3,321
Views
6
CrossRef citations to date
0
Altmetric
Review

Recent industrials extraction of plants seeds oil used in the development of functional food products: A Review

, , , , , , , , ORCID Icon & show all
Pages 2530-2550 | Received 11 Aug 2022, Accepted 02 Nov 2022, Published online: 16 Nov 2022

References

  • Bazinet, R. P.; Layé, S. Polyunsaturated Fatty Acids and Their Metabolites in Brain Function and Disease. Nat. Rev. Neurosci. 2014, 15(12), 771–785. DOI: 10.1038/nrn3820.
  • Saini, R. K.; Keum, Y. S. Omega-3 and Omega-6 Polyunsaturated Fatty Acids: Dietary Sources, Metabolism, and significance—A Review. Life Sci. 2018, 203, 255–267. DOI: 10.1016/j.lfs.2018.04.049.
  • Johnson, G. H.; Fritsche, K. Effect of Dietary Linoleic Acid on Markers of Inflammation in Healthy Persons: A Systematic Review of Randomized Controlled Trials. J. Acad. Nutr. Diet. 2012, 112(7), 1029–1041. DOI: 10.1016/j.jand.2012.03.029.
  • Dennis, E. A.; Norris, P. C. Eicosanoid Storm in Infection and Inflammation. Nat. Rev. Immunol. 2015, 15(8), 511–523. DOI: 10.1038/nri3859.
  • Karapandzova, M.; Cvetkovikj, I.; Stefkov, G.; Kulevanova, S. Possible health benefits of pine nuts as a source of omega fatty acids. Your hosts Macedonian Pharmaceutical Association and Faculty of Pharmacy, Ss Cyril and Methodius University in Skopje, 461.
  • Sokoła-Wysoczańska, E.; Wysoczański, T.; Wagner, J.; Czyż, K.; Bodkowski, R.; Lochyński, S.; Patkowska-Sokoła, B. Polyunsaturated Fatty Acids and Their Potential Therapeutic Role in Cardiovascular System disorders—a Review. Nutrients. 2018, 10(10), 1561. DOI: 10.3390/nu10101561.
  • Jurić, S.; Jurić, M.; Siddique, M. A. B.; Fathi, M. Vegetable Oils Rich in Polyunsaturated Fatty Acids: Nanoencapsulation Methods and Stability Enhancement. Food Rev. Int. 2022, 38(1), 32–69. DOI: 10.1080/87559129.2020.1717524.
  • Colonia, B. S. O.; de Melo Pereira, G. V.; Soccol, C. R. Omega-3 Microbial Oils from Marine Thraustochytrids as A Sustainable and Technological Solution: A Review and Patent Landscape. Trends Food Sci. Technol. 2020, 99, 244–256. DOI: 10.1016/j.tifs.2020.03.007.
  • Russo, G. L.;. Dietary N− 6 and N− 3 Polyunsaturated Fatty Acids: From Biochemistry to Clinical Implications in Cardiovascular Prevention. Biochem. Pharmacol. 2009, 77(6), 937–946. DOI: 10.1016/j.bcp.2008.10.020.
  • Timilsena, Y. P.; Wang, B.; Adhikari, R.; Adhikari, B. Advances in Microencapsulation of Polyunsaturated Fatty Acids (Pufas)-rich Plant Oils Using Complex Coacervation: A Review. Food Hydrocoll. 2017, 69, 369–381. DOI: 10.1016/j.foodhyd.2017.03.007.
  • Bakry, A. M.; Abbas, S.; Ali, B.; Majeed, H.; Abouelwafa, M. Y.; Mousa, A.; Liang, L. Microencapsulation of Oils: A Comprehensive Review of Benefits, Techniques, and Applications. Compr. Rev. Food Sci. Food Saf. 2016, 15(1), 143–182. DOI: 10.1111/1541-4337.12179.
  • OECD/FAO. OECD-FAO Agri. Outlook 2019-2028; OECD/FAO: Rome, Italy, 2019.
  • Beyzi, E.; Gunes, A.; Beyzi, S. B.; Konca, Y. Changes in Fatty Acid and Mineral Composition of Rapeseed (Brassica Napus Ssp. Oleifera L.) Oil with Seed Sizes. Ind. Crop Prod. 2019, 129, 10–14. DOI: 10.1016/j.indcrop.2018.11.064.
  • Melo, D.; Machado, T. B.; Oliveira, M. B. P. Chia Seeds: An Ancient Grain Trending in Modern Human Diets. Food Funct. 2019, 10(6), 3068–3089. DOI: 10.1039/C9FO00239A.
  • Vollmann, J.; Eynck, C. Camelina as a Sustainable Oilseed Crop: Contributions of Plant Breeding and Genetic Engineering. J. Biotechnol. 2015, 10(4), 525–535. DOI: 10.1002/biot.201400200.
  • Zamani Ghaleshahi, A.; Ezzatpanah, H.; Rajabzadeh, G.; Ghavami, M. Comparison and Analysis Characteristics of Flax, Perilla and Basil Seed Oils Cultivated in Iran. J. Food Sci. Technol. 2020, 57(4), 1258–1268. DOI: 10.1007/s13197-019-04158-x.
  • Chirinos, R.; Zuloeta, G.; Pedreschi, R.; Mignolet, E.; Larondelle, Y.; Campos, D. Sacha Inchi (Plukenetia Volubilis): A Seed Source of Polyunsaturated Fatty Acids, Tocopherols, Phytosterols, Phenolic Compounds and Antioxidant Capacity. Food Chem. 2013, 141(3), 1732–1739. DOI: 10.1016/j.foodchem.2013.04.078.
  • Umesha, S. S.; Monahar, B.; Naidu, K. A. Microencapsulation of α‐linolenic Acid‐rich Garden Cress Seed Oil: Physical Characteristics and Oxidative Stability. Eur. J. Lipid Sci. Technol. 2013, 115(12), 1474–1482. DOI: 10.1002/ejlt.201300181.
  • Gunstone, F. D.;. Vegetable Oils in Food Technology: Composition, Properties and Uses. Vege. oils in food tech.: comp. properties and uses. 2002.
  • Ogori, A. F.;. Source, Extraction and Constituents of Fats and Oils. J. Food Sci. Nutr 2020, 6(2), 100060.
  • Lawson, H. W.;. Food Oils and Fats: Technology, Utilization and Nutrition. Springer Sci. & Business Media. 2013.
  • Dorni, C.; Sharma, P.; Saikia, G.; Longvah, T. Fatty Acid Profile of Edible Oils and Fats Consumed in India. Food Chem. 2018, 238, 9–15. DOI: 10.1016/j.foodchem.2017.05.072.
  • El-Hamidi, M.; Zaher, F. A. Production of Vegetable Oils in the World and in Egypt: An Overview. Bull. Natl. Res. Cent. 2018, 42(1), 1–9. DOI: 10.1186/s42269-018-0019-0.
  • Grompone, M. A.;. Sunflower Oil. In Bailey’s Industrial Oil and Fat Products, Sixth ed.; Shahidi, F., Ed.; Edible oil and fat products: edible oils: Wiley, 2005; Vol. 2, pp 655–730.
  • Rubilar, M.; Gutiérrez, C.; Verdugo, M.; Shene, C.; Sineiro, J. Flaxseed as a Source of Functional Ingredients. J. Plant. Nutr. Soil Sci. 2010, 10(3), 373–377. DOI: 10.4067/S0718-95162010000100010.
  • Przybylski, R.;Flax Oil and High Linolenic Oils. Bailey’s Industrial Oil and Fat Products6thShahidi, F.Ed. John Wiley & Sons, Inc. Hoboken, NJ 2005Vol. 2 281–301
  • Raczyk, M.; Popis, E.; Kruszewski, B.; Ratusz, K.; Rudzińska, M. Physicochemical Quality and Oxidative Stability of Linseed (Linum Usitatissimum) and Camelina (Camelina Sativa) Cold‐pressed Oils from Retail Outlets. Eur. J. Lipid Sci. Technol. 2016, 118(5), 834–839. DOI: 10.1002/ejlt.201500064.
  • Baydar, N. G.; Özkan, G.; Çetin, E. S. Characterization of Grape Seed and Pomace Oil Extracts. Grasas y Aceites. 2007, 58(1), 29–33.
  • Beveridge, T. H.; Girard, B.; Kopp, T.; Drover, J. C. Yield and Composition of Grape Seed Oils Extracted by Supercritical Carbon Dioxide and Petroleum Ether: Varietal Effects. J. Agric. Food Chem. 2005, 53(5), 1799–1804. DOI: 10.1021/jf040295q.
  • Otadi, M.; Zabihi, F. Vitamin E Microcapsulation by Ethylcellulose through Emulsion Solvent Evaporation Technique; an Operational Condition Study. World Appl. Sci. J. 2011, 14, 20–25.
  • Devi, S.; Singh, R. RETRACTED: Antioxidant and Anti-Hypercholesterolemic Potential of Vitis Vinifera Leaves. Pharmacogn. J. 2017, 9(6), 807–814. DOI: 10.5530/pj.2017.6.126.
  • Shinagawa, F. B.; Santana, F. C. D.; Torres, L. R. O.; Mancini-Filho, J. Grape Seed Oil: A Potential Functional Food? J. Food Sci. Technol. 2015, 35, 399–406. DOI: 10.1590/1678-457X.6826.
  • Yu, L. L.; Zhou, K. K.; Parry, J. Antioxidant Properties of cold-pressed Black Caraway, Carrot, Cranberry, and Hemp Seed Oils. Food Chem. 2005, 91(4), 723–729. DOI: 10.1016/j.foodchem.2004.06.044.
  • Bail, S.; Stuebiger, G.; Krist, S.; Unterweger, H.; Buchbauer, G. Characterisation of Various Grape Seed Oils by Volatile Compounds, Triacylglycerol Composition, Total Phenols and Antioxidant Capacity. Food Chem. 2008, 108(3), 1122–1132. DOI: 10.1016/j.foodchem.2007.11.063.
  • Lutterodt, H.; Slavin, M.; Whent, M.; Turner, E.; Yu, L. L. Fatty Acid Composition, Oxidative Stability, Antioxidant and Antiproliferative Properties of Selected cold-pressed Grape Seed Oils and Flours. Food Chem. 2011, 128(2), 391–399. DOI: 10.1016/j.foodchem.2011.03.040.
  • da Silva Marineli, R.;.; Moraes, É. A.;.; Lenquiste, S. A.;.; Godoy, A. T.;.; Eberlin, M. N.;.; Maróstica, M. R. Chemical Characterization and Antioxidant Potential of Chilean Chia Seeds and Oil (Salvia Hispanica L.). J. Food Sci. Technol. 2014, 59(2), 1304–1310.
  • Knez Hrnčič, M.; Ivanovski, M.; Cör, D.; Knez, Ž. Chia Seeds (Salvia Hispanica L.): An overview—phytochemical Profile, Isolation Methods, and Application. Molecules. 2019, 25(1), 11. DOI: 10.3390/molecules25010011.
  • Gopalam, R.; Tumaney, A. W. Functional Characterization of Acyltransferases from Salvia Hispanica that Can Selectively Catalyze the Formation of Trilinolenin. Phytochem. 2021, 186, 112712. DOI: 10.1016/j.phytochem.2021.112712.
  • RV, S.; Kumari, P.; Rupwate, S. D.; Rajasekharan, R.; Srinivasan, M. Exploring Triacylglycerol Biosynthetic Pathway in Developing Seeds of Chia (Salvia Hispanica L.): A Transcriptomic Approach. PloS one. 2015, 10(4), e0123580. DOI: 10.1371/journal.pone.0123580.
  • Muñoz, L. A.; Cobos, A.; Diaz, O.; Aguilera, J. M. Chia Seed (Salvia Hispanica): An Ancient Grain and a New Functional Food. Food Rev. Int. 2013, 29(4), 394–408. DOI: 10.1080/87559129.2013.818014.
  • Zúñiga-López, M. C.; Maturana, G.; Campmajó, G.; Saurina, J.; Núñez, O. Determination of Bioactive Compounds in Sequential Extracts of Chia Leaf (Salvia Hispanica L.) Using UHPLC-HRMS (Q-Orbitrap) and a Global Evaluation of Antioxidant in Vitro Capacity. Antioxidants. 2021, 10(7), 1151. DOI: 10.3390/antiox10071151.
  • Zettel, V.; Hitzmann, B. Applications of Chia (Salvia Hispanica L.) in Food Products. Trends Food Sci. Technol. 2018, 80, 43–50. DOI: 10.1016/j.tifs.2018.07.011.
  • Diwakar, B. T.; Dutta, P. K.; Lokesh, B. R.; Naidu, K. A. Physicochemical Properties of Garden Cress (Lepidium Sativum L.) Seed Oil. J. Am. Oil Chem. Soc. 2010, 87(5), 539–548. DOI: 10.1007/s11746-009-1523-z.
  • Umesha, S. S.; Naidu, K. A. Vegetable Oil Blends with α-linolenic Acid Rich Garden Cress Oil Modulate Lipid Metabolism in Experimental Rats. Food Chem. 2012, 135(4), 2845–2851. DOI: 10.1016/j.foodchem.2012.05.118.
  • Burns-Whitmore, B.; Froyen, E.; Heskey, C.; Parker, T.; San Pablo, G. Alpha-linolenic and Linoleic Fatty Acids in the Vegan Diet: Do They Require Dietary Reference intake/adequate Intake Special Consideration? Nutrients. 2019, 11(10), 2365. DOI: 10.3390/nu11102365.
  • Zhang, Z. S.; Liu, Y. L.; Che, L. M. Characterization of a New α‐linolenic Acid‐rich Oil: Eucommia Ulmoides Seed Oil. J. Food Sci. 2018, 83(3), 617–623. DOI: 10.1111/1750-3841.14049.
  • Qin, X.; Zhong, J. A Review of Extraction Techniques for Avocado Oil. J. Oleo Sci. 2016, ess16063.
  • Yang, S.; Fullerton, C.; Hallett, I.; Oh, H. E.; Woolf, A. B.; Wong, M. Effect of Fruit Maturity on Microstructural Changes and Oil Yield during Cold‐pressed Oil Extraction of ‘Hass’ Avocado. J. Am. Oil Chem. Soc. 2020, 97(7), 779–788. DOI: 10.1002/aocs.12362.
  • Lu, Q. Y.; Zhang, Y.; Wang, Y.; Wang, D.; Lee, R. P.; Gao, K.; Heber, D. California Hass Avocado: Profiling of Carotenoids, Tocopherol, Fatty Acid, and Fat Content during Maturation and from Different Growing Areas. J. Agric. Food Chem. 2009, 57(21), 10408–10413. DOI: 10.1021/jf901839h.
  • Reddy, M.; Moodley, R.; Jonnalagadda, S. B. Fatty Acid Profile and Elemental Content of Avocado (Persea Americana Mill.) oil–effect of Extraction Methods. J. Environ. Sci. Health B. 2012, 47(6), 529–537. DOI: 10.1080/03601234.2012.665669.
  • Tan, C. X.; Chong, G. H.; Hamzah, H.; Ghazali, H. M. Comparison of Subcritical CO2 and ultrasound-assisted Aqueous Methods with the Conventional Solvent Method in the Extraction of Avocado Oil. J. Supercrit. Fluids. 2018, 135, 45–51. DOI: 10.1016/j.supflu.2017.12.036.
  • Nyam, K. L.; Tan, C. P.; Lai, O. M.; Long, K.; Man, Y. C. Physicochemical Properties and Bioactive Compounds of Selected Seed Oils. LWT. 2009, 42(8), 1396–1403. DOI: 10.1016/j.lwt.2009.03.006.
  • Warner, K.; Knowlton, S. Frying Quality and Oxidative Stability of High‐oleic Corn Oils. J. Am. Oil Chem. Soc. 1997, 74(10), 1317–1322. DOI: 10.1007/s11746-997-0063-7.
  • Siano, F.; Straccia, M. C.; Paolucci, M.; Fasulo, G.; Boscaino, F.; Volpe, M. G. Physico‐chemical Properties and Fatty Acid Composition of Pomegranate, Cherry and Pumpkin Seed Oils. J. Sci. Food Agric. 2016, 96(5), 1730–1735. DOI: 10.1002/jsfa.7279.
  • Vujasinovic, V.; Djilas, S.; Dimic, E.; Romanic, R.; Takaci, A. Shelf Life of Cold‐pressed Pumpkin (Cucurbita Pepo L.) Seed Oil Obtained with a Screw Press. J. Am. Oil Chem. Soc. 2010, 87(12), 1497–1505.
  • Nawirska-Olszańska, A.; Kita, A.; Biesiada, A.; Sokół-Łętowska, A.; Kucharska, A. Z. Characteristics of Antioxidant Activity and Composition of Pumpkin Seed Oils in 12 Cultivars. Food Chem. 2013, 139(1–4), 155–161. DOI: 10.1016/j.foodchem.2013.02.009.
  • Coruh, N. U. R. S. E. N.; Celep, A. S.; Özgökçe, F.; İşcan, M. Antioxidant Capacities of Gundelia Tournefortii L. Extracts and Inhibition on glutathione-S-transferase Activity. Food Chem. 2007, 100(3), 1249–1253. DOI: 10.1016/j.foodchem.2005.12.008.
  • Vitek, E.; Noroozi, J. Gundelia Rosea (Compositae), a New Record from Iran. Ann. Naturhist. Mus. Wien, B Bot. Zool. 2017, 119, 249–256.
  • Matthäus, B.; Özcan, M. M. Chemical Evaluation of Flower Bud and Oils of Tumbleweed (Gundelia Tourneforti L.) as a New Potential Nutrition Sources. J. Food Biochem. 2011, 35(4), 1257–1266. DOI: 10.1111/j.1745-4514.2010.00449.x.
  • Asadi-Samani, M.; Rafieian-Kopaei, M.; Azimi, N. Gundelia: A Systematic Review of Medicinal and Molecular Perspective. Pak. J. Biol. Sci. 2013, 16(21), 1238–1247. DOI: 10.3923/pjbs.2013.1238.1247.
  • Hashemi, S. M. B.; Amarowicz, R.; Khaneghah, A. M.; Vardehsara, M. S.; Hosseini, M.; Yousefabad, S. H. A. Kangar (Gundelia Tehranica) Seed Oil: Quality Measurement and Frying Performance. J. Food Nutr. Res. 2017, 56(1).
  • Follegatti-Romero, L. A.; Piantino, C. R.; Grimaldi, R.; Cabral, F. A. Supercritical CO2 Extraction of Omega-3 Rich Oil from Sacha Inchi (Plukenetia Volubilis L.) Seeds. J. Supercrit Fluids. 2009, 49(3), 323–329. DOI: 10.1016/j.supflu.2009.03.010.
  • Guillén, M. D.; Ruiz, A.; Cabo, N.; Chirinos, R.; Pascual, G. Characterization of Sacha Inchi (Plukenetia Volubilis L.) Oil by FTIR Spectroscopy and 1H NMR. Comparison with Linseed Oil. J. Am. Oil Chem. Soc. 2003, 80(8), 755–762. DOI: 10.1007/s11746-003-0768-z.
  • Maurer, N. E.; Hatta-Sakoda, B.; Pascual-Chagman, G.; Rodriguez-Saona, L. E. Characterization and Authentication of a Novel Vegetable Source of Omega-3 Fatty Acids, Sacha Inchi (Plukenetia Volubilis L.) Oil. Food Chem. 2012, 134(2), 1173–1180. DOI: 10.1016/j.foodchem.2012.02.143.
  • Tavakoli, J.; Khodaparast, M. H. H. Chemical Properties of the Oil from Pistacia Khinjuk Fruits Growing Wild in Iran. Chem. Nat. Compd. 2013, 49(3), 546–550. DOI: 10.1007/s10600-013-0667-0.
  • Taran, M.; Sharifi, M.; Azizi, E.; Khanahmadi, M. Antimicrobial Activity of the Leaves of Pistacia Khinjuk. J. Med. Plant Res. 2010, 9(33), 81–85.
  • Dob, T.; Dahmane, D.; Chelghoum, C. Chemical Composition of the Essential Oils of Pistacia Lentiscus L. from Algeria. J. Essent. Oil Res. 2006, 18(3), 335–338. DOI: 10.1080/10412905.2006.9699105.
  • Asnaashari, M.; Bagher Hashemi, S. M.; Mehr, H. M.; Asadi Yousefabad, S. H. Kolkhoung (Pistacia Khinjuk) Hull Oil and Kernel Oil as Antioxidative Vegetable Oils with High Oxidative Stability and Nutritional Value. Food Technol. Biotechnol. 2015, 53(1), 81–86. DOI: 10.17113/ftb.53.01.15.3719.
  • Gupta, S. K.; 3. Breeding Oilseeds Crops for Sustainable Production Opportunities and Constraints. Academic press is an imprint of Elsevier 2016, 33–45.
  • USDA. Oil Crops Situation and Outlook Yearbook, Springer Science. New York. 2002, 40(44), 62–66.
  • O’Brien, R. D.; Jones, L. A.; King, C. C.; Wakelyn, P. J.; Wan, P. J. Cottonseed Oil. Bailey’s Ind. Prod. 2005.
  • Aremu, M. O.; Ibrahim, H.; Bamidele, T. O. Physicochemical Characteristics of the Oils Extracted from Some Nigerian Plant foods–a Review. Chem. Eng. Process. 2015, 32, 36–52.
  • Hlaing, N. N.; Oo, M. M. Manufacture of Alkyd Resin from Castor Oil. World Academy Sci. Eng. Technol. 2008, 48, 155–161.
  • Shahidi, F.; Wanasundara, U. N. Omega-3 Fatty Acid Concentrates: Nutritional Aspects and Production Technologies. Trends Food Sci. Technol. 1998, 9(6), 230–240. DOI: 10.1016/S0924-2244(98)00044-2.
  • Rubio-Rodríguez, N.; Beltrán, S.; Jaime, I.; Sara, M.; Sanz, M. T.; Carballido, J. R. Production of Omega-3 Polyunsaturated Fatty Acid Concentrates: A Review. Innov. Food Sci. Emerg. Technol. 2010, 11(1), 1–12. DOI: 10.1016/j.ifset.2009.10.006.
  • Kapoor, R.; Patil, U. K. Importance and Production of Omega-3 Fatty Acids from Natural Sources. Int. Food Res. J. 2011, 18(2).
  • Brown, J. B.; Kolb, D. K. Applications of Low Temperature Crystallization in the Separation of the Fatty Acids and Their Compounds. Prog. Chem. Fats other Lipids 1955, 3, 57–94. DOI: 10.1016/0079-6832(55)90004-5.
  • Guo, J.; Wang, C.; Wu, Z.; Chen, M.; Li, F.; Wang, Y. Purification of Essential Linoleic Acid from Pinus Armandi Franch Seed Oil by silver-silica Gel Chromatography Column. In 2010 4th Int. Confer. Bioinfom. Biomed. Eng. 2010, (pp. 1–4). IEEE.
  • Guo, J.; Wang, C.; Wu, Z.; Chen, M.; Wang, Y.; Li, F. Preparation of High-Purity Essential Linoleic Acid from Safflower Seed Oil by Argentated Silica Gel Chromatography Column. In 5th Int. Confer. Bioinfom. Biomed. Eng. 2011.
  • Fournier, V.; Destaillats, F.; Juanéda, P.; Dionisi, F.; Lambelet, P.; Sébédio, J. L.; Berdeaux, O. Thermal Degradation of Long‐chain Polyunsaturated Fatty Acids during Deodorization of Fish Oil. Eur. J. Lipid Sci. Technol. 2006, 108(1), 33–42. DOI: 10.1002/ejlt.200500290.
  • Berger, R.; McPherson, W. Fractional Distillation. J. Am. Oil Chem. Soc. 1979, 56(11Part1), 743A–744A. DOI: 10.1007/BF02667433.
  • Haraldsson, G.;. Separation of saturated/unsaturated Fatty Acids. J. Am. Oil Chem. Soc. 1984, 61(2), 219–222. DOI: 10.1007/BF02678772.
  • Patil, D.; Nag, A. Production of PUFA Concentrates from Poultry and Fish Processing Waste. J. Am. Oil Chem. Soc. 2011, 88(4), 589–593. DOI: 10.1007/s11746-010-1689-4.
  • Bottino, N. R.; Vandenburg, G. A.; Reiser, R. Resistance of Certain long-chain Polyunsaturated Fatty Acids of Marine Oils to Pancreatic Lipase Hydrolysis. Lipids. 1967, 2(6), 489–493. DOI: 10.1007/BF02533177.
  • Ifeduba, E. A.; Akoh, C. C. Chemoenzymatic Method for Producing Stearidonic Acid Concentrates from Stearidonic Acid Soybean Oil. J. Am. Oil Chem. Soc. 2013, 90(7), 1011–1022. DOI: 10.1007/s11746-013-2251-y.
  • Rupani, B.; Kodam, K.; Gadre, R.; Najafpour, G. D. Lipase‐mediated Hydrolysis of Flax Seed Oil for Selective Enrichment of α‐linolenic Acid. Eur. J. Lipid Sci. Technol. 2012, 114(11), 1246–1253. DOI: 10.1002/ejlt.201100384.
  • Rajan, A.; Sobankumar, D. R.; Nair, A. J. Enrichment of ω‐3 Fatty Acids in Flax Seed Oil by Alkaline Lipase of A Spergillus Fumigatus MTCC 9657. Int. J. Food Sci. Technol. 2014, 49(5), 1337–1343. DOI: 10.1111/ijfs.12434.
  • Mishra, V. K.; Temelli, F.; Ooraikul, B. Extraction and Purification of ω-3 Fatty Acids with an Emphasis on Supercritical Fluid extraction—A Review. Int. Food Res. J. 1993, 26(3), 217–226. DOI: 10.1016/0963-9969(93)90056-O.
  • Coelho, J. P.; Filipe, R. M.; Robalo, M. P.; Stateva, R. P. Recovering Value from Organic Waste Materials: Supercritical Fluid Extraction of Oil from Industrial Grape Seeds. J. Supercrit Fluids. 2018, 141, 68–77. DOI: 10.1016/j.supflu.2017.12.008.
  • Chellini, P. R.; Do Nascimento Gonçalves, R.; da Silva Filho, A. A.; de Moraes, J.; Barrales, F. M.; Martínez, J.; Costa, F. F. Pumpkin Seeds (Cucurbita moschata-Jacarezinho Cultivar): Characterization of the Oil Extracted by Solvent and Supercritical Fluid and Study of anti-parasitary Activity Sementes de Abóbora (Cucurbita moschata-cultivar Jacarezinho): Caracterização Do Óleo Extraído Por Solvente E Fluido Supercrítico E Estudo. Braz. J. Dev 2022, 8(2), 15285–15299.
  • Hamam, F.; Shahidi, F. Incorporation of Selected long-chain Fatty Acids into Trilinolein and Trilinolenin. Food Chem. 2008, 106(1), 33–39. DOI: 10.1016/j.foodchem.2007.05.038.
  • Bashar, M. A.; Jumat, S. Optimization of Process Variables Using D-optimal Design for Separating Linoleic Acid in Jatropha Curcas Seed Oil by Urea Complex Fractionation. Biotechnol. 2010, 9(3), 362–367. DOI: 10.3923/biotech.2010.362.367.
  • Fei, C. Y.; Salimon, J.; Said, M. Optimisation of Urea Complexation by Box-Behnken Design. Sains Malays. 2010, 39(5), 795–803.
  • Mwaurah, P. W.; Kumar, S.; Kumar, N.; Attkan, A. K.; Panghal, A.; Singh, V. K.; Garg, M. K. Novel Oil Extraction Technologies: Process Conditions, Quality Parameters, and Optimization. Compr. Rev. Food Sci. Food Saf. 2020, 19(1), 3–20. DOI: 10.1111/1541-4337.12507.
  • Cárcel, J. A.; García-Pérez, J. V.; Benedito, J.; Mulet, A. Food Process Innovation through New Technologies: Use of Ultrasound. J. Food Eng. 2012, 110(2), 200–207. DOI: 10.1016/j.jfoodeng.2011.05.038.
  • Mushtaq, A.; Roobab, U.; Denoya, G. I.; Inam‐Ur‐Raheem, M.; Gullón, B.; Lorenzo, J. M.; Aadil, R. M. Advances in Green Processing of Seed Oils Using Ultrasound‐assisted Extraction: A Review. J. Food Process. Preserv. 2020, 44(10), e14740. DOI: 10.1111/jfpp.14740.
  • Wen, C.; Zhang, J.; Zhang, H.; Dzah, C. S.; Zandile, M.; Duan, Y.; Luo, X. Advances in Ultrasound Assisted Extraction of Bioactive Compounds from Cash crops–A Review. Ultrason. Sonochem. 2018, 48, 538–549. DOI: 10.1016/j.ultsonch.2018.07.018.
  • Ayim, I.; Ma, H.; Alenyorege, E. A.; Ali, Z.; Donkor, P. O. Influence of Ultrasound Pretreatment on Enzymolysis Kinetics and Thermodynamics of Sodium Hydroxide Extracted Proteins from Tea Residue. J. Food Sci. Technol. 2018, 55(3), 1037–1046. DOI: 10.1007/s13197-017-3017-6.
  • Böger, B. R.; Salviato, A.; Valezi, D. F.; Di Mauro, E.; Georgetti, S. R.; Kurozawa, L. E. Optimization of Ultrasound‐assisted Extraction of Grape‐seed Oil to Enhance Process Yield and Minimize Free Radical Formation. J. Sci. Food Agri. 2018, 98(13), 5019–5026. DOI: 10.1002/jsfa.9036.
  • Goyal, A.; Sharma, V.; Upadhyay, N.; Gill, S.; Sihag, M. Flax and Flaxseed Oil: An Ancient Medicine & Modern Functional Food. J. Food Sci. Technol. 2014, 51(9), 1633–1653. DOI: 10.1007/s13197-013-1247-9.
  • Ergönül, P. G.; Özbek, Z. A. Cold Pressed Camelina (Camelina Sativa L.) Seed Oil. In Cold Pressed Oils; Academic Press, 2020; pp 255–266.
  • Ghobadi, S.; Hassanzadeh-Rostami, Z.; Mohammadian, F.; Zare, M.; Faghih, S. Effects of Canola Oil Consumption on Lipid Profile: A Systematic Review and meta-analysis of Randomized Controlled Clinical Trials. J. Am. Coll. Nutr. 2019, 38(2), 185–196. DOI: 10.1080/07315724.2018.1475270.
  • Shetty, U. S.; Akhilender, N. K. Garden Cress (Lepidium Sativum L.) Seed Oil: Alternative Source for ALA. FASEB J. 2017, 31, 971.
  • Ismail, N.; Chan, K. W.; Mastuki, S. N.; Saad, N.; Razis, A. F. A. Biological Activities of Pistachio (Pistacia Vera) Oil. In Multiple Biological Activities of Unconventional Seed Oils; Academic Press, 2022; pp 279–293.
  • Deng, L.;. Current Progress in the Utilization of soy-based Emulsifiers in Food applications—A Review. Foods. 2021, 10(6), 1354. DOI: 10.3390/foods10061354.
  • Simopoulos, A. P.;. Evolutionary Aspects of Diet, the Omega-6/omega-3 Ratio and Genetic Variation: Nutritional Implications for Chronic Diseases. Biomed. Pharmacother. 2006, 60(9), 502–507. DOI: 10.1016/j.biopha.2006.07.080.
  • Adarme-Vega, T. C.; Lim, D. K.; Timmins, M.; Vernen, F.; Li, Y.; Schenk, P. M. Microalgal Biofactories: A Promising Approach Towards Sustainable Omega-3 Fatty Acid Production. Microb. Cell Factories. 2012, 11(1), 1–10. DOI: 10.1186/1475-2859-11-96.
  • Dolecek, T. A.;. Epidemiological Evidence of Relationships between Dietary Polyunsaturated Fatty Acids and Mortality in the Multiple Risk Factor Intervention Trial. Proc. Soc. Exp. Biol. Med. 1992, 200(2), 177–182. DOI: 10.3181/00379727-200-43413.
  • Yashodhara, B. M.; Umakanth, S.; Pappachan, J. M.; Bhat, S. K.; Kamath, R.; Choo, B. H. Omega-3 Fatty Acids: A Comprehensive Review of Their Role in Health and Disease. Postgrad. Med. J. 2009, 85(1000), 84–90. DOI: 10.1136/pgmj.2008.073338.
  • Banaszkiewicz, T.;. Nutritional Value of Soybean Meal. Soybean Nutri. 2011, 12, 1–20.
  • Tallima, H.; El Ridi, R. Arachidonic Acid: Physiological Roles and Potential Health benefits–a Review. J. Adv. Res. 2018, 11, 33–41. DOI: 10.1016/j.jare.2017.11.004.
  • Zambiazi, R. C.; Przybylski, R.; Zambiazi, M. W.; Mendonça, C. B. Fatty Acid Composition of Vegetable Oils and Fats. Boletim do Centro de Pesquisa de Processamento de Alimentos. 2007, 25(1).
  • Senarath, S.; Yoshinaga, K.; Nagai, T.; Yoshida, A.; Beppu, F.; Gotoh, N. Differential Effect of cis‐Eicosenoic Acid Positional Isomers on Adipogenesis and Lipid Accumulation in 3T3‐L1 Cells. Euro. J. lipid Sci. Technol. 2018, 120(6), 1700512. DOI: 10.1002/ejlt.201700512.
  • Junpeng, Y.; Qi, Z.; Xin, L.; Xinsheng, W.; Bing, L.; Wenxue, Z. Steam Explosion Technology Based for Oil Extraction from Sesame (Sesamum Indicum L.) Seeds. J. Saudi Soc. Agric. Sci. 2016.
  • Calder, P. C.;; Nutritional Benefits of Omega-3 Fatty Acids. In Food Enrichment with Omega-3 Fatty Acids. Woodhead Publishing 2013, 3–26.
  • Orsavova, J.; Misurcova, L.; Ambrozova, J. V.; Vicha, R.; Mlcek, J. Fatty Acids Composition of Vegetable Oils and Its Contribution to Dietary Energy Intake and Dependence of Cardiovascular Mortality on Dietary Intake of Fatty Acids. Int. J. Mol. Sci. 2015, 16, 12871–12890. DOI: 10.3390/ijms160612871.
  • Griel, A. E.; Kris-Etherton, P. M.; Hilpert, K. F.; Zhao, G.; West, S. G.; Corwin, R. L. An Increase in Dietary N-3 Fatty Acids Decreases a Marker of Bone Resorption in Humans. Nutri. J 2007, 6(1), 1–8.
  • Nitrayová, S.; Brestenský, M.; Heger, J.; Patráš, P.; Rafay, J.; Sirotkin, A. Amino Acids and Fatty Acids Profile of Chia (Salvia Hispanica L.) and Flax (Linum Usitatissimum L.) Seed. Slovak J. Food Sci. 2014, 8(1).
  • Shahidi, F.; Ambigaipalan, P. Omega-3 Polyunsaturated Fatty Acids and Their Health Benefits. Ann. Rev. Food Sci. Technol 2018, 9, 345–381. DOI: 10.1146/annurev-food-111317-095850.
  • Montserrat-delaPaz, S.; Marín-Aguilar, F.; Gimenez, D. G.; Fernandez-Arche, M. A. Hemp (Cannabissatival.) Seeds Oil: Analytical and Phytochemical Characterization of Unsaponifiable Fraction. J. Agric. Food Chem. 2014, 62, 1105–1110. DOI: 10.1021/jf404278q.
  • Isaac, I. O.; Ekpa, O. D. Fatty Acid Composition of Cottonseed Oil and Its Application in Production and Evaluation of Biopolymers. Am. J. Polymer Sci. 2013, 3, 13–22.
  • Quampah, A.; Huang, Z. R.; Wu, J. G.; Liu, H. Y.; Li, J. R.; Zhu, S. J.; Shi, C. H. Estimation of Oil Content and Fatty Acid Composition in Cottonseed Kernel Powder Using near Infrared Reflectance Spectroscopy. J. Am. Oil Chem. Soci. 2012, 89(4), 567–575. DOI: 10.1007/s11746-011-1945-2.
  • Lopez-Huertas, E.;. Health Effects of Oleic Acid and Long Chain Omega-3 Fatty Acids (EPA and DHA) Enriched Milks. A Review of Intervention Studies. Pharmacol. Res. 2010, 61(3), 200–207. DOI: 10.1016/j.phrs.2009.10.007.
  • Sun, X.; Zhang, L.; Li, P.; Xu, B.; Ma, F.; Zhang, W. Fatty Acid Profiles Based Adulteration Detection for Flaxseed Oil by Gas Chromatography Mass Spectrometry. Food Sci. Technol. 2015, 63, 430–436.
  • Wall, R.; Ross, R. P.; Fitzgerald, G. F.; Stanton, C. Fatty Acids from Fish: The anti-inflammatory Potential of long-chain Omega-3 Fatty Acids. Nutr. Rev. 2010, 68(5), 280–289. DOI: 10.1111/j.1753-4887.2010.00287.x.
  • Lunn, J.; Theobald, H. E. The Health Effects of Dietary Unsaturated Fatty Acids. Nutr. Bull. 2006, 31(3), 178–224. DOI: 10.1111/j.1467-3010.2006.00571.x.
  • Biswas, S. K.;. Does the Interdependence between Oxidative Stress and Inflammation Explain the Antioxidant Paradox? Oxid. Med. Cell. Longev. 2016, 2016, 1–9. DOI: 10.1155/2016/5698931.
  • McCusker, M. M.; Grant-Kels, J. M. Healing Fats of the Skin: The Structural and Immunologic Roles of the ω-6 and ω-3 Fatty Acids. Clin. Dermatol. 2010, 28(4), 440–451. DOI: 10.1016/j.clindermatol.2010.03.020.
  • Kamolrat, T.; Gray, S. R. The Effect of Eicosapentaenoic and Docosahexaenoic Acid on Protein Synthesis and Breakdown in Murine C2C12 Myotubes. Biochem. Biophys. Res. Commun. 2013, 432(4), 593–598. DOI: 10.1016/j.bbrc.2013.02.041.
  • Cholewski, M.; Tomczykowa, M.; Tomczyk, M. A Comprehensive Review of Chemistry, Sources and Bioavailability of Omega-3 Fatty Acids. Nutrients. 2018, 10(11), 1662. DOI: 10.3390/nu10111662.
  • Simopoulos, A.;. The FTO Gene, Browning of Adipose Tissue and Omega-3 Fatty Acids. Lifestyle Genom. 2016, 9(2–4), 123–126. DOI: 10.1159/000448617.
  • Bocanegra, A.; Bastida, S.; Benedi, J.; Rodenas, S.; Sanchez-Muniz, F. J. Characteristics and Nutritional and cardiovascular-health Properties of Seaweeds. J. Med. Food. 2009, 12(2), 236–258. DOI: 10.1089/jmf.2008.0151.
  • Cockbain, A. J.; Toogood, G. J.; Hull, M. A. Omega-3 Polyunsaturated Fatty Acids for the Treatment and Prevention of Colorectal Cancer. Gut. 2012, 61(1), 135–149. DOI: 10.1136/gut.2010.233718.
  • Weylandt, K. H.; Chiu, C. Y.; Gomolka, B.; Waechter, S. F.; Wiedenmann, B. Omega-3 Fatty Acids and Their Lipid Mediators: Towards an Understanding of Resolvin and Protectin Formation. Prostaglandins Other Lipid Mediat. 2012, 97(3–4), 73–82. DOI: 10.1016/j.prostaglandins.2012.01.005.
  • Waldron, M. The Role of Fatty Acids in the Management of Osteoarthritis. 2004.
  • Kang, K.; Miyazaki, M.; Ntambi, J. M.; Pariza, M. W. Evidence that the anti-obesity Effect of Conjugated Linoleic Acid Is Independent of Effects on stearoyl-CoA desaturase1 Expression and Enzyme Activity. Biochem. Biophys. Res. Commun. 2004, 315(3), 532–537. DOI: 10.1016/j.bbrc.2004.01.087.
  • Schwinkendorf, D. R.; Tsatsos, N. G.; Gosnell, B. A.; Mashek, D. G. Effects of Central Administration of Distinct Fatty Acids on Hypothalamic Neuropeptide Expression and Energy Metabolism. Int. J. Obes. 2011, 35(3), 336–344. DOI: 10.1038/ijo.2010.159.
  • Ukropec, J.; Reseland, J. E.; Gasperikova, D.; Demcakova, E.; Madsen, L.; Berge, R. K.; Sebökova, E. The Hypotriglyceridemic Effect of Dietary N− 3 FA Is Associated with Increased β‐oxidation and Reduced Leptin Expression. Lipids. 2003, 38(10), 1023–1029. DOI: 10.1007/s11745-006-1156-z.
  • Lepperdinger, G.;. Inflammation and Mesenchymal Stem Cell Aging. Curr. Opin. Immunol. 2011, 23(4), 518–524. DOI: 10.1016/j.coi.2011.05.007.
  • Augustsson, K.; Michaud, D. S.; Rimm, E. B.; Leitzmann, M. F.; Stampfer, M. J.; Willett, W. C.; Giovannucci, E. A Prospective Study of Intake of Fish and Marine Fatty Acids and Prostate Cancer. Cancer Epidemiol. Biomarkers Prev. 2003, 12(1), 64–67.
  • Kidd, P. M.;. Omega-3 DHA and EPA for Cognition, Behavior, and Mood: Clinical Findings and structural-functional Synergies with Cell Membrane Phospholipids. Altern. Med. Rev. 2007, 12(3), 207.
  • Colomer, R.; Moreno-Nogueira, J. M.; García-Luna, P. P.; García-Peris, P.; García-de-Lorenzo, A.; Zarazaga, A.; Casimiro, C. N-3 Fatty Acids, Cancer and Cachexia: A Systematic Review of the Literature. Br. J. Nutr. 2007, 97(5), 823–831. DOI: 10.1017/S000711450765795X.
  • Ryan, A. M.; Reynolds, J. V.; Healy, L.; Byrne, M.; Moore, J.; Brannelly, N.; Flood, P. Enteral Nutrition Enriched with Eicosapentaenoic Acid (EPA) Preserves Lean Body Mass following Esophageal Cancer Surgery: Results of a double-blinded Randomized Controlled Trial. Ann. Surg. 2009, 249(3), 355–363. DOI: 10.1097/SLA.0b013e31819a4789.
  • Simopoulos, A. P.;. Omega-3 Fatty Acids and Cancer. Indoor Built Environ. 2003, 12(6), 405–412. DOI: 10.1177/1420326X03036999.
  • Yang, N. Y.; Li, K.; Yang, Y. F.; Li, Y. H. Aromatase Inhibitory Fatty Acid Derivatives from the Pollen of Brassica Campestris L. Var. Oleifera DC. J. Asian Nat. Prod. Res. 2009, 11(2), 132–137. DOI: 10.1080/10286020802573933.