1,436
Views
4
CrossRef citations to date
0
Altmetric
Original Article

Effect of hardness on the mechanical properties of kiwifruit peel and flesh

, &
Pages 2121-2132 | Received 04 Jul 2022, Accepted 11 Sep 2022, Published online: 22 Sep 2022

References

  • Baranowska-Wójcik, E.; Szwajgier, D. Characteristics and pro-health Properties of Mini Kiwi (Actinidia Arguta). Hortic. Environ. Biotechnol. 2019, 60(2), 217–225. DOI: 10.1007/s13580-018-0107-y.
  • Li, Y.; Cui, W.; Wang, R.; Lin, M.; Zhong, Y.; Sun, L.; Fang, J.; Fang, J. MicroRNA858-mediated Regulation of Anthocyanin Biosynthesis in Kiwifruit (Actinidia Arguta) Based on Small RNA Sequencing. Plos one. 2019, 14(5), e0217480. DOI: 10.1371/journal.pone.0217480.
  • Li, J.; Huang, B.; Wu, C.; Sun, Z.; Xue, L.; Liu, M.; Chen, J. Nondestructive Detection of Kiwifruit Textural Characteristic Based on near Infrared Hyperspectral Imaging Technology. Int. J. Food Prop. 2022, 25(1), 1697–1713. DOI: 10.1080/10942912.2022.2098972.
  • Ahmet, I. N. C. E.; Çevik, M. Y.; Vursavuş, K. K. Effects of Maturity Stages on Textural Mechanical Properties of Tomato. Int. J. Agric. Biol. Eng. 2016, 9(6), 200–206. DOI: 10.3965/j.ijabe.20160906.1999.
  • Ma, X.; Chen, X.; Yan, Y.; Jiang, X. Mechanical Damage Test and Biomechanical Characteristics of Red Bayberry Fruit. Trans. Chin. Soc. Agric. Eng. 2012, 28(16), 282–287. DOI: 10.3969/j.1002-6819.2012.16.044.
  • Ortiz, C.; Blasco, J.; Balasch, S.; Torregrosa, A. Shock Absorbing Surfaces for Collecting Fruit during the Mechanical Harvesting of Citrus. Biosyst. Eng. 2011, 110(1), 2–9. DOI: 10.1016/j.biosystemseng.2011.05.006.
  • Chen, Y.; Cai, W.; Zou, X.; Xiang, H.; Liu, T.; Xu, F. Mechanical Properties Test and Finite Element Analysis for Litchi. Trans. Chin. Soc. Agric. Eng. 2011, 27(12), 358–363.
  • Razavi, S. M. A.; BahramParvar, M. Some Physical and Mechanical Properties of Kiwifruit. Int. J. Food Eng. 2007, 3(6. DOI: 10.2202/1556-3758.1276.
  • Tian, K.; Shen, C.; Li, X.; Huang, J.; Chen, Q.; Zhang, B. Mechanical Properties and Compression Damage Simulation by Finite Element for Kiwifruit. Int. Agric. Eng. J. 2017, 26(4), 191–201.
  • Ji, H. W.; Shao, W. Q.; Meng, X. W. Experimental Research on Compression Mechanical Behaviors and Creep Property of Kiwifruit. J. Anhui Agric. Sci. 2010, 38(3), 1107–1109. DOI: 10.13989/j.cnki.0517-6611.2010.03.107.
  • Hu, G.; Chen, J. Transverse Anisotropy Mechanical Properties and Drop Test of Apple. In 2020 ASABE Annual International Virtual Meeting; American Society of Agricultural and Biological Engineers: 2020; pp 1. doi:10.13031/aim.20
  • Dražeta, L.; Lang, A.; Hall, A. J.; Volz, R. K.; Jameson, P. E. Air Volume Measurement of ‘Braeburn’apple Fruit. J. Exp. Bot. 2004, 55(399), 1061–1069. DOI: 10.1093/jxb/erh118.
  • Masoudi, H.; Tabatabaeefar, A.; Borghaee, A. Determination of Storage Effect on Mechanical Properties of Apples Using the Uniaxial Compression Test. Canad. Biosyst. Eng. 2007, 49(1), 101–107. DOI: 10.1016/S0165-1765(00)00268-8.
  • Pallottino, F.; Costa, C.; Menesatti, P.; Moresi, M. Assessment of the Mechanical Properties of Tarocco Orange Fruit under Parallel Plate Compression. J. Food Eng. 2011, 103(3), 308–316. DOI: 10.1016/j.jfoodeng.2010.10.029.
  • Singh, K. K.; Reddy, B. S. Post-harvest physico-mechanical Properties of Orange Peel and Fruit. J. Food Eng. 2006, 73(2), 112–120. DOI: 10.1016/j.jfoodeng.2005.01.010.
  • Frempong, K. E. B.; Chen, Y.; Wang, Z.; Xu, J.; Xu, X.; Cui, W.; Lin, X.; Peng, D.; Liang, L.; Meng, Y. Study on Textural Changes and Pectin Degradation of Tarocco Blood Orange during Storage. Int. J. Food Prop. 2022, 25(1), 344–358. DOI: 10.1080/10942912.2022.2032736.
  • Huang, W.; Billing, D.; Burdon, J. Dissecting the Relationship of Shrivel with Firmness and Weight Loss. Acta Hortic. 2022, 1332(46), 351–358. DOI: 10.17660/ActaHortic.2022.1332.46.
  • Yang, J.; Zhu, B.; He, Y.; Ying, Q.; Zhang, L. Study on Mechanical Properties and Fruit Quality Analysis of Watermelon (Cirtullus Lanatus). Acta Agriculturae Zhejiangensis. 2017, 29(9), 1581–1588. DOI: 10.3969/j.1004-1524.2017.09.23.
  • Jahanbakhshi, A.; Yeganeh, R.; Shahgoli, G. Determination of Mechanical Properties of Banana Fruit under Quasi-Static Loading in Pressure, Bending, and Shearing Tests. Int. J. Fruit Sci. 2019, 20(3), 314–322. DOI: 10.1080/15538362.2019.1633723.
  • Wei, M.; Yu, D.; Yuan-yuan,; Feng-juan, L.; Shu-jun, Y.; Xiu-wen, F. Study on the Mechanical Properties of Xinjiang Seedless Grape. Xinjiang Agric. Mech. 2016, 1, 10–12. doi: 10.13620/j.cnki.1007-7782.2016.01.003.
  • Jahanbakhshi, A.; Rasooli Sharabiani, V.; Heidarbeigi, K.; Kaveh, M.; Taghinezhad, E. Evaluation of Engineering Properties for Waste Control of Tomato during Harvesting and Postharvesting. Food Sci. Nutr. 2019, 7(4), 1473–1481. DOI: 10.1002/fsn3.986.
  • Ekrami-Rad, N.; Khazaei, J.; Khoshtaghaza, M.-H. Selected Mechanical Properties of Pomegranate Peel and Fruit. Int. J. Food Prop. 2011, 14(3), 570–582. DOI: 10.1080/10942910903291920.
  • Radunic, M.; Jukic Spika, M.; Goreta Ban, S.; Gadze, J.; Diaz-Perez, J. C.; MacLean, D. Physical and Chemical Properties of Pomegranate Fruit Accessions from Croatia. Food Chem. 2015, 177, 53–60. DOI: 10.1016/j.foodchem.2014.12.102.
  • Hou, J.; Hu, W.; Zhang, L.; Ren, Z.; Sun, Q.; Wang, W. Mechanical Properties of Mulberry Fruit under Compression and Nuclear Magnetic Resonance Tests. J. Food Process Eng. 2021, 44(11). DOI: 10.1111/jfpe.13856.
  • Olmedo, P.; Zepeda, B.; Rojas, B.; Silva-Sanzana, C.; Delgado-Rioseco, J.; Fernández, K.; Campos-Vargas, R.; Arriagada, C.; Moreno, A. A.; Defilippi, B. G. Cell Wall Calcium and Hemicellulose Have a Role in the Fruit Firmness during Storage of Blueberry (Vaccinium Spp.). Plants. 2021, 10(3), 553. DOI: 10.3390/plants10030553.
  • Abbal, P.; Vernhet, A.; Abi Habib, E.; Carrillo, S.; Ducasse, M.-A.; Poncet-Legrand, C. Mechanical Tests and Definition of New Indexes of Grape Berry Firmness. Evolution of Berry Skin Hardness during Alcoholic Fermentation. Vitis. 2020, 59, 163–168. DOI: 10.5073/vitis.2020.59.
  • De Oliveira, G. H. H.; Corrêa, P. C.; Botelho, F. M.; de Oliveira, A. P. L. R. Mechanical Properties of Tomatoes Subjected to an Induced Compression during Storage. J. Texture Stud. 2015, 46(4), 293–301. DOI: 10.1111/jtxs.12129.
  • Feng, J.; Mackay, B.; Maguire, K. Variation in Firmness of Packed Hayward Kiwifruit. Acta Hortic. 2002, 610, 211–217. DOI: 10.17660/ActaHortic.2003.610.28.
  • Jackson, P.; Harker, F. Changes in Firmness of the Outer Pericarp, Inner Pericarp, and Core of Actinidia Species during Ripening. N. Z. J. Crop Hortic. Sci. 1997, 25(2), 185–189. DOI: 10.1080/01140671.1997.9514005.
  • Tian, K.; Bin, Z.; LI, X.; Cheng, S.; Huang, J. Test and Analysis of Mechanical Properties of Kiwifruit. Jiangsu Agric. Sci. 2018, 46(23), 258–261. DOI: 10.15889/j.1002-1302.2018.23.065.
  • Feng, J.; McGlone, A.; Tanner, D.; White, A.; Olsson, S.; Petley, M.; Woolf, L. Effect of Penetration Speed on Flesh Firmness Measured on Stored Kiwifruit. Postharvest. Biol. Technol. 2011, 61(1), 29–34. DOI: 10.1016/j.postharvbio.2011.01.014.
  • ASABE standard, Compression Test of Food Materials of Convex Shape, ASAE S368.4 DEC2000, 2008.
  • Shirvani, M.; Ghanbarian, D.; Ghasemi-Varnamkhasti, M. Measurement and Evaluation of the Apparent Modulus of Elasticity of Apple Based on Hooke’s, Hertz’s and Boussinesq’s Theories. Measurement. 2014, 54, 133–139. DOI: 10.1016/j.measurement.2014.04.014.
  • De Souza Costa, J. D.; Cardoso Almeida, F. D. A.; Figuereido Neto, A.; Lucena Cavalcante, Í. H. Physical and Mechanical Parameters Correlated to the Ripening of Mangoes (Mangifera Indica L.) Cv. ‘Tommy Atkins.’ Acta Agronómica. 2017, 66(2. DOI: 10.15446/acag.v66n2.54757.
  • Alamar, M. C.; Vanstreels, E.; Oey, M. L.; Moltó, E.; Nicolaï, B. M. Micromechanical Behaviour of Apple Tissue in Tensile and Compression Tests: Storage Conditions and Cultivar Effect. J. Food Eng. 2008, 86(3), 324–333. DOI: 10.1016/j.jfoodeng.2007.10.012.
  • Gholmohammadi, A.; Roghanipour, L.; Mesri Ghendishmin, T. J. M. S. I. A. M. The Effect of Moisture Content, Speed, and Direction of Louding on Mechanical Properties of Chichpea Seed. Mech. Sci. Agric. Mach. 2013, 1(2), 27–38.
  • Rivera, S.; Kerckhoffs, H.; Sofkova-Bobcheva, S.; Hutchins, D.; East, A. Influence of Water Loss on Mechanical Properties of Stored Blueberries. Postharvest. Biol. Technol. 2021, 176(2), 111498. DOI: 10.1016/j.postharvbio.2021.111498.
  • Wei, X.; Xie, D.; Mao, L.; Xu, C.; Luo, Z.; Xia, M.; Lu, W.; Han, X.; Lu, W. Excess Water Loss Induced by Simulated Transport Vibration in Postharvest Kiwifruit. Sci. Hortic. 2019, 250, 113–120. DOI: 10.1016/j.scienta.2019.02.009.
  • Vanstreels, E.; Alamar, M.; Verlinden, B.; Enninghorst, A.; Loodts, J.; Tijskens, E.; Nicolaï, B.; Nicolaï, B. M. Micromechanical Behaviour of Onion Epidermal Tissue. Postharvest Biol. Technol. 2005, 37(2), 163–173. DOI: 10.1016/j.postharvbio.2005.04.004.
  • Ha, N. S.; Lu, G.; Shu, D.; Yu, T. X. Mechanical Properties and Energy Absorption Characteristics of Tropical Fruit Durian (Durio Zibethinus). J. Mech. Behav. Biomed. Mater. 2020, 104, 103603. DOI: 10.1016/j.jmbbm.2019.103603.
  • Wang, J.; Cui, Q.; Li, H.; Liu, Y. Mechanical Properties and Microstructure of Apple Peels during Storage. Int. J. Food Prop. 2017, 20(5), 1159–1173. DOI: 10.1080/10942912.2016.1203934.
  • Sirisomboon, P.; Tanaka, M.; Akinaga, T.; Kojima, T. Evaluation of the Textural Properties of Japanese Pear. J. Texture Stud. 2000, 31(6), 665–677. DOI: 10.1111/j.1745-4603.2000.tb01027.x.
  • Mahiuddin, M.; Godhani, D.; Feng, L.; Liu, F.; Langrish, T.; Karim, M. A. Application of Caputo Fractional Rheological Model to Determine the Viscoelastic and Mechanical Properties of Fruit and Vegetables. Postharvest. Biol. Technol. 2020, 163. DOI: 10.1016/j.postharvbio.2020.111147.
  • Jahanbakhshi, A. Determination of Some Engineering Properties of Snake Melon (Cucumis Melo Var. Flexuosus) Fruit. Agric Eng Int CIGR J. 2018, 20(1), 171–176.
  • De Belie, N.; Hallett, I. C.; Harker, F. R.; De Baerdemaeker, J. Influence of Ripening and Turgor on the Tensile Properties of Pears: A Microscopic Study of Cellular and Tissue Changes. J. Am. Soc. Hortic. Sci. 2000, 125(3), 350–356. DOI: 10.21273/jashs.125.3.350.
  • Varnamkhasti, M. G.; Mobli, H.; Jafari, A.; Keyhani, A. R.; Soltanabadi, M. H.; Rafiee, S.; Kheiralipour, K. Some Physical Properties of Rough Rice (Oryza Sativa L.) Grain. J. Cereal Sci. 2008, 47(3), 496–501. DOI: 10.1016/j.jcs.2007.05.014.
  • Dahdouh, L.; Delalonde, M.; Ricci, J.; Ruiz, E.; Wisnewski, C. Influence of High Shear Rate on Particles Size, Rheological Behavior and Fouling Propensity of Fruit Juices during Crossflow Microfiltration: Case of Orange Juice. Innovative Food Sci. Emerg. Technol. 2018, 48, 304–312. DOI: 10.1016/j.ifset.2018.07.006.
  • Shirmohammadi, M.; Yarlagadda, P. K.; Gu, Y. A Constitutive Model for Mechanical Response Characterization of Pumpkin Peel and Flesh Tissues under Tensile and Compressive Loadings. J. Food Sci. Technol. 2015, 52(8), 4874–4884. DOI: 10.1007/s13197-014-1605-2.
  • Varela, P.; Salvador, A.; Fiszman, S. Changes in Apple Tissue with Storage Time: Rheological, Textural and Microstructural Analyses. J. Food Eng. 2007, 78(2), 622–629. DOI: 10.1016/j.jfoodeng.2005.10.034.
  • Lahaye, M.; Falourd, X.; Laillet, B.; Le Gall, S. Cellulose, Pectin and Water in Cell Walls Determine Apple Flesh Viscoelastic Mechanical Properties. Carbohydr. Polym. 2020, 232, 115768. DOI: 10.1016/j.carbpol.2019.115768.
  • Montero-Calderón, M.; Rojas-Graü, M. A.; Martín-Belloso, O. Mechanical and Chemical Properties of Gold Cultivar Pineapple Flesh (Ananas Comosus). Eur. Food Res. Technol. 2009, 230(4), 675–686. DOI: 10.1007/s00217-009-1207-9.