1,068
Views
7
CrossRef citations to date
0
Altmetric
Original Article

Changes of phenolics contents, antioxidant activities, and enzyme activities in pellicles of Juglans sigillata Dode during fruits development

, , , &
Pages 2133-2145 | Received 13 Jul 2022, Accepted 11 Sep 2022, Published online: 23 Sep 2022

References

  • Sharma, A.; Shahzad, B.; Rehman, A.; Bhardwaj, R.; Landi, M.; Zheng, B. Response of Phenylpropanoid Pathway and the Role of Polyphenols in Plants under Abiotic Stress. Molecules. 2019, 24(13), 2452. DOI: 10.3390/molecules24132452.
  • Racchi, M. L. Racchi ML. Antixidant Defenses in Plants with Attention to Prunus and Citrus Spp. Antioxidants. 2013, 2(4), 340–369. DOI: 10.3390/antiox2040340.
  • Yuan, Y.; Xiang, J. L.; Zheng, B. L.; Sun, J. J.; Luo, D. L.; Li, P. Y.; Fan, J. L. Diversity of Phenolics Including Hydroxycinnamic Acid Amide Derivatives, Phenolic Acids Contribute to Antioxidant Properties of Proso Millet. LWT - Food Sci. Technol. 2021, 1(54), 112611.
  • Wen, L. R.; He, M. Y.; Yin, C. X.; Jiang, Y. M.; Luo, D. H.; Yang, B. Phenolics in Citrus Aurantium Fruit Identified by UHPLC-MS/MS and Their Bioactivities. LWT - Food Sci. Technol. 2021, 147, 111671. DOI: 10.1016/j.lwt.2021.111671.
  • Leri, M.; Scuto, M.; Ontario, M. L.; Calabrese, V.; Calabrese, E. J.; Bucciantini, M.; Stefani, M. Healthy Effects of Plant Polyphenols: Molecular Mechanisms. Int. J. Mol. Sci. 2020, 21(4), 1250. DOI: 10.3390/ijms21041250.
  • Hayes, D.; Angove, M. J.; Tucci, J.; Dennis, C. Walnuts (Juglans Regia) Chemical Composition and Research in Human Health. Critical Reniews in Food Science and Nutrition. 2016, 56(8), 1231–1241. DOI: 10.1080/10408398.2012.760516.
  • Li, Y. Z.; Luo, X.; Wu, C. Y.; Cao, S. Y.; Zhou, Y. F.; Jie, B.; Cao, Y. L.; Meng, H. J.; Wu, G. L. Comparative Transcriptome Analysis of Genes Involved in Anthocyanin Biosynthesis in Red and Green Walnut (Juglans Regia L.). Molecules. 2018, 23(1), 25.
  • Jahanban-Esfahlan, A.; Ostadrahimi, A.; Tabibiazar, M., and Amarowicz, R. A. A. Comparative Review on the Extraction, Antioxidant Content and Antioxidant Potential of Different Parts of Walnut (Juglans Regia L.) Fruit and Tree. Molecules. 2019, 24(11), 2133. DOI: 10.3390/molecules24112133.
  • Medic, A.; Jakopic, J.; Hudina, M.; Solar, A.; Veberic, R. Identification and Quantification of the Major Phenolic Constituents in Juglans Regia L. Peeled Kernels and Pellicless, Using HPLC-MS/MS. Food Chem. 2021, 3(52), 129404. DOI: 10.1016/j.foodchem.2021.129404.
  • Zhang, Y. G.; Kan, H.; Chen, S. X.; Thakur, K.; Wang, S. Y.; Zhang, J. G.; Shang, Y. F., and Wei, Z. J. Comparison of Phenolic Compounds Extracted from Diaphragma Juglandis Fructus, Walnut Pellicles, and Flowers of Juglans Regia Using Methanol, Ultrasonic Wave, and Enzyme assisted-extraction. Food Chem. 2020, 3(21), 126672.
  • Akbari, V.; Jamei, R.; Esfahlan, A. J.; Esfahlan, A. J. Antiradical Activity of Different Parts of Walnut (Juglans Regia L.) Fruit as a Function of Genotype. Food Chem. 2012, 135(4), 2404–2410. DOI: 10.1016/j.foodchem.2012.07.030.
  • Slatnar, A.; Mikulic-Petkovsek, M.; Stampar, F.; Veberic, R.; Solar, A. Identification and Quantification of Phenolic Compounds in Kernels, Oil and Bagasse Pellets of Common Walnut (Juglans Regia L.). Food Res. Int. 2015, 67, 255–263. DOI: 10.1016/j.foodres.2014.11.016.
  • Xiong, L. G.; Li, J.; Li, Y. H.; Yuan, L.; Liu, S. Q.; Huang, J. A.; Liu, Z. H. Dynamic Changes in Catechin Levels and Catechin biosynthesis-related Gene Expression in Albino Tea Plants (Camellia Sinensis L.). Plant Physiol. Biochem. 2013, 71, 132–143. DOI: 10.1016/j.plaphy.2013.06.019.
  • Trujillo-Mayol, I.; Badillo-Munoz, G.; Cespedes-Acuna, C.; Alarcon-Enos, J. The Relationship between Fruit Size and Phenolic and Enzymatic Composition of Avocado Byproducts (Persea Americana Mill.): The Importance for Biorefinery Applications. Horticulturae. 2020, 6(4), 91. DOI: 10.3390/horticulturae6040091.
  • Xie, Q.; Zhang, S. Y.; Ye, Q. H.; Wang, W.; Chen, Q. X. Dynamic Changes of Polyphenols and Related Enzymes Activity during the Development and Maturation of Chinese Olive (Canarium Album L.). Journal of Fruits Science. 2019, 36, 774–784.
  • Kong, D. X.; Li, Y. Q.; Bai, M.; He, H. J.; Liang, G. X.; Wu, H. Correlation between the Dynamic Accumulation of the Main Effective Components and Their Associated Regulatory Enzyme Activities at Different Growth Stages in Lonicera Japonica Thunb. Ind. Crops Prod. 2017, 9(6), 1–22.
  • Zhang, R.; Shi, B. B.; Zhang, W. E.; Li, X., and Pan, X. J. Relationship between Polyphenol Content and Enzymes Activities and Antioxidant Capacity in Juglans Sigillata Dode Leaves. Acta Botanica Boreali -Occidentalia Sinica. 2019, 39, 0677–0684.
  • Wen, J.; Zhao, S. G.; Wang, H. X.; Zhang, Z. H.; Li, X. B. Changes of Lignin Content and Its Related Enzyme Activities in Endocarp during Walnut Shell Development Period. Acta Horticulturae Sinica 2015, 4(2), 2144–2152.
  • Ortiz, C. M.; Vicente, A. R.; Fields, R. P.; Grillo, F.; Labavitch, J. M.; Donis-Gonzalez, I.; Crisosto, C. H. Walnut (Juglans Regia L.) Kernel Postharvest Deterioration as Affected by Pellicles Integrity, Cultivar and Oxygen Concentration. Postharvest. Biol. Technol. 2019, 156, 110948–110978.
  • Wang, J.; Liang, S. J.; Ma, H. L.; Zhang, P. P.; Shi, W. N. Effects of Ethephon on Fresh In-Husk Walnut Preservation and Its Possible Relationship with Phenol Metabolism. J. Food Sci. 2016, 81(8), C1921–C1927.
  • Conde-Hernandez, L. A.; Guerrero-Beltran, J. A. Total Phenolics and Antioxidant Activity of Piper Auritum and Porophyllum Ruderale. Food Chem. 2014, 142, 455–460. DOI: 10.1016/j.foodchem.2013.07.078.
  • Feng, S. M.; Luo, Z. S.; Zhang, Y. B.; Zhong, Z.; Lu, B. Y. Phytochemical Contents and Antioxidant Capacities of Different Parts of Two Sugarcane (Saccharum Officinarum L.) Cultivars. Food Chem. 2014, 151, 452–458. DOI: 10.1016/j.foodchem.2013.11.057.
  • Benzie, I. F.; Strain, J. J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Analytical Biochemistry. Analytical biochemistry. 1996, 239(1), 70–76. DOI: 10.1006/abio.1996.0292.
  • Jun, H. I.; Song, G. S.; Yang, E. I.; Youn, Y.; Kim, Y. S. Antioxidant Activities and Phenolic Compounds of Pigmented Rice Bran Extracts. J. Food Sci. 2012, 7(7), 759–764. DOI: 10.1111/j.1750-3841.2012.02763.x.
  • Chen, J. Y.; Wen, P. F.; Kong, W. F.; Pan, Q. H.; Wan, S. B.; Huang, W. D. Changes and Subcellular Localizations of the Enzymes Involved in Phenylpropanoid Metabolism during Grape Berry Development. J. Plant Physiol. 2006, 163(2), 115–127. DOI: 10.1016/j.jplph.2005.07.006.
  • Han, Y. W.; Lian, S. Q.; Han, Y. Y.; Li, X. D.; Yan, S. J. Effect of Different Harvest Maturity and Cooling Methods on POD Activity and Browning of Yali Pear. Sci. Technol. Food Ind. 2016, 37(14), 320–323 + 338.
  • Winters, A. L.; Minchin, F. R.; Michaelson-Yeates, T. P. T.; Lee, M. R. F.; Morris, P. Latent and Active Polyphenol Oxidase (PPO) in Red Clover (Trifolium Pratense) and Use of a Low PPO Mutant to Study the Role of PPO in Proteolysis Reduction. J. Agric. Food Chem. 2008, 56(8), 2817–2824. DOI: 10.1021/jf0726177.
  • Shi, B. B.; Zhang, W. E.; Li, X.; Pan, X. J. Phenolics Content and Antioxidant Activity of Walnut (Juglans Sigillata) Leaves. Acta Horticulturae Sinica. 2017(44), 23–32.
  • Shi, B. B.; Zhang, W. E.; Li, X.; Pan, X. J. Seasonal Variations of Phenolic Profiles and Antioxidant Activity of Walnut (Juglans Sigillata Dode) Green Husks. Int. J. Food Prop. 2017, 20(sup3), S2635–S2646. DOI: 10.1080/10942912.2017.1381706.
  • Wu, G. L.; Zhang, L. Y.; Pan, Q. H.; Shen, Y. Y., and Zhang, D. P. Phloem Unloading in Developing Walnut Fruit Is Symplasmic in the Seed Pericarp and Apoplasmic in the Fleshy Pericarp. Plant Cell Physiol. 2004, 45(10), 1461–1470. DOI: 10.1093/pcp/pch169.
  • Wu, G. L.; Liu, Q. L.; Teixeira da Silva,; da Silva Jat, J. A. Ultrastructure of Pericarp and Seed Capsule Cells in the Developing Walnut (Juglans Regia L.) Fruits. S. A. J. Botany. 2009, 75(1), 128–136. DOI: 10.1016/j.sajb.2008.09.001.
  • Hu, Z. W. Study on the Changes of Main Mineral Element Contents in Leaves and Fruitss during the kernel-filling Period of Precocious Walnut; Hebei Agricultural University: Hebei, 2011.
  • Trandafir, I.; Cosmulescu, S.; Botu, M.; Nour, V. Antioxidant Activity, and Phenolic and Mineral Contents of the Walnut Kernel (Juglans Regia L.) as a Function of the Pellicle Color. Fruits. 2016, 71(3), 177–184. DOI: 10.1051/fruits/2016006.
  • Figueroa, F.; Marhuenda, J.; Zafrilla, P.; Villano, D.; Martinez-Cacha, A.; Tejada, L.; Cerda, B.; Mulero, J. High-performance Liquid chromatography-diode Array Detector Determination and Availability of Phenolic Compounds in 10 Genotypes of Walnuts. Int. J. Food Prop. 2016, 20, 1–33.
  • Robinson, P. K. (2015). Enzymes: Principles and Biotechnological Applications. Essays in Biochemistry. 2015, 59: 1–41. DOI: 10.1042/bse0590001.
  • Ren, T. Y.; Zheng, P. C.; Zhang, K. X.; Liao, J. R.; Xiong, F.; Shen, Q.; Ma, Y. C.; Fang, W. P.; Zhu, X. J. Effects of GABA on the Polyphenol Accumulation and Antioxidant Activities in Tea Plants (Camellia Sinensis L.) under heat-stress Conditions. Plant Physiol. Biochem. 2021, 159, 363–371. DOI: 10.1016/j.plaphy.2021.01.003.
  • Zhang, Z. Z.; Li, C. Y. N., XX; Zhang, M. X.; Wen, Y. Q.; Duan, C. Q.; Pan, Q. H. Three Types of Ultraviolet Irradiation Differentially Promote Expression of Shikimate Pathway Genes and Production of Anthocyanins in Grape Berries. Plant Physiol. Biochem. 2012, 57, 74–83. DOI: 10.1016/j.plaphy.2012.05.005.
  • Persic, M.; Mikulic-Petkovsek, M.; Halbwirth, H.; Solar, A.; Veberic, R.; Slatnar, A. Red Walnut: Characterization of the Phenolic Profiles, Activities and Gene Expression of Selected Enzymes Related to the Phenylpropanoid Pathway in Pellicle during Walnut Development. J. Agric. Food Chem. 2018, 66(11), 2742–2748. DOI: 10.1021/acs.jafc.7b05603.
  • Sabraoui, T.; Taleb, N.; Boubker, E.; Rabiaa, M. A., and Benbachir, M. Determination of Punicalagins Content, Metal Chelating, and Antioxidant Properties of Edible Pomegranate (Punica Granatum L) Peels and Seeds Grown in Morocco. Int. J. Food Sci. Technol. 2020, 8885889.
  • Sheng, F.; Hu, B.; Jin, Q.; Wang, J.; Wu, C.; Luo, Z. The Analysis of Phenolic Compounds in Walnut Husk and Pellicle by UPLC-Q-Orbitrap HRMS and HPLC. Molecules. 2021, 26(10), 3013. DOI: 10.3390/molecules26103013.
  • Yeoh, W. K.; Ali, A. Ultrasound Treatment on Phenolic Metabolism and Antioxidant Capacity of fresh-cut Pineapple during Cold Storage. Food Chem. 2017, 216, 247–253. DOI: 10.1016/j.foodchem.2016.07.074.
  • Ortega-Garcia, F.; Peragon, J. Phenol Metabolism in the Leaves of the Olive Tree (Olea Europaea L.) Cv. Picual, Verdial, Arbequina, and Frantoio during Ripening. J. Agric. Food Chem. 2010, 58(23), 12440–12448. DOI: 10.1021/jf102827m.
  • Alberstein, M.; Eisenstein, M.; Abeliovich, H. Removing Allosteric Feedback Inhibition of Tomato 4-coumarate:CoA Ligase by Directed Evolution. Plant J. 2012, 69(1), 57–69. DOI: 10.1111/j.1365-313X.2011.04770.x.
  • Rani, A.; Singh, K.; Sood, P.; Kumar, S.; Ahuja, P. S. p-Coumarate: CoA Ligase as a Key Gene in the Yield of Catechins in Tea [Camellia Sinensis (L.) O. Kuntze]. Functional & Integrative Genomics. 2006, 9, 271–275.
  • Lin, Y. F.; Lin, H. T.; Lin, Y. X.; Zhang, S.; Chen, Y. H.; Jiang, X. J. The Roles of Metabolism of Membrane Lipids and Phenolics in Hydrogen peroxide-induced Pericarp Browning of Harvested Longan Fruit. Postharvest. Biol. Technol. 2016, 111, 53–61. DOI: 10.1016/j.postharvbio.2015.07.030.
  • Araji, S.; Grammer, T. A.; Gertzen, R.; Anderson, S. D.; Mikulic-Petkovsek, M.; Veberic, R.; Phu, M. L.; Solar, A.; Leslie, C. A., and Dandekar, A. M. Novel Roles for the Polyphenol Oxidase Enzyme in Secondary Metabolism and the Regulation of Cell Death in Walnut. Plant Physiol. 2014, 164(3), 1191–1203. DOI: 10.1104/pp.113.228593.