2,592
Views
2
CrossRef citations to date
0
Altmetric
Review

A review of the nutritional properties of different varieties and byproducts of peach palm (Bactris gasipaes) and their potential as functional foods

, , &
Pages 2146-2165 | Received 06 Jul 2022, Accepted 16 Sep 2022, Published online: 25 Sep 2022

References

  • Costa, R. D. S.; Rodrigues, A. M. C.; Laurindo, J. B.; Silva, L. H. M. Development of Dehydrated Products from Peach palm–tucupi Blends with Edible Film Characteristics Using Refractive Window. J. Food Sci. Technol. 2019, 56(2), 560–570. DOI: 10.1007/s13197-018-3454-x.
  • Felisberto, M. H. F.; Costa, M. S.; Boas, F. V.; Leivas, C. L.; Franco, C. M. L.; De Souza, S. M.; Clerici, M. T. P. S.; Cordeiro, L. M. C. Characterization and Technological Properties of Peach Palm (Bactris Gasipaes Var. Gasipaes) Fruit Starch. Food Res. Int. 2020, 136:1‒8. DOI: 10.1016/j.foodres.2020.109569.
  • Matos, K. A. N.; Lima, D. P.; Barbosa, A. P. P.; Mercadante, A. Z.; Chisté, R. C. Peels of Tucumã (Astrocaryum Vulgare) and Peach Palm (Bactris Gasipaes) are Byproducts Classified as Very High Carotenoid Sources. Food Chem. 2019, 272(1), 216. DOI: 10.1016/j.foodchem.2018.08.053.
  • Queiroz, L. S.; de Souza, L. K. C.; Thomaz, K. T. C.; Leite Lima, E. T.; da Rocha Filho, G. N. Activated Carbon Obtained from Amazonian Biomass Tailings (Acai Seed): Modification, Characterization, and Use for Removal of Metal Ions from Water. J. Environ. Manage. 2020, 270, 1‒8. doi: 10.1016/j.jenvman.2020.110868.
  • Santos, O. V.; Gonçalves, B. S.; Macêdo, C. S.; Conceição, L. R. V.; Costa, C. E. F.; Monteiro Júnior, O. V.; Souza, A. L. G.; Lannes, S. C. S. Evaluation of Quality Parameters and Chromatographic, Spectroscopic, and Thermogravimetric Profile of Patauá Oil (Oenocarpus Bataua). Food Sci. Technol. 2020a, 40(1), 76‒82. DOI: 10.1590/fst.01619.
  • Oliveira, D. A.; Mezzomo, N.; Gomes, C.; Ferreira, S. R. S. Encapsulation of Passion Fruit Seed Oil by Means of Supercritical Antisolvent Process. J. Supercrit. Fluids. 2017, 129, 96‒105. doi: 10.1016/j.supflu.2017.02.011.
  • Peixoto Araujo, N. M.; Arruda, H. S.; Marques, D. R. P.; de Oliveira, W. Q.; Pereira, G. A.; Pastore, G. M. Functional and Nutritional Properties of Selected Amazon Fruits: A Review. Food Res. Int. 2021, 147(110520:1‒19), 110520. DOI: 10.1016/j.foodres.2021.110520.
  • Sato, M. K.; de Lima, H. V.; Noronha Costa, A.; Rodrigues, S.; Mooney, S. J.; Clarke, M.; Silva Pedroso, A. J.; de Freitas Maia, C. M. B. Biochar as a Sustainable Alternative to Açaí Waste Disposal in Amazon, Brazil. Process Saf. Environ. Prot. 2020, 39:36‒46. DOI: 10.1016/j.psep.2020.04.001.
  • Silva, J. S.; Ortiz, D. W.; Garcia, L. G. C.; Asquieri, E. R.; Becker, F. S.; Damiani, C. Effect of Drying on Nutritional Composition, Antioxidant Capacity and Bioactive Compounds of Fruits Coproducts. Food Sci. Technol. 2020, 40(4), 810. DOI: 10.1590/fst.21419.
  • Chisté, R. C.; Costa, E. L. N.; Monteiro, S. F.; Mercadante, A. Z. Carotenoid and Phenolic Compound Profiles of Cooked Pulps of Orange and Yellow Peach Palm Fruits (Bactris Gasipaes) from the Brazilian Amazonia. J. Food Compost. Anal. 2021, 99, 103873. DOI: 10.1016/j.jfca.2021.103873.
  • Rojas-Garbanzo, C.; Pérez, A. M.; Vaillant, F.; Pineda-Castro, M. L. Pineda-Castro. Physicochemical and Antioxidant Composition of Fresh Peach Palm (Bactris Gasipaes Kunth) Fruits in Costa Rica. Brazilian journal food technology. 2016, 191, 1‒9. DOI:10.1590/1981-6723.9715.
  • Embrapa – Empresa Brasileira de Pesquisa Agropecuária. 2019a. Transferência de tecnologia florestal - Pupunha. Banco de dados on-line da Embrapa. [cited 2022 Feb 25]. https://www.embrapa.br/florestas/transferencia-detecnologia/pupunha/tema
  • Franchetti, M., and Rozane, D. E. Palmito pupunha: Do plantio a colheita (UNESP, São Paulo), 2017; pp 175.
  • Martinez, J. M.; Moreno-Caicedo, L. P. Loaiza-Loaiza, O. A. Sensory Dimensions of peach-palm Fruit (Bactris Gasipaes) and Implications for Future Genetics. Agronomía Mesoamericana. 2021, 321, 77‒92. DOI:10.15517/am.v32i1.41348.
  • Aguiar, J. P. L.; Yuyama, K.; Souza, F. D. C. D. A. Caracterização dos frutos de Pupunheira (Bactris gasipaes Kunth) cultivada na vila do Equador, RR: O que há de novo? Scientia Amazonia 2019, 8(1), 1‒5.
  • Yuyama, L. K. O.; Aguiar, J. P. L.; Yuyama, K.; Clement, C. R.; Macedo, S. H. M.; Fávaro, D. I. T.; Afonso, C.; Vasconcellos, M. B. A.; Pimentel, S. A.; Badolato, E. S. G., et al. Chemical Composition of the Fruit Mesocarp of Three Peach Palm (Bactris Gasipaes) Populations Grown in Central Amazonia, Brazil. Int. J. Food Sci. Nutr. 2003, 54(1), 49‒56. DOI: 10.1080/096374803/000061994.
  • Leterme, P.; García, M. F.; Londono, A. M.; Rojas, M. G.; Buldgen, A.; Souffrant, W. B. Chemical Composition and Nutritive Value of Peach Palm (Bactris Gasipaes Kunth) in Rats. J. Sci. Food Agric. 2005, 85:1505‒12. DOI: 10.1002/jsfa.2146.
  • Melo Neto, B. A.; Fornari Junior, C. C. M.; Silva, E. G. P.; Franco, M.; Reis, N. S.; Bonomo, R. C. F.; Almeida, P. F.; Pontes, K. V. Biodegradable Thermoplastic Starch of Peach Palm (Bactris Gasipaes Kunth) Fruit: Production and Characterization. Int. J. Food Prop. 2017b, 20(S3), 2430. DOI: 10.1080/10942912.2017.1372472.
  • Santos, M. F. G.; Alves, R. E.; Brito, E. S.; Silva, S. M.; Silveira, M. R. S. Quality Characteristis of Fruits and Oils of Palms Native to the Brazilian Amazon. Rev. Bras. Frutic. 2017b, 39:1‒6. DOI: 10.1590/0100-29452017.
  • Santos, O. V.; Soares, S. D.; Dias, P. C. S.; Duarte, S. D. P. A.; Santos, M. P. L.; Nascimento, F. D. C. A. Chromatographic Profile and Bioactive Compounds Found in the Composition of Pupunha Oil (Bactris Gasipaes Kunth): Implications for Human Health. Revista de Nutrição. 2020b, 33, e190146. DOI: 10.1590/1678-9805202033e190146.
  • Mujica, F.; Viky, C.; Del Carmen Rodriguez, S. M. Evaluation of Oil Properties of Fruit Pulp Pijiguao (Bactris Gasipaes HBK) for Use in Cosmetics Industry. Revista Ingenieria UC 2017, 24(3), 314.
  • Restrepo, J.; Estupinán, J. A.; Colmenares, A. J. Estudio comparativo de las fracciones lipídicas de Bactris gasipaes Kunth (chontaduro) obtenidas por extracción Soxhlet y por extracción con CO2 supercrítico. Química aplicada y analítica. 2016, 451, 5‒9. DOI:10.15446/rev.colomb.quim.v45n1.57199.
  • GBIF – Global Biodiversity Information Facility. 2019. Bactris Gasipaes Var. Gasipaes Kunth. GBIF Online Database. [cited 2022 Mar 15]. https://www.gbif.org/pt/species/2733062
  • Galluzzi, G.; Dufour, D.; Thomas, E.; Van Zonneveld, M.; Salamanca, A. F. E.; Toro, A.; Rivera, A.; Duque, H. S.; Baron, H. S.; Gallego, G., et al. An Integrated Hypothesis on the Domestication of Bactris Gasipaes. PLoS ONE.2015, 10(12), 1‒25. DOI: 10.1371/journal.pone.0144644.
  • Lorenzi, H. Bactris in Flora E Funga Do Brasil. 2022. Jardim Botânico do Rio de Janeiro.: <https://floradobrasil.jbrj.gov.br/FB22106>. August 27, 2022.
  • Silva, M. G. C. P. C.; Vieira, E. S. Descrição morfológica dos frutos de pupunheira no sul da bahia-acesso yurimáguas, Peru. Agrotrópica. 2012, 24(3), 133. DOI: 10.21757/0103-3816.2012v24n3p133-136.
  • IBGE – Instituto Brasileiro de Geografia e Estatística. 2017. Censo Agropecuário, resultados definitivos. Pupunha – Cachos de frutas | Brasil. Banco de dados on-line do IBGE. [cited 2022 Mar 18]. https://censoagro2017.ibge.gov.br/templates/censo_agro/resultadosagro/agricultura.html? Locality = 0 & theme = 78309.
  • Santos, M. A. S.; Protázio, D. C.; Costa, G. P.; Rebello, F. K.; Martins, C. M.; Bezerra, A. S.; Nogueira, A. S. Profile of Peach Palm Fruit Consumers in the Metropolitan Region of Belém, Pará, Brazilian Amazon. International Journal for Innovation Education and Research. 2021, 91, 550. DOI:10.31686/ijier.vol9.iss1.2929.
  • Melo, C. M. T.; Costa, L. L.; Pereira, F. C.; De Castro, L. M.; Nepumoceno, S. Análises físico-químicas do fruto “in natura” da pupunha. Revista Inova Ciência & Tecnologia 2017, 3(1), 13.
  • Ferreira, C. D.; Pena, R. S. Hygroscopic Behavior of Pupunha Flour (Bactris Gasipaes). Food Sci. Technol. 2003, 23(2), 5–251. DOI: 10.1590/S0101-20612003000200025.
  • Rojas-Garbanzo, C.; Pérez, A. M.; Pineda-Castro, M. L.; Vaillant, F. Major Physicochemical and Antioxidant Changes during peach-palm (Bactris Gasipaes H.B.K.) Flour Processing. Fruits. 2012, 67(6), 415. DOI: 10.1051/fruits/2012035.
  • Carvalho, A. V.; Beckman, J. C.; de Almeida Maciel, R.; Farias Neto, J. T. Características físicas e químicas de frutos de pupunheira no estado do Pará. Rev. Bras. Frutic. 2013a, 35(3), 763. DOI: 10.1590/S0100-29452013000300013.
  • Basto, G. J.; Carvalho, C. W. P.; Soares, A. G.; Costa, H. T. G. B.; Chávez, D. W. H.; Godoy, R. L. O.; Pacheco, S. Physicochemical Properties and Carotenoid Content of Extruded and Nonextruded Corn and Peach Palm (Bactris Gasipaes, Kunth). LWT - Food Sci. Technol. 2016, 69:312‒18. DOI: 10.1016/j.lwt.2015.12.065.
  • Santos, B. W.; Ferreira, F. M.; Souza, V. F. D.; Clement, C. R.; Rocha, R. B. Análise discriminante das características físicas e químicas de frutos de pupunha (Bactris gasipaes Kunth) do alto Rio Madeira, Rondônia, Brasil. Científica. 2017a, 45(2), 154. DOI: 10.15361/1984-5529.2017v45n2p154-161.
  • Pires, M. B.; Amante, E. R.; Lopes, A. S.; Rodrigues, A. M. D. C.; Silva, L. H. M. D. Peach Palm Flour (Bactris Gasipaes Kunth): Potential Application in the Food Industry. Food Sci. Technol. 2019, 39(3), 613. DOI: 10.1590/fst.34617.
  • Melo Neto, B. A.; Fernandes, B. S.; Fornari Junior, C. C. M.; Franco, M.; Bonomo, R. C. F.; Almeida, P. F.; Pontes, K. V. Thermal-morphological Characterization of Starch from peach-palm (Bactris Gasipaes Kunth) Fruit (Pejibaye). Int. J. Food Prop. 2017a, 20(5), 1007–1015. DOI: 10.1080/10942912.2016.1192645.
  • Pires, M. B.; Amante, E. R.; Petkowicz, C. L. O.; Esmerino, E. A.; Rodrigues, A. M. D. C.; Silva, L. H. M. D. Impact of Extraction Methods and Genotypes on the Properties of Starch from Peach Palm (Bactris Gasipaes Kunth) Fruits. Food Sci. Technol. 2021, 150, 111983. DOI: 10.1016/j.lwt.2021.111983.
  • Valencia, G. A.; Moraes, I. C. F.; Lourenço, R. V.; Sobral, P. J. D. A.; Sobral, P. J. D. A. Physicochemical, Morphological, and Functional Properties of Flour and Starch from Peach Palm (Bactris Gasipaes K.) Fruit. Starch - Stärke. 2015, 67(1–2), 163. DOI: 10.1002/star.201400097.
  • Jiménez, G.; Gómez, G.; Pérez, A. M.; Blanco-Metzler, A. Estimation of Glycemic Index of Peach Palm (Bactris Gasipaes) Cooked Fruits and Chips, and Pitahaya (Hylocereus Spp.) Pulp. Archivos latinoamericanos de nutrición 2012, 62(3), 242.
  • IOM. Institute of Medicine. Dietary Reference Intakes: Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids; National Academies Press; 2005: Washington, D.C.
  • Jefferson, A.; Adolphus, K.; Castanas, E.; Kampa, M. The Effects of Intact Cereal Grain Fibers, Including Wheat Bran on the Gut Microbiota Composition of Healthy Adults: A Systematic Review. Front. Nutrit. 2019, 6, 6. DOI: 10.3389/fnut.2019.00006.
  • Tosh, S. M.; Bordenave, N. Emerging Science on Benefits of Whole Grain Oat and Barley and Their Soluble Dietary Fibers for Heart Health, Glycemic Response, and Gut Microbiota. Nutr. Rev. 2020, 78:13‒20. DOI: 10.1093/NUTRIT/NUZ085.
  • Cantu-Jungles, T. M.; Cipriani, T. R.; Iacomini, M.; Hamaker, B. R.; Cordeiro, L. M. C. A Pectic Polysaccharide from Peach Palm Fruits (Bactris Gasipaes) and Its Fermentation Profile by the Human Gut Microbiota in Vitro. Bioactive Carbohydrates and Dietary Fiber. 9:1‒6, 2016. DOI:10.1016/j.bcdf.2016.11.005
  • Santos, R. C.; Chagas, E. A.; Melo Filho, A. A.; Takahashi, J. A.; Montero, I. F.; Santos, G. F.; Chagas, P. C.; Melo, A. C. G. R. Chemical Characterization of Oils and Fats from Amazonian Fruits by 1H NMR. Chem. Eng. Trans. 2018, 64:235‒40. DOI: 10.3303/CET1864040.
  • Rufino, M. D. S. M.; Nazareno, L. S. Q.; Alves, R. E.; Fernandes, F. A. N. Kinetic Modeling and Evaluation of Free radical-scavenging Behavior in Oils: Application to Four Tropical and Subtropical Fruits in a DPPH System. Food Sci. Technol. 2020, 40(2), 440. DOI: 10.1590/fst.03819.
  • Kozlowska, M.; Gruczynska, E. Comparison of the Oxidative Stability of Soybean and Sunflower Oils Enriched with Herbal Plant Extracts. Chem. Pap. 2018, 72(10), 2607–2615. DOI: 10.1007/s11696-018-0516-5.
  • Calder, P. C. Omega-3 Fatty Acids and Inflammatory Processes: From Molecules to Man. Biochem. Soc. Trans. 2017, 45(5), 1105. DOI: 10.1042/BST20160474.
  • Fabian, C. J.; Kimler, B. F.; Philips, T. A.; Box, J. A.; Kreutzjan, A. L.; Carlson, S. E.; Hidaka, B. H.; Metheny, T.; Zalles, C. M.; Mills, G. B., et al. Modulation of Breast Cancer Risk Biomarkers by high-dose Omega-3 Fatty Acids: Phase II Pilot Study in Premenopausal Women. Cancer Prev. Res. 2015, 8(10), 912. DOI: 10.1158/1940-6207.CAPR-14-0335.
  • Elagizi, A.; Lavie, C. J.; Keefe, E. O.; Marshall, K.; Keefe, J. H. O.; Milani, R. V. An Update on Omega-3 Polyunsaturated Fatty Acids and Cardiovascular Health. Nutrients. 2021, 204(13), 1–12. DOI: 10.3390/nu13010204.
  • Estruch, R.; Ros, E.; Salas-Salvadó, J.; Covas, M. I.; Corella, D.; Arós, F.; Gómez-Gracia, E.; Ruiz-Gutiérrez, V.; Fiol, M.; Lapetra, J., et al. Primary Prevention of Cardiovascular Disease with a Mediterranean Diet Supplemented with extra-virgin Olive Oil or Nuts. N. Engl. J. Med. 2018, 378(25), 1‒15. DOI: 10.1056/nejmoa1800389.
  • Doménech, M.; Roman, P.; Lapetra, J.; Garcia, F. J.; Sala-Vila, A.; de la Torre, R.; Corella, D.; Salas-Salvadó, J.; Ruiz-Gutierrez, V.; Lamuela-Raventós, R. M., et al. Mediterranean Diet Reduces 24-hour Ambulatory Blood Pressure, Blood Glucose, and Lipids: One-year Randomized, Clinical Trial. Hypertension.2014, 64(1), 69‒76. DOI: 10.1161/HYPERTENSIONAHA.113.03353.
  • Darwesh, A. M.; Bassiouni, W.; Sosnowski, D. K.; Seubert, J. M. Can N-3 Polyunsaturated Fatty Acids Be Considered a Potential Adjuvante Therapy for COVID-19-associated Cardiovascular Complications? Pharmacol. Ther. 2021, 219:1‒27. DOI: 10.1016/j.pharmthera.2020.107703.
  • Rogero, M. M.; Leão, M. C.; Santana, T. M.; Pimentel, M. V. M. B.; Carlini, G. C. G.; Silveira, T. F. F.; Gonçalves, R. C.; Castro, I. A. Potential Benefits and Risks of Omega-3 Fatty Acids Supplementation to Patients with COVID-19. Free Radical Biol. Med. 2020, 156:190‒9. DOI: 10.1016/j.freeradbiomed.2020.07.005.
  • Weill, P.; Plissonneau, C.; Legrand, P.; Rioux, V.; Thibault, R. May Omega-3 Fatty Acid Dietary Supplementation Help Reduce Severe Complications in Covid-19 Patients? Biochimie. 2020, 179, 275–280. DOI: 10.1016/j.biochi.2020.09.003.
  • Romano, L.; Bilotta, F.; Dauri, M.; Macheda, S.; Pujia, A.; de Santis, G. L.; Tarsitano, M. G.; Merra, G.; Renzo, L. D. I.; Esposito, E., et al. Short Report – Medical Nutrition Therapy for Critically Ill Patients with COVID-19. Eur. Rev. Med. Pharmacol. Sci. 2020, 24(7), 39–4035. DOI: 10.26355/EURREV_202004_20874.
  • Zheng, B.; Wang, T.; Wang, H.; Chen, L., and Zhou, Z. 2022. Studies on Nutritional Intervention of Rice starch-oleic Acid Complex (Resistant Starch Type V) in Rats Fed by high-fat Diet. Carbohydr. Polym. 246: 1–10. doi: 10.1016/j.carbpol.2020.116637.
  • Zhao, Z.; Shi, A.; Wang, Q.; Zhou, J. High Oleic Acid Peanut Oil and Extra Virgin Olive Oil Supplementation Attenuate Metabolic Syndrome in Rats by Modulating the Gut Microbiota. Nutrients. 2019, 11(12), 1–13. DOI: 10.3390/nu11123005.
  • Pastor, R.; Bouzas, C.; Tur, J. A. Beneficial Effects of Dietary Supplementation with Olive Oil, Oleic Acid, or Hydroxytyrosol in Metabolic Syndrome: Systematic Review and meta-analysis. Free Radical Biol. Med. 2021, 172, 372–385. DOI: 10.1016/j.freeradbiomed.2021.06.017.
  • Jatunov, S.; Quesada, S.; Díaz, C.; Murillo, E. Carotenoid Composition and Antioxidant Activity of the Raw and Boiled Fruit Mesocarp of Six Varieties of. Bactris gasipaes. Archivos latinoamericanos de nutricion 2010, 60(1), 99‒104.
  • Quesada, S.; Azofeifa, G.; Jatunov, S.; Jiménez, G.; Navarro, L.; Gómez, G. Carotenoids Composition, Antioxidant Activity and Glycemic Index of Two Varieties of. Bactris gasipaes. Emirates Journal of Food and Agriculture 2011, 23(6), 482.
  • Rodriguez-Amaya, D. B. Update on Natural Food Pigments – A mini-review on Carotenoids, Anthocyanins, and Betalains. Food Res. Int. 2018, 124:200‒5. DOI: 10.1016/j.foodres.2018.05.028.
  • Boon, C. S.; Mcclements, D. J.; Weiss, J.; Decker, A. Factors Influencing the Chemical Stability of Carotenoids in Foods. Crit. Rev. Food Sci. Nutr. 2010, 50(6), 515. DOI: 10.1080/10408390802565889.
  • Hempel, J.; Amrehn, E.; Quesada, S.; Esquivel, P.; Jiménez, V. M.; Heller, A.; Carle, R.; Schweiggert, R. M. Lipid-dissolved γ-carotene, β-carotene, and Lycopene in Globular Chromoplasts of Peach Palm (Bactris Gasipaes Kunth) Fruits. Plants. 2014, 240(5), 1037. DOI: 10.1007/s00425-014-2121-3.
  • Mesquita, L. M. S.; Neves, B. V.; Pisani, L. P.; De Rosso, V. V. Mayonnaise as a Model Food for Improving the Bioaccessibility of Carotenoids from Bactris Gasipaes Fruits. LWT- Food Sci. Technol. 2020, 122(109022), 1‒7. DOI: 10.1016/j.lwt.2020.109022.
  • Cortés, C.; Esteve, M. J.; Frígola, A.; Torregrosa, F. Identification and Quantification of Carotenoids Including Geometrical Isomers in Fruit and Vegetables Juices by Liquid Chromatography with Ultraviolet-Diode Array Detection. J. Agric. Food Chem. 2004, 52(8), 2203–2212. DOI: 10.1021/jf035505y.
  • Xavier, A. A. O.; Mercadante, A. Z. The Bioaccessibility of Carotenoids Impacts the Design of Functional Foods. Curr. Opin. Food Sci. 2019, 26(26), 1–8. DOI: 10.1016/j.cofs.2019.02.015.
  • Amengual, J. Bioactive Properties of Carotenoids in Human Health. Nutrients. 2019, 11(10), 1‒6. DOI: 10.3390/nu11102388.
  • Blaak, E. E.; Canfora, E. E.; Theis, S.; Frost, G.; Groen, A. K.; Mithieux, G.; Nauta, A.; Scott, K.; Stahl, B.; Harsselaar, J. V., et al. Short-chain Fatty Acids in Human Gut and Metabolic Health. Beneficial Microbes.2020, 11(5), 411. DOI: 10.3920/BM2020.0057.
  • Lawler, T.; Liu, Z.; Tinker, L.; Johnson, E.; Hammond, B. R.; Gangnon, R.; Engelman, C.; Wallace, R.; Liu, Y.; Bailey, S. T., et al. Relationship between Mediterranean Diet Pattern and Macular Pigment Optical Density in the Carotenoids in Age-Related Eye Disease Study (CAREDS), an Ancillary Study of the Women’s Health Initiative (WHI). Investigative Ophthalmology & Visual Science. 2020, 61(7), 4977.
  • Fritsch, C.; Staebler, A.; Happel, A.; Márquez, M. A. C.; Aguiló-Aguayo, I.; Abadias, M.; Gallur, M.; Cigognini, I. M.; Montanari, A.; López, M. J., et al. 2017. Processing, Valorization and Application of Biowaste Derived Compounds from Potato, Tomato, Olive and Cereals: A Review. Sustainability (Switzerland). 9(8), 1–46, DOI: 10.3390/su9081492.
  • Danesi, E. D. G.; Granato, D.; Iwassa, I. J.; Pinzon, C.; Bolanho, B. C. Effects of Industrial Byproducts from Orange, Peach Palm and Soybean on the Quality Traits and Antioxidant Activity of Flours: A Response Surface Approach. Int. Food Res. J. 2018, 25(3), 1219.
  • Santos, I. L.; Schmiele, M.; Aguiar, J. P. L.; Steel, C. J.; Paiva, E. P.; Souza, F. C. A. Evaluation of Extruded Corn Breakfast Cereal Enriched with Whole Peach Palm (Bactris Gasipaes, Kunth) Flour. Food Sci. Technol. 2020c, 40(2), 458. DOI: 10.1590/fst.04019.
  • Torres‐Vargas, O. L.; Luzardo‐Ocampo, I.; Hernandez‐Becerra, E.; Rodríguez‐García, M. E. Physicochemical Characterization of Unripe and Ripe Chontaduro (Bactris Gasipaes Kunth) Fruit Flours and Starches. Starch - Stärke. 2021, 73(7–8), 2000242. DOI: 10.1002/star.202000242.
  • Fernández-Cordero, P.; Mora-Molina, J.; Obando-Ulloa, J. M.; Arguedas-Gamboa, P. Desarrollo de una torta precocida nutracéutica a partir de materiales vegetales biofortificados para adultos mayores. Revista Tecnología En Marcha. 2018, 311, 110. DOI:10.18845/tm.v31i1.3501.
  • Zapata, J. I. H.; La Pava, G. C. R. Propiedades texturales y sensoriales de salchichas de tilapia roja (Oreochromis sp.) con adición de harina de chontaduro (Bactris gasipaes). Ingeniería y Desarrollo. 2015, 332, 198‒215. DOI:10.14482/inde.33.2.6332.
  • Martínez-Giron, J.; Figueroa-Molano, A. M.; Ordónez-Santos, L. E. Effect of the Addition of Peach Palm (Bactris Gasipaes) Peel Flour on the Color and Sensory Properties of Cakes. Food Sci. Technol. 2017, 37(3), 418. DOI: 10.1590/1678-457X.14916.
  • Ordónez-Santos, L. E.; Martínez-Giron, J.; Figueroa-Molano, A. M. Effect of the Addition of Peach Palm (Bactris Gasipaes) Peel Flour on the Color and Sensory Properties of Wheat Bread. Revista de Ciências Agrárias. 2016, 39(3), 456. DOI: 10.19084/RCA16008.
  • Pinzón-Zárate, L. X.; Hleap-Zapata, J. I.; Ordonez-Santos, L. E. Análisis de los parámetros de color en salchichas frankfurt adicionadas con extracto oleoso de residuos de chontaduro (Bactris gasipaes). Informacion Tecnologica. 2015, 265, 45‒54. DOI:10.4067/S0718-07642015000500007.
  • Bolanho, B. C.; Danesi, E. D. G.; Beléia, A. D. P. Carbohydrate Composition of Peach Palm (Bactris Gasipaes Kunth) Byproducts Flours. Carbohydr. Polym. 2015, 124:196‒200. DOI: 10.1016/j.carbpol.2015.02.021.
  • Stevanato, N.; Ribeiro, T. H.; Giombelli, C.; Cardoso, T.; Wojeicchowski, J. P.; Dalva, E.; Danesi, G.; Barros, B. C. B. Effect of Canning on the Antioxidant Activity, Fiber Content, and Mechanical Properties of Different Parts of Peach Palm Heart. Journal of food processing preservation. e14554:1‒8, 2020. DOI:10.1111/jfpp.14554
  • Ribeiro, J. C.; Pereira, M. G.; Gadioli, J. L.; Almeida, J. C. R. Litterfall Dynamics and Nutrient Cycling in an Experimental Plantation of Peach Palm (Bactris Gasipaes Kunth). Floresta e Ambiente. 2021, 272, 1‒9. DOI:10.1590/2179-8087.021018.
  • Gómez, G.; Quesada, S.; Nanne, C. I. Efecto de factores antinutricionales en el pejibaye (Bactris gasipaes) sobre el metabolismo de ratas jovenes. Agronomfa Costarricense 1998, 22(2), 191‒198.
  • Yuyama, L. K. O.; Yonekura, L.; Aguiar, J. O. L.; Sousa, R. F. S. Biodisponibilidade de vitamina a da pupunha (Bactris gasipaes kunth) em ratos. Acta Amazonica. 1999, 29(3), 497‒500. DOI: 10.1590/1809-43921999293500.
  • Baldizán, G.; Oviedo, M.; Michelangeli, C.; Vargas, R. E. Effects of Peach Palm Oil on Performance, Serum Lipoproteins and Hemostasis in Broilers. British Poul. Sci. 2010, 51(6), 784. DOI: 10.1080/00071668.2010.526925.
  • Araújo, M. L.; Silva, C. F. C.; Souza, R. M.; Melhorança Filho, A. L. Atividade antimicrobiana de óleos extraídos de açaí e de pupunha sobre o desenvolvimento de Pseudomonas aeruginosa e. Staphylococcus aureus. Bioscience Journal 2013, 29(4), 90–985.
  • Carvalho, R. P.; Lemos, J. R. G.; Sales, R. S. A.; Martins, M. G.; Nascimento, C. H.; Bayona, M.; Marcon, J. L.; Monteiro, J. B. The Consumption of Red Pupunha (Bactris Gasipaes Kunth) Increases HDL Cholesterol and Reduces Weight Gain of Lactating and Postlactating Wistar Rats. Journal of aging research and clinical practice 2013b, 2(3), 257.
  • Dos Santos, A. B.; Pereira, M. L. A.; De Oliveira Silva, H. G.; De Carvalho, G. G. P.; De Jesus Pereira, T. C.; Ribeiro, L. S. O.; Azevedo, J. A. G.; Silva, M. G. C. P. C.; Sousa, L. B. Intake, Digestibility and Performance of Lambs Fed Diets Containing Peach Palm Meal. Trop. Anim. Health Prod. 2016, 48(3), 15–509. DOI: 10.1007/s11250-015-0982-5.
  • Pereira, T. C. J.; Ribeiro, L. S. O.; Pereira, M. L. A.; Pires, A. J. V.; De Carvalho, G. G. P.; Pereira, C. A. R. Feeding Behavior of Goat Kids Fed Diets Containing Peach Palm Meal. Acta Scientiarum. 2020, 42(e47088), 1‒8. DOI: 10.4025/actascianimsci.v42i1.47088.
  • Faria, J. V.; Valido, I. H.; Paz, W. H.; Da Silva, F. M.; De Souza, A. D.; Acho, L. R.; Lima, E. S.; Boleti, A. P. A.; Marinho, J. V. N.; Salvador, M. J., et al. Comparative Evaluation of Chemical Composition and Biological Activities of Tropical Fruits Consumed in Manaus, Central Amazonia, Brazil. Food Res. Int. 2021, 139, 109836. DOI: 10.1016/j.foodres.2020.109836.
  • Alves, M. F. A.; Barreto, F. K. A.; Vasconcelos, M. A.; Nascimento Neto, L. G.; Carneiro, R. F.; Silva, L. T.; Nagano, C. S.; Sampaio, A. H.; Teixeira, E. H. Antihyperglycemic and Antioxidante Activities of a Lectin from the Marine Red Algae, Bryothamnion Seaforthii, in Rats with streptozotocin-induced Diabetes. Int. J. Biol. Macromol. 2020, 158, 773–780. DOI: 10.1016/j.ijbiomac.2020.04.238.
  • Grácio, M.; Rocha, J.; Pinto, R.; Ferreira, R. B.; Solas, J.; Eduardo-Figueira, M.; Sepodes, B.; Ribeiro, A. C. A Proposed lectin-mediated Mechanism to Explain the in Vivo Antihyperglycemic Activity of γ-conglutin from Lupinus Albus Seeds. Food Sci. Nutr. 2021, 9(11), 5980–5996. DOI: 10.1002/fsn3.2520.
  • Li, L.; Pan, M.; Pan, S.; Li, W.; Zhong, Y.; Hu, J.; Nie, S. Effects of Insoluble and Soluble Fibers Isolated from Barley on Blood Glucose, Serum Lipids, Liver Function and Caecal short-chain Fatty Acids in Type 2 Diabetic and Normal Rats. Food Chem. Toxicol. 2020, 135, 1–8. DOI: 10.1016/j.fct.2019.110937.