry Fruit by VNIR/SWIR Hyperspectral Imaging. Postharvest. Biol. Technol 2018, 139, 115–126. Available DOI: 10.1016/j.postharvbio.2018.01.018.
  • Yang, D.; Jiang, J.; Jie, Y.; Li, Q.; Shi, T. Detection of the Moldy Status of the Stored Maize Kernels Using Hyperspectral Imaging and Deep Learning Algorithms. Int. J. Food Prop 2022, 25(1), 170–186. DOI: 10.1080/10942912.2022.2027963.
  • Li, X.; Wei, Y.; Jie, X.; Feng, X.; Wu, F.; Zhou, R.; Jin, J.; Xu, K.; Yu, X.; Yong, H. SSC and pH for Sweet Assessment and Maturity Classification of Harvested Cherry Fruit Based on NIR Hyperspectral Imaging Technology. Postharvest. Biol. Technol 2018, 143, 112–118. Available DOI: 10.1016/j.postharvbio.2018.05.003.
  • Zhu, N.; Lin, M.; Nie, Y.; Wu, D.; Chen, K. Study on the Quantitative Measurement of Firmness Distribution Maps at the Pixel Level inside Peach Pulp. Comput. Electron. Agric 2016, 130, 48–56. DOI: 10.1016/j.compag.2016.09.018.
  • Hu, M.-H.; Dong, Q.-L.; Liu, B.-L.; Opara, U. L. Prediction of Mechanical Properties of Blueberry Using Hyperspectral Interactance Imaging. Postharvest. Biol. Technol 2016, 115, 122–131. DOI: 10.1016/j.postharvbio.2015.11.021.
  • Sun, M.; Zhang, D.; Liu, L.; Wang, Z. How to Predict the Sugariness and Hardness of Melons: A near-infrared Hyperspectral Imaging Method. Food Chem 2017, 218, 413–421. DOI: 10.1016/j.foodchem.2016.09.023.
  • Zhang, H.; Gu, B.; Mu, J.; Ruan, P.; Li, D. Wheat Hardness Prediction Research Based on NIR Hyperspectral Analysis Combined with Ant Colony Optimization Algorithm. Procedia Engineering. 2017, 174, 648–656. DOI: 10.1016/j.proeng.2017.01.202.
  • Pu, H.; Sun, D.-W.; Ma, J.; Cheng, J.-H. Classification of Fresh and frozen-thawed Pork Muscles Using Visible and near Infrared Hyperspectral Imaging and Textural Analysis. Meat Sci 2015, 99, 81–88. DOI: 10.1016/j.meatsci.2014.09.001.
  • Cheng, J.-H.; Qu, J.-H.; Sun, D.-W.; Zeng, X.-A. Visible/near-infrared Hyperspectral Imaging Prediction of Textural Firmness of Grass Carp (Ctenopharyngodon Idella) as Affected by Frozen Storage. Food Res. Int 2014, 56, 190–198. DOI: 10.1016/j.foodres.2013.12.009.
  • Wu, D.; Sun, D.-W.; He, Y. Novel non-invasive Distribution Measurement of Texture Profile Analysis (TPA) in Salmon Fillet by Using Visible and near Infrared Hyperspectral Imaging. Food Chem 2014, 145, 417–426. DOI: 10.1016/j.foodchem.2013.08.063.
  • Shiu, J. W.; Slaughter, D. C.; Boyden, L. E.; Barrett, D. M. Effect of the shear-to-compressive Force Ratio in Puncture Tests Quantifying Watermelon Mechanical Properties. J. Food Eng 2015, 150, 125–131. DOI: 10.1016/j.jfoodeng.2014.11.007.
  • Zhang, W.; Cui, D.; Ying, Y. Nondestructive Measurement of Pear Texture by Acoustic Vibration Method. Postharvest. Biol. Technol 2014, 96, 99–105. DOI: 10.1016/j.postharvbio.2014.05.006.
  • Zhang, L.; Li, G.; Sun, M.; Li, H.; Wang, Z.; Li, Y.; Lin, L. Kennard-Stone Combined with Least Square Support Vector Machine Method for Noncontact Discriminating Human Blood Species. Infrared. Phys. Technol. 2017, 86, 116–119. DOI: 10.1016/j.infrared.2017.08.020.
  • Zhao, N.; Wu, Z.; Cheng, Y.; Shi, X.; Qiao, Y. MDL and RMSEP Assessment of Spectral Pretreatments by Adding Different Noises in calibration/validation Datasets. Spectrochim. Acta, Part A: Mol. Biomol. Spectrosc 2016, 163, 20–27. DOI: 10.1016/j.saa.2016.03.017.
  • Du, C.; Dai, S.; Qiao, Y.; Wu, Z. Error Propagation of Partial Least Squares for Parameters Optimization in NIR Modeling. Spectrochim. Acta, Part A: Mol. Biomol. Spectrosc 2018, 192, 244–250. DOI: 10.1016/j.saa.2017.10.069.
  • Meacham-Hensold, K.; Montes, C. M.; Wu, J.; Guan, K.; Fu, P.; Ainsworth, E. A.; Pederson, T.; Moore, C. E.; Brown, K. L.; Raines, C.; et al. High-throughput Field Phenotyping Using Hyperspectral Reflectance and Partial Least Squares Regression (PLSR) Reveals Genetic Modifications to Photosynthetic Capacity. Remote Sens. Environ. 2019, 231, 111176. DOI: 10.1016/j.rse.2019.04.029.
  • Zhang, G.; Peng, S.; Cao, S.; Zhao, J.; Xie, Q.; Han, Q.; Wu, Y.; Huang, Q. A Fast Progressive Spectrum Denoising Combined with Partial Least Squares Algorithm and Its Application in Online Fourier Transform Infrared Quantitative Analysis. Anal. Chim. Acta. 2019, 1074, 62–68. DOI: 10.1016/j.aca.2019.04.055.
  • Zhao, Z.; Yan, W.; Yin, H.; Batool, A.; Wang, H.; Yu, H. Quantitative Detection of Turbid Media Components Using Textural Features Extracted from Hyperspectral Images. Microchem. J 2019, 149, 104009. DOI: 10.1016/j.microc.2019.104009.
  • Zou, A., and Qu, Y. Identification of Singular Samples in near Infrared Spectrum Correction Set by Using Monte Carlo Cross Validation. In. 2016 4th International Conference on Machinery, Materials and Information Technology Applications Xi'an, China; 2016.
  • Shimomura, K.; Horie, H.; Sugiyama, M.; Kawazu, Y.; Yoshioka, Y. Quantitative Evaluation of Cucumber Fruit Texture and Shape Traits Reveals Extensive Diversity and Differentiation. Sci. Hortic 2016, 199, 133–141. DOI: 10.1016/j.scienta.2015.12.033.
  • Dahdouh, L.; Delalonde, M.; Ricci, J.; Ruiz, E.; Wisnewski, C. Influence of High Shear Rate on Particles Size, Rheological Behavior and Fouling Propensity of Fruit Juices during Crossflow Microfiltration: Case of Orange Juice. Innovative Food Sci. Emerging Technol 2018, 48, 304–312. DOI: 10.1016/j.ifset.2018.07.006.
  • Burdon, J.; Punter, M.; Billing, D.; Pidakala, P.; Kerr, K. Shrivel Development in Kiwifruit. Postharvest. Biol. Technol 2014, 87, 1–5. DOI: 10.1016/j.postharvbio.2013.07.031.
  • Valerga, L.; Darré, M.; Zaro, M. J.; Vicente, A. R.; Lemoine, M. L.; Concellón, A. The Plant Age Influences Eggplant Fruit Growth, Metabolic Activity, Texture and shelf-life. Sci. Hortic 2020, 272, 109590. Available. DOI: 10.1016/j.scienta.2020.109590.