1,671
Views
7
CrossRef citations to date
0
Altmetric
Original Article

Preparation and characterization of sesame peptide-calcium chelate with different molecular weight

, , , &
Pages 2198-2210 | Received 04 Jul 2022, Accepted 25 Sep 2022, Published online: 29 Sep 2022

References

  • Peng, Z.; Hou, H.; Zhang, K.; Li, B. Effect of calcium-binding Peptide from Pacific Cod (Gadus Macrocephalus) Bone on Calcium Bioavailability in Rats. Food Chem. 2017, 221, 373–378. DOI: 10.1016/j.foodchem.2016.10.078.
  • Bass, J. K.; Chan, G. M. Calcium Nutrition and Metabolism during Infancy. Nutrition. 2006, 22, 1057–1066. DOI: 10.1016/j.nut.2006.05.014.
  • Miller, G. D.; Jarvis, J. K.; McBean, L. D. The Importance of Meeting Calcium Needs with Foods. J. Am. Coll. Nutr. 2001, 20, 168S–185S. DOI: 10.1080/07315724.2001.10719029.
  • Mays, S.; Brickley, M. B. Vitamin D Deficiency in Bioarchaeology and Beyond: The Study of Rickets and Osteomalacia in the past. Int J Paleopathol 2018, 23, 1–5. DOI: 10.1016/j.ijpp.2018.05.004.
  • Cha, K. H.; Yang, J. S.; Kim, K. A.; Yoon, K. Y.; Song, D. G.; Erdene-Ochir, E.; Kang, K.; Pan, C. H.; Ko, G. Improvement in Host Metabolic Homeostasis and Alteration in Gut Microbiota in Mice on the high-fat Diet: A Comparison of Calcium Supplements. Food Res. Int. 2020, 136, 109495. DOI: 10.1016/j.foodres.2020.109495.
  • Bertoni, S.; Albertini, B.; Dolci, L. S.; Passerini, N. Spray Congealed Lipid Microparticles for the Local Delivery of beta-galactosidase to the Small Intestine. Eur. J. Pharm. Biopharm. 2018, 132, 1–10. DOI: 10.1016/j.ejpb.2018.08.014.
  • Heaney, R. P.; Rafferty, K.; Dowell, M. S.; Bierman, J. Calcium Fortification Systems Differ in Bioavailability. J. Am. Diet. Assoc. 2005, 105, 807–809. DOI: 10.1016/j.jada.2005.02.012.
  • Bronner, F.; Pansu, D. Nutritional Aspects of Calcium Absorption. J. Nutr. 1999, 129, 9–12. DOI: 10.1093/jn/129.1.9.
  • Georgilis, E.; Abdelghani, M.; Pille, J.; Aydinlioglu, E.; van Hest, J. C. M.; Lecommandoux, S.; Garanger, E. Nanoparticles Based on Natural, Engineered or Synthetic Proteins and Polypeptides for Drug Delivery Applications. Int. J. Pharm. 2020, 586, 119537. DOI: 10.1016/j.ijpharm.2020.119537.
  • Zhao, C.; Chen, H.; Wang, F.; Zhang, X. Amphiphilic self-assembly Peptides: Rational Strategies to Design and Delivery for Drugs in Biomedical Applications. Colloids Surf. B Biointerfaces. 2021, 208, 112040. DOI: 10.1016/j.colsurfb.2021.112040.
  • Frohlich, E.; Salar-Behzadi, S. Oral Inhalation for Delivery of Proteins and Peptides to the Lungs. Eur. J. Pharm. Biopharm. 2021, 163, 198–211. DOI: 10.1016/j.ejpb.2021.04.003.
  • Wang, X.; Gao, A.; Chen, Y.; Zhang, X.; Li, S.; Chen, Y. Preparation of Cucumber Seed peptide-calcium Chelate by Liquid State Fermentation and Its Characterization. Food Chem. 2017, 229, 487–494. DOI: 10.1016/j.foodchem.2017.02.121.
  • Huang, W.; Lan, Y., Liao, W., et al . Preparation, Characterization and Biological Activities of Egg White peptides-calcium Chelate. Lwt. 2021, 149.
  • Liu, F. R.; Wang, L.; Wang, R.; Chen, Z. X. Calcium-binding Capacity of Wheat Germ Protein Hydrolysate and Characterization of Peptide-calcium Complex. J. Agric. Food Chem. 2013, 61, 7537–7544. DOI: 10.1021/jf401868z.
  • Wu, W.; He, L.; Liang, Y.; Yue, L.; Peng, W.; Jin, G.; Ma, M. Preparation Process Optimization of Pig Bone Collagen peptide-calcium Chelate Using Response Surface Methodology and Its Structural Characterization and Stability Analysis. Food Chem. 2019, 284, 80–89. DOI: 10.1016/j.foodchem.2019.01.103.
  • Chatterjee, R.; Dey, T. K.; Ghosh, M.; Dhar, P. Enzymatic Modification of Sesame Seed Protein, Sourced from Waste Resource for Nutraceutical Application. Food Bioprod. Process. 2015, 94, 70–81.
  • Nakano, D.; Ogura, K.; Miyakoshi, M.; Ishii, F.; Kawanishi, H.; Kurumazuka, D.; Kwak, C. J.; Ikemura, K.; Takaoka, M.; Moriguchi, S., et al. Antihypertensive Effect of Angiotensin I-converting Enzyme Inhibitory Peptides from a Sesame Protein Hydrolysate in Spontaneously Hypertensive Rats. Biosci. Biotechnol. Biochem. 2006, 70, 1118–1126. DOI: 10.1271/bbb.70.1118.
  • Jiang, X.; Pan, D.; Zhang, T.; Liu, C.; Zhang, J.; Su, M.; Wu, Z.; Zeng, X.; Sun, Y.; Guo, Y. Novel Milk casein-derived Peptides Decrease Cholesterol Micellar Solubility and Cholesterol Intestinal Absorption in Caco-2 Cells. J. Dairy Sci. 2020, 103, 3924–3936.
  • Lin, Y.; Cai, X.; Wu, X.; Lin, S.; Wang, S. Fabrication of Snapper Fish Scales Protein hydrolysate-calcium Complex and the Promotion in Calcium Cellular Uptake. J. Funct. Foods. 2020, 65, 103717. DOI: 10.1016/j.jff.2019.103717.
  • Sun, N.; Wang, Y.; Bao, Z.; Cui, P.; Wang, S.; Lin, S. Calcium Binding to Herring Egg Phosphopeptides: Binding Characteristics, Conformational Structure and Intermolecular Forces. Food Chem. 2020, 310, 125867. DOI: 10.1016/j.foodchem.2019.125867.
  • Lu, X.; Zhang, L.; Sun, Q.; Song, G.; Huang, J. Extraction, Identification and structure-activity Relationship of Antioxidant Peptides from Sesame (Sesamum Indicum L.) Protein Hydrolysate. Food Res. Int. 2019, 116, 707–716. DOI: 10.1016/j.foodres.2018.09.001.
  • Liu, W.-Y.; Feng, X.-W.; Cheng, Q.-L.; Zhao, X.-H.; Li, G.-M.; Gu, R.-Z. Identification and Action Mechanism of low-molecular-weight Peptides Derived from Atlantic Salmon (Salmo Salar L.) Skin Inhibiting Angiotensin I–converting Enzyme. Lwt. 2021, 150, 111911. DOI: 10.1016/j.lwt.2021.111911.
  • Sun, N.; Cui, P.; Jin, Z.; Wu, H.; Wang, Y.; Lin, S. Contributions of Molecular Size, Charge Distribution, and Specific Amino Acids to the iron-binding Capacity of Sea Cucumber (Stichopus Japonicus) Ovum Hydrolysates. Food Chem. 2017, 230, 627–636. DOI: 10.1016/j.foodchem.2017.03.077.
  • Zhang, X.; Jia, Q.; Li, M.; Liu, H.; Wang, Q.; Wu, Y.; Niu, L.; Liu, Z. Isolation of a Novel calcium-binding Peptide from Phosvitin Hydrolysates and the Study of Its Calcium Chelation Mechanism. Food Res. Int. 2021, 141, 110169. DOI: 10.1016/j.foodres.2021.110169.
  • Liao, W.; Liu, S.; Liu, X.; Duan, S.; Xiao, S.; Yang, Z.; Cao, Y.; Miao, J. The Purification, Identification and Bioactivity Study of a Novel calcium-binding Peptide from Casein Hydrolysate. Food Funct. 2019, 10, 7724–7732. DOI: 10.1039/C9FO01383K.
  • Wang, L.; Ding, Y.; Zhang, X.; Li, Y.; Wang, R.; Luo, X.; Li, Y.; Li, J.; Chen, Z. Isolation of a Novel calcium-binding Peptide from Wheat Germ Protein Hydrolysates and the Prediction for Its Mechanism of Combination. Food Chem. 2018, 239, 416–426. DOI: 10.1016/j.foodchem.2017.06.090.
  • Gao, Y.; Li, J.; Chang, C.; Wang, C.; Yang, Y.; Su, Y. Effect of Enzymatic Hydrolysis on Heat Stability and Emulsifying Properties of Egg Yolk. Food Hydrocolloids. 2019, 97, 105224. DOI: 10.1016/j.foodhyd.2019.105224.
  • Ai, M.; Tang, T.; Zhou, L.; Ling, Z.; Guo, S.; Jiang, A. Effects of Different Proteases on the Emulsifying Capacity, Rheological and Structure Characteristics of Preserved Egg White Hydrolysates. Food Hydrocolloids. 2019, 87, 933–942. DOI: 10.1016/j.foodhyd.2018.09.023.
  • Sun, R.; Liu, X.; Yu, Y.; Miao, J.; Leng, K.; Gao, H. Preparation Process Optimization, Structural Characterization and in Vitro Digestion Stability Analysis of Antarctic Krill (Euphausia Superba) peptides-zinc Chelate. Food Chem. 2021, 340, 128056. DOI: 10.1016/j.foodchem.2020.128056.
  • Kong, X.; Bao, S.; Song, W.; Hua, Y.; Zhang, C.; Chen, Y.; Li, X. Contributions of Ethanol Fractionation on the Properties of Vegetable Protein Hydrolysates and Differences in the Characteristics of Metal (Ca, Zn, Fe)-chelating Peptides. Lwt. 2021, 146, 111482. DOI: 10.1016/j.lwt.2021.111482.
  • Zhao, L.; Wang, S.; Zhang, Y.; Huang, S.; Huang, Y. . Study on Optimization of Whey Protein Peptide Chelation of Calcium Ion by Response Surface Methodology. Chin. J. Food Sci. 2014, 14(4), 64–71.