1,404
Views
3
CrossRef citations to date
0
Altmetric
Review

Characterization of an effective drug carrier system for improved oxidative and thermal stability of essential fatty acids: a review

, , & ORCID Icon
Pages 1753-1772 | Received 05 Jan 2022, Accepted 19 Jul 2022, Published online: 01 Aug 2022

References

  • Berton-Carabin, C. C.; Ropers, M.-H.; Genot, C. Lipid Oxidation in oil-in-water Emulsions: Involvement of the Interfacial Layer. Compr. Rev. Food Sci. Food Saf 2015, 13(5), 945–977. DOI: 10.1111/1541-4337.12097.
  • Lane, K. E.; Derbyshire, E. J. Omega-3 Fatty acids—A Review of Existing and Innovative Delivery Methods. Crit. Rev. Food Sci. Nutr 2018, 58(1), 62–69. DOI: 10.1080/10408398.2014.994699.
  • Derbyshire, E. Brain Health across the Lifespan: A Systematic Review on the Role of Omega-3 Fatty Acid Supplements. Nutrients. 2018, 10(8), 1094. DOI: 10.3390/nu10081094.
  • Elagizi, A; Lavie, C. J.; Marshall, K.; DiNicolantonio, J. J.; O’Keefe, J. H.; Milani, R. V. Omega-3 Polyunsaturated Fatty Acids and Cardiovascular Health: A Comprehensive Review. Prog. Cardiovasc. Diseases. 2018, 61(1), 76–85. DOI: 10.1016/j.pcad.2018.03.006.
  • Laye, S.; Nadjar, A.; Joffre, C.; Bazinet, R. P. Anti- Inflammatory Effects of Omega-3 Fatty Acids in the Brain: Physiological Mechanisms and Relevance to Pharmacology. Pharmacol. Rev 2018, 70(1), 12–38. DOI: 10.1124/pr.117.014092.
  • Rogero, M.; Calder, P. Obesity, Inflammation, toll-like Receptor 4 and Fatty Acids. Nutrients. 2018, 10(4), 432. DOI: 10.3390/nu10040432.
  • D’Eliseo, D.; Velotti, F. Omega-3 Fatty Acids and Cancer Cell Cytotoxicity: Implications for multi-targeted Cancer Therapy. J. Clin. Med 2016, 5(2), 15. DOI: 10.3390/jcm5020015.
  • Manson, J. E.; Cook, N. R.; Lee, I.-M.; Christen, W.; Bassuk, S. S.; Mora, S.; Copeland, T.; Albert, C. M.; Gordon, D.; Copeland, T. Marine N-3 Fatty Acids and Prevention of Cardiovascular Disease and Cancer. N. Engl. J. Med 2019, 380(1), 23–32. DOI: 10.1056/NEJMoa1811403.
  • Miyashita, K.; Uemura, M.; Hosokawa, M. Effective Prevention of Oxidative Deterioration of Fish Oil: Focus on Flavor Deterioration. Ann. Rev. Food Sci. Technol 2018, 9(1), 209–226. DOI: 10.1146/annurev-food-030117-012320.
  • Chen, X.; Zhang, Y.; Zu, Y.; Yang, L.; Lu, Q.; Wang, W. Antioxidant Effects of Rosemary Extracts on Sunflower Oil Com- Pared with Synthetic Antioxidants. Int. J. Food Sci. Technol 2014, 49(2), 385–391. DOI: 10.1111/ijfs12311.
  • Wang, D.; Fan, W.; Guan, Y.; Huang, H.; Yi, T.; Ji, J. Oxidative Stability of Sunflower Oil Flavored by Essential Oil from Corian- Drum Sativum L. during Accelerated Storage. LWT Food Sci. Technol 2018a, 98, 268–275. DOI: 10.1016/j.lwt.2018.08.055.
  • Czerny, M.; Schieberle, P.; Schieberle, P.; Schieberle, P.; Schieberle, P.; Schieberle, P.; Schieberle, P.; Hernandez, N. M.; Schieberle, P. Re-investigation on Odour Thresholds of Key Food Aroma Compounds and Development of an Aroma Language Based on Odour Qualities of Defined Aqueous Odorant Solutions. Eur. Food Res. Technol 2008, 228(2), 265–273. DOI: 10.1007/s00217-008-0931-x.
  • Mahmoud, M. A. A.; Thorsten, T.; Loos, H. M.; Maria, W.; Andrea, B. Odorants in Fish Feeds: A Potential Source of Malodors in Aquaculture. Front. Chem 2018, 6, 241. DOI: 10.3389/fchem.2018.00241.
  • Wang, X.; Zhu, C.; Peng, T.; Zhang, W.; Zhang, J.; Hu, L.; Wu, C.; Pan, X.; Wu, C. Enhanced Stability of an Emulsion Enriched in Unsaturated Fatty Acids by Dual Natural Antioxidants Fortified in Both the Aqueous and Oil Phases. Food Hydrocolloids. 2018b, 82, 322–328. DOI: 10.1016/j.foodhyd.2018.02.012.
  • Encina, C.; Vergara, C.; Giménez, B.; Oyarzún-Ampuero, F.; Robert, P. Conventional spray-drying and Future Trends for the Microencapsulation of Fish Oil. Trends Food Sci. Technol 2016, 56, 46–60. DOI: 10.1016/j.tifs.2016.07.014.
  • Vishnu, K. V.; Chatterjee, N. S.; Ajeeshkumar, K. K.; Lekshmi, R. G. K.; Tejpal, C. S.; Mathew, S.; Ravishankar, C. N. Microencapsulation of Sardine Oil: Application of Vanillic Acid Grafted Chitosan as a bio-functional Wall Material. Carbohydr. Polym 2017, 174, 540–548. DOI: 10.1016/j.carbpol.2017.06.076.
  • Yildiz, G.; Ding, J.; Gaur, S.; Andrade, J.; Engeseth, N. E.; Feng, H. Microencapsulation of Docosahexaenoic Acid (DHA) with Four Wall Materials Including Pea protein-modified Starch Complex. Int. J. Biol. Macromol 2018, 114, 935–941. DOI: 10.1016/j.ijbiomac.2018.03.175.
  • Maria Jenita, P.; Sukumar, M.; Lalithapriya, U.; Renuka, V. Formulation of Stable Edible Oil by Incorporating Microencapsulated Natural Polyphenols. Indian Patent J ( 201941043744 A. 2020, 45.
  • Tong, L. M.; Sasaki, S.; McClements, D. J.; Decker, E. A. Antioxidant Activity of Whey in a Salmon Oil Emulsion. J. Food Sci 2010, 65(8), 1325–1329. DOI: 10.1111/j.1365-2621.2000.tb10606.x.
  • McClements, D. J.; Bai, L.; Chung, C. Recent Advances in the Utilization of Natural Emulsifiers to Form and Stabilize Emulsions. Ann. Rev. Food Sci. Technol 2017, 8(1), 205–236. DOI: 10.1146/annurev-food-030216-030154.
  • McClements, D. J.; Decker, E. A. Lipid Oxidation in oil-in- Water Emulsions: Impact of Molecular Environment on Chemical Reactions in Heterogeneous Food Systems. J. Food Sci 2000, 65(8), 1270–1282. DOI: 10.1111/j.1365-2621.2000.tb10596.x.
  • McClements, D. J.; Decker, E. A. Interfacial Antioxidants: A Review of Natural and Synthetic Emulsifiers and Coemulsifiers that Can Inhibit Lipid Oxidation. J. Agric. Food Chem 2017, 66(1), 20–35. DOI: 10.1021/acs.jafc.7b05066.
  • Miyashita, K.; Nara, E.; Ota, T. Oxidative Stability of Polyunsaturated Fatty Acids in an Aqueous Solution. Biosci., Biotechnol., Biochem 1993, 57(10), 1638–1640. DOI: 10.1271/bbb.57.1638.
  • Mezouari, S.; Eichner, K. Evaluation of the Stability of Blends of Sunflower and Rice Bran Oil. Eur. J. Lipid Sci. Technol 2007, 109(5), 531–535. DOI: 10.1002/ejlt.200600217.
  • Szumałaa, P.; Wysocka, I. Effect of Gelation and Storage Conditions on the Oxidative Stability of Microemulsion and Nanoemulsion Delivery Systems. Eur. J. Pharm. Sci. 2018, 214, 17–25. DOI: 10.1016/j.ejps.2018.08.021.
  • Charoen, R.; Jangchud, A.; Jangchud, K.; Harnsilawat, T.; Decker, E. A.; McClements, D. J. Influence of Interfacial Com- Position on Oxidative Stability of oil-in-water Emulsions Stabilized by Biopolymer Emulsifiers. Food Chem 2012, 131(4), 1340–1346. DOI: 10.1016/j.foodchem.2011.09.128.
  • Cui, L.; Cho, H. T.; McClements, D. J.; Decker, E. A.; Park, Y. Effects of Salts on Oxidative Stability of Lipids in Tween-20 Stabilized oil-in-water Emulsions. Food Chem 2016, 197(Part B), 1130–1135. DOI: 10.1016/j.foodchem.2015.11.099.
  • Cui, L.; Jing, F.; Sun, Y.; Zhu, Z.; Yi, J. The Prooxidant Activity of Salts on the Lipid Oxidation of lecithin-stabilized oil-in-water Emulsions. Food Chem 2018, 252, 28–32. DOI: 10.1016/j.foodchem.2018.01.094.
  • Chen, B.; Panya, A.; McClements, D. J.; Decker, E. A. New Insights into the Role of Iron in the Promotion of Lipid Oxidation in Bulk Oils Containing Reverse Micelles. J. Agric. Food Chem. 2012, 60, 3524–3532. DOI:10.1021/jf300138h.
  • Jacobsen, C. Enrichment of Foods with Omega-3 Fatty Acids: A Multidisciplinary Challenge. Ann. N.Y. Acad. Sci 2010, 1190(1), 141–150. DOI: 10.1111/j.1749-6632.2009.05263.x.
  • Waraho, T.; McClements, D. J.; Decker, E. A. Impact of Free Fatty Acid Concentration and Structure on Lipid Oxidation in oil-in- Water Emulsions. Food Chem 2011a, 129(3), 854–859. DOI: 10.1016/j.foodchem.2011.05.034.
  • Waraho, T.; McClements, D. J.; Decker, E. A. Mechanisms of Lipid Oxidation in Food Dispersions. Trends Food Sci. Technol 2011b, 22(1), 3–13. DOI: 10.1016/j.tifs.2010.11.003.
  • Zhu, Z.; Zhao, C.; Yi, J.; Liu, N.; Cao, Y.; Decker, E. A.; McClements, D. J. Impact of Interfacial Composition on Lipid and Protein co-oxidation in oil-in-water Emulsions Containing Mixed Emulsifiers. J. Agric. Food Chem 2018, 66(17), 4425–4468. DOI: 10.1021/acs.jafc.8b00590.
  • Guzey, D.; McClements, D. J. Formation, Stability and Properties of Multilayer Emulsions for Application in the Food Industry. Adv. Colloid Interface Sci 2006, 128–130, 227–248. DOI: 10.1016/j.cis.2006.11.021.
  • Sato, A.; Moraes, K.; Cunha, R. Development of Gelled Emulsions with Improved Oxidative and pH Stability. Food Hydrocolloids. 2014, 34, 184–192. DOI: 10.1016/j.foodhyd.2012.10.016.
  • Tavernier, I.; Wijaya, W.; Meeren, P. V. D.; Dewettinck, K.; Patel, A. R. Food-grade Particles for Emulsion Stabilization. Trends Food Sci. Technol 2016, 50, 159–174. DOI: 10.1016/j.tifs.2016.01.023.
  • Bush, L.; Stevenson, L.; Lane, K. E. The Oxidative Stability of Omega-3 oil-in-water Nanoemulsion Systems Suitable for Functional Food Enrichment: A Systematic Review of the Literature. Crit. Rev. Food Sci. Nutr 2017, 59(6), 1154–1168. DOI: 10.1080/10408398.2017.1394268.
  • Elias, R. J.; Kellerby, S. S.; Decker, E. A. Antioxidant Activity of Proteins and Peptides. Crit. Rev. Food Sci. Nutr 2008, 48(5), 430–441. DOI: 10.1080/10408390701425615.
  • Faraji, H.; Mcclements, D. J.; Decker, E. A. Role of Continuous Phase Protein on the Oxidative Stability of Fish oil-in-water Emulsions. J. Agric Food Chemi 2004, 52(14), 4558–4564. DOI: 10.1021/jf035346i.
  • Hwang, J. Y.; Ha, H. K.; Lee, M. R.; Kim, J. W.; Kim, H. J.; Lee, W. J. Physicochemical Property and Oxidative Stability of Whey Protein Concentrate Multiple nano-emulsion Containing Fish Oil. J. Food Sci 2017, 82(2), 437–444. DOI: 10.1111/1750-3841.13591.
  • Shao, Y.; Tang, C. H. Characteristics and Oxidative Stability of Soy protein-stabilized oil-in-water Emulsions: Influence of Ionic Strength and Heat Pretreatment. Food Hydrocolloids. 2014, 37, 149–158. DOI: 10.1016/j.foodhyd.2013.10.030.
  • Gu, L.; Ning, P.; Chang, C.; McClements, D. J.; Su, Y.; Yang, Y. Fabrication of surface-active Antioxidant Food Biopolymers: Conjugation of Catechin Polymers to Egg White Proteins. Food Biophys. 2017, 12, 198–210. DOI:10.1007/s11483-017-9476-5.
  • Chen, F.; Liang, L.; Zhang, Z.; Deng, Z.; Decker, E. A.; McClements, D. J. Inhibition of Lipid Oxidation in nano-emulsions and Filled Microgels Fortified with Omega-3 Fatty Acids Using Casein as a Natural Antioxidant. Food Hydrocolloids. 2017, 63, 240–248. DOI: 10.1016/j.foodhyd.2016.09.001.
  • Qiu, C.; Zhao, M.; Decker, E. A.; McClements, D. J. Influence of Protein Type on Oxidation and Digestibility of Fish Oil- in-water Emulsions: Gliadin, Caseinate, and Whey Protein. Food Chem 2015, 175, 249–257. DOI: 10.1016/j.foodchem.2014.11.112.
  • Sugiarto, M.; Ye, A.; Singh, H. Characterisation of Bind- Ing of Iron to Sodium Caseinate and Whey Protein Isolate. Food Chem 2009, 114(3), 1007–1013. DOI: 10.1016/j.foodchem.2008.10.062.
  • McClements, D. J.; Gumus, C. E. Natural Emulsifiers— Biosurfactants, Phospholipids, Biopolymers, and Colloidal Particles: Molecular and Physicochemical Basis of Functional Performance. Adv. Colloid Interface Sci 2016, 234, 3–26. DOI: 10.1016/j.cis.2016.03.002.
  • Chen, B.; McClements, D. J.; Decker, E. A. Role of Continuous Phase Anionic Polysaccharides on the Oxidative Stability of Menhaden oil-in-water Emulsions. J. Agric. Food Chem 2010, 58(6), 3779–3784. DOI: 10.1021/jf9037166.
  • Celus, M.; Kyomugasho, C.; Loey, A. M. V.; Grauwet, T.; Hendrickx, M. E. Influence of Pectin Structural Properties on Interactions with Divalent Cations and Its Associated Functionalities. Compr. Rev. Food Sci. 2018, 17, 1576–1594. DOI:10.1111/1541-4337.12394.
  • Salvia-Trujillo, L.; Decker, E. A.; McClements, D. J. Influence of an Anionic Polysaccharide on the Physical and Oxidative Stability of Omega-3 Nanoemulsions: Antioxidant Effects of Algi- Nate. Food Hydrocolloids. 2016, 52, 690–698. DOI: 10.1016/j.foodhyd.
  • Klinkesorn, U.; Sophanodora, P.; Chinachoti, P.; McClements, D. J.; Decker, E. A. Increasing the Oxidative Stability of Liquid and Dried Tuna oil-in-water Emulsions with Electrostatic layer-by-layer Deposition Technology. J. Agric. Food Chem 2005, 53(11), 4561–4566. DOI: 10.1021/jf0479158.
  • Panya, A.; Laguerre, M.; Lecomte, J.; Villeneuve, P.; Weiss, J.; McClements, D. J.; Decker, E. A. Effects of Chitosan and Rosmarinate Esters on the Physical and Oxidative Stability of Liposomes. J. Agric. Food Chem 2010, 58(9), 5679–5684. DOI: 10.1021/jf100133b.
  • Li, J.; Pedersen, J. N.; Anankanbil, S.; Guo, Z. Enhanced Fish oil-in-water Emulsions Enabled by Rapeseed Lecithins Obtained under Different Processing Conditions. Food Chem 2018, 264, 233–240. DOI: 10.1016/j.foodchem.2018.05.053.
  • Pichot, R.; Watson, R. L.; Norton, I. T. Phospholipids at the Interface: Current Trends and Challenges. Int. J. Mol. Sci. 2013, 14, 11767–11794. DOI: 10.3390/ijms140611767.
  • Choe, J.; Oh, B.; Choe, E. Effect of Soybean Lecithin on iron-catalyzed or chlorophyll-photosensitized Oxidation of Canola Oil Emulsion. J. Food Sci 2014, 79(11), C2203–C2208. DOI: 10.1111/1750-3841.12683.
  • Fomuso, L. B.; Corredig, M.; Akoh, C. C. Effect of Emulsifier on Oxidation Properties of Fish oil-based Structured Lipid Emulsions. J. Agric. Food Chem 2002, 50(10), 2957–2961. DOI: 10.1021/jf011229g.
  • Yoshida, K.; Terao, J.; Suzuki, T.; Takama, K. Inhibitory Effect of Phosphatidylserine on iron-dependent Lipid Peroxidation. Biochem. Biophys. Res. Commun. 1991, 179, 1077–1081. DOI:10.1016/0006-291X(91)91929-7.
  • Pan, Y.; Tikekar, R. V.; Nitin, N. Effect of Antioxidant Properties of Lecithin Emulsifier on Oxidative Stability of Encapsulated Bioactive Compounds. Int. J. Pharmaceutics. 2013, 450(1–2), 129–137. DOI: 10.1016/j.ijpharm.2013.04.038.
  • Hidalgo, F. J.; León, M. M.; Zamora, R. Antioxidative Activity of Amino Phospholipids and phospholipid/amino Acid Mixtures in Edible Oils as Determined by the Rancimat Method. J. Agric. Food Chem 2006, 54(15), 5461–5467. DOI: 10.1021/jf060848s.
  • Julio, L. M.; Copado, C. N.; Diehl, B. W. K.; Ixtaina, V. Y.; Tomás, M. C. Chia Bilayer Emulsions with Modified Sunflower Lecithins and Chitosan as Delivery Systems of Omega-3 Fatty Acids. LWT. 2017, 89, 581–590. DOI: 10.1016/j.lwt.2017.11.044.
  • Sivapratha, S.; Sarkar, P. Multiple Layers and Conjugate Materials for Food Emulsion Stabilization. Crit. Rev. Food Sci. Nutr 2016, 58(6), 877–892. DOI: 10.1080/10408398.2016.1227765.
  • Kartal, C.; Unal, M. K.; Otles, S. Flaxseed oil-in-water Emulsions Stabilized by Multilayer Membranes: Oxidative Stability and the Effects of pH. J. Dispersion Sci. Technol 2016, 37(12), 1683–1691. DOI: 10.1080/01932691.2016.1141294.
  • Silvestre, M. P. C.; Chaiyasit, W.; Brannan, R. G.; McClements, D. J.; Decker, E. A. Ability of Surfactant Headgroup Size to Alter Lipid and Antioxidant Oxidation in oil-in-water Emulsions. J. Agric. Food Chem 2000, 48(6), 2057–2061. DOI: 10.1021/jf991162l.
  • Tamm, F.; Härter, C.; Brodkorb, A.; Drusch, S. Functional and Antioxidant Properties of Whey Protein hydrolysate/pectin Complexes in Emulsions and spray-dried Microcapsules. LWT. 2016, 73, 524–527. DOI: 10.1016/j.lwt.2016.06.053.
  • Jiménezmartín, E.; Gharsallaoui, A.; Pérezpalacios, T.; Carrascal, J. R.; Rojas, T. A. Suitability of Using Monolayered and multi-layered Emulsions for Microencapsulation of ω-3 Fatty Acids by Spray Drying: Effect of Storage at Different Temperatures. Food Bioprocess. Technol 2015, 8(1), 100–111. DOI: 10.1007/s11947-014-1382-y.
  • Jo, Y. J.; Chun, J. Y.; Kwon, Y. J.; Min, S. G.; Choi, M. J. Formulation Development of multi-layered Fish Oil Emulsion by Using Electrostatic Deposition of Charged Biopolymers. Int. J. Food Eng 2015, 11(1), 31–39. DOI: 10.1515/ijfe-2014-0177.
  • Gudipati, V.; Sandra, S.; McClements, D. J.; Decker, E. A. Oxidative Stability and in Vitro Digestibility of Fish oil-in-water Emulsions Containing Multilayered Membranes. J. Agric. Food Chem 2010, 58(13), 8093–8099. DOI: 10.1021/jf101348c.
  • Farjami, T.; Madadlou, A. Fabrication Methods of Biopolymeric Microgels and microgel-based Hydrogels. Food Hydrocolloids. 2017, 62, 262–272. DOI: 10.1016/j.foodhyd.2016.08.017.
  • Lu, Y.; Mao, L.; Hou, Z.; Miao, S.; Gao, Y. Development of Emulsion Gels for the Delivery of Functional Food Ingredients: From Structure to Functionality. Food Eng. Rev 2019, 11(4), 245–258. DOI: 10.1007/s12393-019-09194-z.
  • Sun, C.; Gunasekaran, S.; Richards, M. P. Effect of Xanthan Gum on Physicochemical Properties of Whey Protein Isolate Stabilized oil-in-water Emulsions. Food Hydrocolloids. 2007, 21(4), 555–564. DOI: 10.1016/j.foodhyd.2006.06.003.
  • Zhang, Z.; Decker, E. A.; McClements, D. J. Encapsulation, Protection, and Release of Polyunsaturated Lipids Using biopolymer-based Hydrogel Particles. Food Res. Int 2014, 64, 520–526. DOI: 10.1016/j.foodres.2014.07.020.
  • Sato, A. C. K.; Polastro, M. Z.; Furtado, G. D. F.; Cunha, R. L. Gelled double-layered Emulsions for Protection of Flaxseed Oil. Food Biophys 2018, 13(3), 316–323. DOI: 10.1007/s11483-018-9537-4.
  • Gallaher, J. J.; Hollender, R.; Peterson, D. G.; Roberts, R. F.; Coup- Land, J. N. Effect of Composition and Antioxidants on the Oxidative Stability of Fluid Milk Supplemented with an Algae Oil Emulsion. Int. Dairy J 2005, 15(4), 333–341. DOI: 10.1016/j.idairyj.2004.08.010.
  • Pickering, S. U. CXCVI.— Emulsions. J. Chem. Soc., Trans. 1907, 91, 2001–2021. DOI: 10.1039/CT9079102001.
  • Kargar, M.; Spyropoulos, F.; Norton, I. T. The Effect of Inter- Facial Microstructure on the Lipid Oxidation Stability of oil-in-water Emulsions. J. Colloid Interface Sci 2011, 357(2), 527–533. DOI: 10.1016/j.jcis.2011.02.019.
  • RakotoarisoaMiora Rakotoarisoa, M.; Borislav, A.; Kargar, M.; Fayazmanesh, K.; Alavi, M.; Spyropoulos, F.; Norton, I. Composition-Switchable Liquid Crystalline Nanostructures as Green Formulations of Curcumin and Fish Oil. Am. Chem.l Society. 2021, 9(44), 14821–14835. DOI: 10.1021/acssuschemeng.1c04706.
  • Okubanjo, S. S.; Loveday, S. M.; Ye, A.; Wilde, P. J.; Singh, H. Droplet-stabilized oil-in-water Emulsions Protect Unsaturated Lipids from Oxidation. J. Agric. Food Chem 2019, 67(9), 2626–2636. DOI: 10.1021/acs.jafc.8b02871.
  • Pan, Y.; Tikekar, R. V.; Wang, M. S.; Avena-Bustillos, R. J.; Nitin, N. Effect of Barrier Properties of Zein Colloidal Particles and oil-in-water Emulsions on Oxidative Stability of Encapsulated Bioactive Compounds. Food Hydrocolloids. 2015, 43, 82–90. DOI: 10.1016/j.foodhyd.2014.05.002.
  • Li, M. F.; He, Z. Y.; Li, G. Y.; Zeng, Q. Z.; Su, D. X.; Zhang, J. L.; He, S.; Yuan, Y.; He, S. The Formation and Characterization of Antioxidant Pickering Emulsions: Effect of the Interactions between Gliadin and Chitosan. Food Hydrocolloids. 2019, 90, 482–489. DOI: 10.1016/j.foodhyd.2018.12.052.
  • Zhou, F. Z.; Yan, L.; Yin, S. W.; Tang, C. H.; Yang, X. Q. Development of Pickering Emulsions Stabilized by Gliadin/ Proanthocyanidins Hybrid Particles (Gphps) and the Fate of Lipid Oxidation and Digestion. J. Agric. Food Chem 2018, 66(6), 1461–1471. DOI: 10.1021/acs.jafc.7b05261.
  • Zeng, T.; Wu, Z. L.; Zhu, J. Y.; Yin, S. W.; Tang, C. H.; Wu, L. Y.; Yang, X. Q. Development of Antioxidant Pickering High Internal Phase Emulsions (Hipes) Stabilized by protein/polysaccharide Hybrid Particles as Potential Alternative for PHOs. Food Chem 2017, 231, 122–130. DOI: 10.1016/j.foodchem.2017.03.116.
  • Zhao, Y.; Guan, Y.; Pan, Y.; Nitin, N.; Tikekar, R. V. Improved Oxidative Barrier Properties of Emulsions Stabilized by silica–polymer Microparticles for Enhanced Stability of Encapsulants. Food Res. Int 2015, 74, 269–274. DOI: 10.1016/j.foodres.2015.05.008.
  • Scheffler, S. L.; Wang, X.; Huang, L.; San-Martin Gonzalez, F.; Yao, Y. Phytoglycogen Octenyl Succinate, an Amphiphilic Carbo- Hydrate Nanoparticle, and ε-polylysine to Improve Lipid Oxidative Stability of Emulsions. J. Agric. Food Chem 2010, 58(1), 660–667. DOI: 10.1021/jf903170b.
  • Liu, F.; Ma, C.; Gao, Y.; McClements, D. J. Food-grade Covalent Complexes and Their Application as Nutraceutical Delivery Systems: A Review. Compr. Rev. Food Sci. Food Saf 2016, 16(1), 76–95. DOI: 10.1111/1541-4337.12229.
  • Gu, F. L.; Kim, J. M.; Abbas, S.; Zhang, X. M.; Xia, S. Q.; Chen, Z. X. Structure and Antioxidant Activity of High Molecular Weight Maillard Reaction Products from casein-glucose. Food Chem 2010, 120(2), 505–511. DOI: 10.1016/j.foodchem.2009.10.044.
  • Jiang, Z.; Brodkorb, A. Structure and Antioxidant Activity of Maillard Reaction Products from α-lactalbumin and β- Lactoglobulin with Ribose in an Aqueous Model System. Food Chem 2012, 133(3), 960–968. DOI: 10.1016/j.foodchem.2012.02.016.
  • Shi, Y.; Liang, R.; Chen, L.; Liu, H.; Goff, H. D.; Ma, J.; Zhong, F. The Antioxidant Mechanism of Maillard Reaction Products in oil-in-water Emulsion System. Food Hydrocolloids. 2019, 87, 582–592. DOI: 10.1016/j.foodhyd.2018.08.039.
  • Vhangani, L. N.; Van, W. J. Antioxidant Activity of Maillard Reaction Products (Mrps) in a lipid-rich Model System. Food Chem 2016, 208, 301–308. DOI: 10.1016/j.foodchem.2016.03.100.
  • Dong, S.; Panya, A.; Zeng, M.; Chen, B.; McClements, D. J.; Decker, E. A. Characteristics and Antioxidant Activity of Hydrolyzed β-lactoglobulin-glucose Maillard Reaction Products. Food Res. Int 2013, 46(1), 55–61. DOI: 10.1016/j.foodres.2011.11.022.
  • Liu, J.; Liu, W.; Salt, L. J.; Ridout, M. J.; Ding, Y.; Wilde, P. J. Fish Oil Emulsions Stabilized with Caseinate Glycated by Dextran: Physicochemical Stability and Gastrointestinal Fate. J. Agric. Food Chem 2018, 67(1), 452–462. DOI: 10.1021/acs.jafc.8b04190.
  • Wong, B. T.; Day, L.; Augustin, M. A. Deamidated Wheat protein–dextran Maillard Conjugates: Effect of Size and Location of Polysaccharide Conjugated on Steric Stabilization of Emulsions at Acidic pH. Food Hydrocolloids. 2011, 25(6), 1424–1432. DOI: 10.1016/j.foodhyd.2011.01.017.
  • Zha, F.; Dong, S.; Rao, J.; Chen, B. Pea Protein Isolate- Gum Arabic Maillard Conjugates Improves Physical and Oxidative Stability of oil-in-water Emulsions. Food Chem 2019, 285, 130–138. DOI: 10.1016/j.foodchem.2019.01.151.
  • Yang, Y.; Cui, S. W.; Gong, J.; Guo, Q.; Wang, Q.; Hua, Y. A Soy protein-polysaccharides Maillard Reaction Product Enhanced the Physical Stability of oil-in-water Emulsions Containing Citral. Food Hydrocolloids. 2015, 48, 155–164. DOI: 10.1016/j.foodhyd.2015.02.004.
  • Corzo-Martínez, M.; Carrera-Sánchez, C.; Villamiel, M.; Rodríguez- Patino, J. M.; Moreno, F. J. Assessment of Interfacial and Foaming Properties of Bovine Sodium Caseinate Glycated with Galactose. J. Food Eng 2012, 113(3), 461–470. DOI: 10.1016/j.jfoodeng.2012.06.025.
  • Tonon, R. V.; Grosso, C. R. F.; Hubinger, M. D. Influence of Emulsion Composition and Inlet Air Temperature on the Microencapsulation of Flaxseed Oil by Spray Drying. Food Res. Int 2011, 44(1), 282–289. DOI: 10.1016/j.foodres.2010.10.018.
  • Zhang, Y.; Tan, C.; Abbas, S.; Eric, K.; Xia, S.; Zhang, X. Modified SPI Improves the Emulsion Properties and Oxidative Stability of Fish Oil Microcapsules. Food Hydrocolloids. 2015, 51, 108–117. DOI: 10.1016/j.foodhyd.2015.05.001.
  • Curcio, M.; Puoci, F.; Iemma, F.; Parisi, O. I.; Cirillo, G.; Spizzirri, U. G.; Picci, N. Covalent Insertion of Antioxidant Molecules on Chitosan by a Free Radical Grafting Procedure. J. Agric. Food Chem 2009, 57(13), 5933–5938. DOI: 10.1021/jf900778u.
  • Liu, J.; Pu, H.; Liu, S.; Kan, J.; Jin, C. Synthesis, Characterization, Bioactivity and Potential Application of Phenolic Acid Grafted Chitosan: A Review. Carbohydr. Polym 2017, 174, 999–1017. DOI: 10.1016/j.carbpol.2017.07.014.
  • Fan, Y.; Liu, Y.; Gao, L.; Zhang, Y.; Yi, J. Oxidative Stability and in Vitro Digestion of Menhaden Oil Emulsions with Whey Protein: Effects of EGCG Conjugation and Interfacial cross-linking. Food Chem 2018, 265, 200–207. DOI: 10.1016/j.foodchem2018.05.098.
  • Feng, J.; Cai, H.; Wang, H.; Li, C.; Liu, S. Improved Oxidative Stability of Fish Oil Emulsion by Grafted ovalbumin-catechin Conjugates. Food Chem 2017, 241, 60–69. DOI: 10.1016/j.foodchem.2017.08.055.
  • Benjamin, Z.; Lutz, F.; Jochen, W. Stabilization of Food Dispersions by Enzymes. Food Funct 2014, 5(2), 198–213. DOI: 10.1039/C3FO60499C.
  • Kellerby, S. S.; Yeun Suk, G.; McClements, D. J.; Decker, E. A. Lipid Oxidation in a Menhaden oil-in-water Emulsion Stabilized by Sodium Caseinate cross-linked with Transglutaminase. J. Agric. Food Chem 2006, 54(26), 10222–10227. DOI: 10.1021/jf062143w.
  • Ma, H.; Forssell, P.; Kylli, P.; Lampi, A. M.; Buchert, J.; Boer, H.; Partanen, R. Transglutaminase Catalyzed cross-linking of Sodium Caseinate Improves Oxidative Stability of Flaxseed Oil Emulsion. J. Agric. Food Chem 2012, 60(24), 6223–6229. DOI: 10.1021/jf301166j.
  • Liu, C.; Damodaran, S.; Heinonen, M. Effects of Microbial Transglutaminase Treatment on Physiochemical Properties and Emulsifying Functionality of Faba Bean Protein Isolate. LWT. 2019, 99, 396–403. DOI: 10.1016/j.lwt.2018.10.003.
  • Phoon, P. Y.; Paul, L. N.; Burgner, J. W., II; Martin-Gonzalez, M. F. S.; Narsimhan, G. Effect of cross-linking of Interfacial Sodium Caseinate by Natural Processing on the Oxidative Stability of oil-in-water (O/W) Emulsions. J. Agric. Food Chem 2014, 62(13), 2822–2929. DOI: 10.1021/jf403285z.
  • Kudanga, T.; Nyanhongo, G. S.; Guebitz, G. M.; Burton, S. Potential Applications of laccase-mediated Coupling and Grafting Reactions: A Review. Enzyme Microb. Technol. 2011, 48, 195–208. DOI:10.1016/j.enzmictec.2010.11.007.
  • Minussi, R. C.; Pastore, G. M.; Durán, N. Potential Applications of Laccase in the Food Industry. Trends Food Sci. Technol 2002, 13(6–7), 205–216. DOI: 10.1016/S0924-2244(02)00155-3.
  • Kurisawa, M.; Chung, J. E.; Uyama, H.; Kobayashi, S. Laccase-catalyzed Synthesis and Antioxidant Property of Poly(catechin). Macromol. Biosci 2003, 3(12), 758–764. DOI: 10.1002/mabi.200300038.
  • Chung, J. E.; Kurisawa, M.; Uyama, H.; Kobayashi, S. Enzymatic Synthesis and Antioxidant Property of gelatin-catechin Conjugates. Biotechnol. Lett 2003, 25(23), 1993–1997. DOI: 10.1023/B:BILE.0000004391.27564.8e.
  • Jia, X.; Zhao, M.; Jia, C.; Teng, J.; Wei, B.; Huang, L.; Xia, N. Emulsifying Properties and Antioxidant Stability of Enzymatically cross-linked Products between Rice Protein and Ferulic Acid. Food Sci 2017, 38(13), 131–137. DOI: 10.7506/spkx1002-6630-201713022.
  • Johnston, S. P.; Nickerson, M. T.; Low, N. H. The Physicochemical Properties of Legume Protein Isolates and Their Ability to Stabilize oil-in-water Emulsions with and without Genipin. J. Food Sci. Technol 2015, 52(7), 4135–4145. DOI: 10.1007/s13197-014-1523-3.
  • Gharsallaoui, A.; Roudant, G.; Beney, L.; Chambin, O.; Voilley, A.; Saurel,; Saurel, R. Properties of spray-dried Food Flavours Microencapsulated with Two- Layered Membranes: Role of Interfacial Interactions and Water. Food Chem 2011, 132(4), 1713–1720. DOI: 10.1016/j.foodchem.2011.03.028.
  • Musin, E. V.; Kim, A. L.; Dubrovskii, A. V.; Tikhonenko, S. A. New Sight at the Organization of Layers of Multilayer Polyelectrolyte Microcapsules. Sci. Rep 2021, 11(1), 14040. DOI: 10.1038/s41598-021-93565-2.
  • Tatiya, P. D.; Hedaoo, R. K.; Mahulikar, P. P.; Gite, V. V. Novel Polyurea Microcapsules Using Dendritic Functional Monomer: Synthesis, Characterization, and Its Use in Self-healing and Anticorrosive Polyurethane Coatings. Am. Chem.l Society. 2013, 52(4), 1562–1570. DOI: 10.1021/ie301813a.
  • Angelova Orcid, A.; Drechsler, M.; Garamus, V. M. Liquid Crystalline Nanostructures as PEGylated Reservoirs of Omega-3 Polyunsaturated Fatty Acids: Structural Insights toward Delivery Formulations against Neurodegenerative Disorders. Am. Chem.l Society. 2018, 3(3), 3235–3247. DOI: 10.1021/acsomega.7b01935.
  • Lee, S.-H.; Lefèvre, T.; Subirade, M.; Paquin, P. Changes and Roles of Secondary Structures of Whey Protein for the Formation of Protein Membrane at Soy oil/water Interface under High- Pressure Homogenization. J. Agric. Food Chem 2007, 55(26), 10924–10931. DOI: 10.1021/jf0726076.
  • Lee, S. H.; Lefèvre, T.; Subirade, M.; Paquin, P. Effects of ultra-high-pressure Homogenization on the Properties and Structure of Interfacial Protein Layer in Whey protein-stabilized Emulsion. Food Chem 2009, 113(1), 191–195. DOI: 10.1016/j.foodchem.2008.07.067.
  • Van der Plancken, I.; Loey, A. V.; Hendrickx, M. E. G. Changes in Sulfhydryl Content of Egg White Proteins Due to Heat and Pressure Treatment. J. Agric. Food Chem 2005, 53(14), 5726–5733. DOI: 10.1021/jf050289.
  • Huang, Y.; Li, A.; Qiu, C.; Teng, Y.; Wang, Y. Self-assembled Colloidal Complexes of polyphenol-gelatin and Their Stabilizing Effects on Emulsions. Food Funct 2017, 8(9), 3145. DOI: 10.1039/C7FO00705A.
  • Yao, X.; Xiang, S.; Nie, K.; Gao, Z.; Zhang, W.; Fang, Y.; Jiang, F.; Phillips, G. O.; Jiang, F. Whey Protein isolate/gum Arabic Intramolecular Soluble Complexes Improving the Physical and Oxidative Stabilities of Con- Jugated Linoleic Acid Emulsions. RSC Adv 2016, 6(18), 14635–14642. DOI: 10.1039/C5RA26040J.
  • Yuan, Y.; Kong, Z.-Y.; Sun, Y.-E.; Zeng, Q.-Z.; Yang, X.-Q. Complex Coacervation of Soy Protein with Chitosan: Constructing Antioxidant Microcapsule for Algal Oil Delivery. LWT. 2017, 75, 171–179. DOI: 10.1016/j.lwt.2016.08.045.
  • Eratte, D.; Wang, B.; Dowling, K.; Barrow, C. J.; Adhikari, B. P. Complex Coacervation with Whey Protein Isolate and Gum Arabic for the Microencapsulation of Omega-3 Rich Tuna Oil. Food Funct. 2014, 5, 2743–2750. DOI:10.1039/C4FO00296B.
  • Kaushik, P.; Dowling, K.; McKnight, S.; Barrow, C. J.; Adhikari, B. Microencapsulation of Flaxseed Oil in Flaxseed Protein and Flaxseed Gum Complex Coacervates. Food Res. Int 2016, 86, 1683–1691. DOI: 10.1016/j.foodres.2016.05.015.
  • Aewsiri, T.; Benjakul, S.; Visessanguan, W.; Wierenga, P. A.; Grup- Pen, H. Antioxidative Activity and Emulsifying Properties of Cuttlefish Skin gelatin-tannic Acid Complex as Influenced by Types of Interaction. Innovative Food Sci. Emerging Technol 2010, 11(4), 712–720. DOI: 10.1016/j.ifset.2010.04.001.
  • Qiu, C.; Wang, B.; Yong, W.; Teng, Y. Effects of Colloidal Complexes Formation between Resveratrol and Deamidated Gliadin on the Bioaccessibility and Lipid Oxidative Stability. Food Hydrocoll. 2017, 69, 466–472. DOI: 10.1016/j.foodhyd.2017.02.020.