2,000
Views
3
CrossRef citations to date
0
Altmetric
Original Article

Application of FTIR spectroscopy and chemometrics for correlation of antioxidant activities, phenolics and flavonoid contents of Indonesian Curcuma xanthorrhiza

, , , , & ORCID Icon
Pages 2364-2372 | Received 18 Jul 2022, Accepted 26 Sep 2022, Published online: 17 Oct 2022

References

  • Alok, S.; Jain, S. K.; Verma, A.; Kumar, M.; Mahor, A.; Sabharwal, M. Herbal Antioxidant in Clinical Practice: A Review. Asian Pac. J. Trop. Biomed. 2014, 4(1), 78–84. DOI: 10.1016/S2221-1691(14)60213-6.
  • Kanase, V.; Khan, F. An Overview of Medicinal Value of Curcuma Species. Asian J. Pharm. Clin. Res. 2018, 11(12), 40–45. DOI: 10.22159/ajpcr.2018.v11i12.28145.
  • Rohman, A.; Wijayanti, T.; Windarsih, A.; Riyanto, S. The Authentication of Java Turmeric (Curcuma Xanthorrhiza) Using Thin Layer Chromatography and 1H-NMR Based-Metabolite Fingerprinting Coupled with Multivariate Analysis. Molecules. 2020, 25(17), 3928. DOI: 10.3390/molecules25173928.
  • Rohman, A.; Widodo, H.; Lukitaningsih, E.; Windarsih, A.; Rafi, M.; Nurrulhidayah, A. F. Review on in Vitro Antioxidant Activities of Curcuma Species Commonly Used as Herbal Components in Indonesia. Food Res. 2020, 4(2). DOI: 10.26656/fr.2017.4(2).163.
  • Lukitaningsih, E.; Rohman, A.; Rafi, M.; Nurrulhidayah, A. F.; Windarsih, A. In Vivo Antioxidant Activities of Curcuma Longa and Curcuma Xanthorrhiza: A Review. Food Res. 2020, 4(1), 13–19. DOI: 10.26656/fr.2017.4(1).172.
  • Widyastuti, I.; Luthfah, H. Z.; Hartono, Y. I.; Islamadina, R.; Can, A. T.; Rohman, A. Antioxidant Activity of Temulawak (Curcuma Xanthorrhiza Roxb.) and Its Classification with Chemometrics. Indones. J. Chemom. Pharm. Anal. 2020, 021, 29. DOI:10.22146/ijcpa.507.
  • Rajkumari, S.; Sanatombi, K. Nutritional Value, Phytochemical Composition, and Biological Activities of Edible Curcuma Species: A Review. Int. J. Food Prop. 2018, 20(3), S2668–S2687. DOI: 10.1080/10942912.2017.1387556.
  • Alam, M. N.; Bristi, N. J.; Rafiquzzaman, M. Review on in Vivo and in Vitro Methods Evaluation of Antioxidant Activity. Saudi Pharm. J. 2013, 21(2), 143–152. DOI: 10.1016/j.jsps.2012.05.002.
  • Rohman, A.; Widodo, H.; Lukitaningsih, E.; Windarsih, A.; Rafi, M.; Nurrulhidayah, A. F. Review on in Vitro Antioxidant Activities of Curcuma Species Commonly Used as Herbal Components in Indonesia. Food Res. 2020, 4(2), 286–293. DOI: 10.26656/fr.2017.4(2).163.
  • Ghasemzadeh, A.; Jaafar, H. Z. E.; Rahmat, A. Changes in Antioxidant and Antibacterial Activities as Well as Phytochemical Constituents Associated with Ginger Storage and Polyphenol Oxidase Activity. BMC Complement. Altern. Med. 2016, 16(1). DOI: 10.1186/s12906-016-1352-1.
  • Permatasari, L.; Rohman, A. 2,2’-diphenil-1-picrylhydrazil (DPPH) Radical Scavenging Activity of Extracts and Fractions of Rambutan (Nephelium Lappaceum L.) Peel. Res. J. Phytochem. 2016, 10, 2. DOI: 10.3923/rjphyto.2016.75.80
  • Irnawati, I.; Riyanto, S.; Martono, S.; Rohman, A. The Employment of FTIR Spectroscopy and Chemometrics for the Classification and Prediction of Antioxidant Activities of Pumpkin Seed Oils from Different Origins. J. Appl. Pharm. Sci. 2021, 11(5), 100–107. DOI: 10.7324/JAPS.2021.110514.
  • Casoni, D.; Simion, I. M.; Sârbu, C. A Comprehensive Classification of Edible Oils according to Their Radical Scavenging Spectral Profile Evaluated by Advanced Chemometrics. Spectroc. Acta - Part A Mol. Biomol. Spectrosc. 2019, 213, 204–209. DOI: 10.1016/j.saa.2019.01.065.
  • Vigli, G.; Philippidis, A.; Spyros, A.; Dais, P. Classification of Edible Oils by Employing 31 P and 1 H NMR Spectroscopy in Combination with Multivariate Statistical Analysis. A Proposal for the Detection of Seed Oil Adulteration in Virgin Olive Oils. Journal of Agricultural and Food Chemistry. 2003. DOI: 10.1021/jf030100z.
  • Cao, J.; Li, C.; Liu, R.; Liu, X. R.; Fan, Y.; Deng, Z. Y. Combined Application of Fluorescence Spectroscopy and Chemometrics Analysis in Oxidative Deterioration of Edible Oils. Food Anal. Methods. 2017, 10(3), 649–658. DOI: 10.1007/s12161-016-0587-2.
  • Tanvir, E. M.; Hossen, M. S.; Hossain, M. F.; Afroz, R.; Gan, S. H.; Khalil, M. I.; Karim, N. Antioxidant Properties of Popular Turmeric (Curcuma Longa) Varieties from Bangladesh. J. Food Qual. 2017, 2017, 1–8. DOI: 10.1155/2017/8471785.
  • Waras, N.; Nurul, K.; Muhamad, S.; Maria, B.; Ardyani, I. D. A. A. C. Phytochemical Screening, Antioxidant and Cytotoxic Activities in Extracts of Different Rhizome Parts from Curcuma Aeruginosa RoxB. Int. J. Res. Ayurveda Pharm. 2015, 65, 634–637. DOI:10.7897/2277-4343.065118.
  • Abdullah, S. S. S.; Mazlan, A. N. Quantification of Polyphenols and Antioxidant Activity in Several Herbal and Green Tea Products in Malaysia. Mater. Today Proc. 2020, 31, A106–A113. DOI: 10.1016/j.matpr.2020.12.1083.
  • Ordonez, A. A. L.; Gomez, J. D.; Vattaone, M. A.; Isla, M. A.; Hanrath, P.; van Rossum, A. Antioxidant Activities of Sechium Edule (Jacq) Swartz Extract. The American Journal of Cardiology. 2006, 97(4), 452–458. DOI: 10.1016/j.foodchem.2005.05.024.
  • Rohaeti, E.; Rafi, M.; Syafitri, U. D.; Heryanto, R. Fourier Transform Infrared Spectroscopy Combined with Chemometrics for Discrimination of Curcuma Longa, Curcuma Xanthorrhiza and Zingiber Cassumunar. Spectroc. Acta - Part A Mol. Biomol. Spectrosc. 2015, 137, 1244–1249. DOI: 10.1016/j.saa.2014.08.139.
  • Akarchariya, N.; Sirilun, S.; Julsrigival, J.; Chansakaowa, S. Chemical Profiling and Antimicrobial Activity of Essential Oil from Curcuma Aeruginosa Roxb., Curcuma Glans K. Larsen & J. Mood and Curcuma Cf. Xanthorrhiza Roxb. Collected in Thailand. Asian Pac. J. Trop. Biomed. 2017, 7(10), 881–885. DOI: 10.1016/j.apjtb.2017.09.009.
  • Rohman, A.; Wibowo, D.; Sudjadi,; Lukitaningsih, E.; Rosman, A. S. Use of Fourier Transform Infrared Spectroscopy in Combination with Partial Least Square for Authentication of Black Seed Oil. Int. J. Food Prop. 2015, 18(4), 775–784. DOI: 10.1080/10942912.2014.908207.
  • Small, G. W. Chemometrics and near-infrared Spectroscopy: Avoiding the Pitfalls. TrAC - Trends Anal. Chem. 2006, 25(11), 1057–1066. DOI: 10.1016/j.trac.2006.09.004.