1,048
Views
0
CrossRef citations to date
0
Altmetric
Original Article

Small molecules putative structure elucidation in endemic Colombian fruits: CFM-ID approach

&
Pages 2604-2616 | Received 12 Aug 2022, Accepted 10 Nov 2022, Published online: 20 Nov 2022

References

  • Grotewold, E. The Science of Flavonoids. 2006. DOI: 10.1007/978-0-387-28822-2.
  • Tsimogiannis, D.; Samiotaki, M.; Panayotou, G.; Oreopoulou, V. Characterization of Flavonoid Subgroups and Hydroxy Substitution by HPLC-MS/MS. Molecules. 2007, 12(3), 593–606. DOI: 10.3390/12030593.
  • Mandal, S. M.; Chakraborty, D. Mass Spectrometric Detection of Phenolic Acids. Natural Prod. 2013, 2047–2059. 10.1007/978-3-642-22144-6_90.
  • Molyneux, R. J.; Beck, J. J.; Colegate, S. M.; Edgar, J. A.; Gaffield, W.; Gilbert, J.; Hofmann, T.; McConnell, L. L.; Schieberle, P. Guidelines for Unequivocal Structural Identification of Compounds with Biological Activity of Significance in Food Chemistry (IUPAC Technical Report). Pure Appl. Chem. 2019, 91(8), 1417–1437. DOI: 10.1515/PAC-2017-1204/PDF.
  • Demarque, D. P.; Dusi, R. G.; de Sousa, F. D. M.; Grossi, S. M.; Silvério, M. R. S.; Lopes, N. P.; Espindola, L. S. Mass Spectrometry-Based Metabolomics Approach in the Isolation of Bioactive Natural Products. Sci. Rep. 2020, 10(1), 1–9. DOI: 10.1038/s41598-020-58046-y.
  • Galmarini, M. V.; Maury, C.; Mehinagic, E.; Sanchez, V.; Baeza, R. I.; Mignot, S.; Zamora, M. C.; Chirife, J. Stability of Individual Phenolic Compounds and Antioxidant Activity during Storage of a Red Wine Powder. Food Bioprocess. Technol. 2012, 6(12), 3585–3595. DOI: 10.1007/S11947-012-1035-Y.
  • De Vijlder, T.; Valkenborg, D.; Lemière, F.; Romijn, E. P.; Laukens, K.; Cuyckens, F. A Tutorial in Small Molecule Identification via Electrospray Ionization-Mass Spectrometry: The Practical Art of Structural Elucidation. Mass Spectrom. Rev. 2018, 37(5), 607–629. DOI: 10.1002/MAS.21551.
  • Scheubert, K.; Hufsky, F.; Böcker, S. Computational Mass Spectrometry for Small Molecules. J. Cheminform. 2013, 5(3), 1–24. DOI: 10.1186/1758-2946-5-12/FIGURES/8.
  • Blaženović, I.; Kind, T.; Ji, J.; Fiehn, O. Software Tools and Approaches for Compound Identification of LC-MS/MS Data in Metabolomics. Metabolites. 2018, 8(2), 31. DOI: 10.3390/METABO8020031.
  • Pluskal, T.; Uehara, T.; Yanagida, M. Highly Accurate Chemical Formula Prediction Tool Utilizing High-Resolution Mass Spectra, MS/MS Fragmentation, Heuristic Rules, and Isotope Pattern Matching. Anal. Chem. 2012, 84(10), 4396–4403. DOI: 10.1021/AC3000418.
  • Hufsky, F.; Böcker, S. Mining Molecular Structure Databases: Identification of Small Molecules Based on Fragmentation Mass Spectrometry Data. Mass Spectrom. Rev. 2017, 36(5), 624–633. DOI: 10.1002/MAS.21489.
  • Allen, F.; Pon, A.; Wilson, M.; Greiner, R.; Wishart, D. CFM-ID: A Web Server for Annotation, Spectrum Prediction and Metabolite Identification from Tandem Mass Spectra. Nucleic Acids Res. 2014, 42(W1), W94–W99. DOI: 10.1093/nar/gku436.
  • Djoumbou-Feunang, Y.; Pon, A.; Karu, N.; Zheng, J.; Li, C.; Arndt, D.; Gautam, M.; Allen, F.; Wishart, D. S. Cfm-Id 3.0: Significantly Improved Esi-Ms/Ms Prediction and Compound Identification. Metabolites. 2019, 9(4), 72. DOI: 10.3390/metabo9040072.
  • Wang, F.; Liigand, J.; Tian, S.; Arndt, D.; Greiner, R.; Wishart, D. S. CFM-ID 4.0: More Accurate ESI-MS/MS Spectral Prediction and Compound Identification. Anal. Chem. 2021, 93(34), 11692–11700. DOI: 10.1021/ACS.ANALCHEM.1C01465/SUPPL_FILE/AC1C01465_SI_001.PDF.
  • Akimoto, N.; Ara, T.; Nakajima, D.; Suda, K.; Ikeda, C.; Takahashi, S.; Muneto, R.; Yamada, M.; Suzuki, H.; Shibata, D., et al. FlavonoidSearch: A System for Comprehensive Flavonoid Annotation by Mass Spectrometry. Sci. Rep. 2017, 7(1), 1–9. DOI: 10.1038/s41598-017-01390-3.
  • Ozcan, T.; Akpinar-Bayizit, A.; Yilmaz-Ersan, L.; Delikanli, B. Phenolics in Human Health. Int. J. Chem. Eng. Appl. 2014, 5(5), 393–396. DOI: 10.7763/IJCEA.2014.V5.416.
  • Pandey, K. B.; Rizvi, S. I. Plant Polyphenols as Dietary Antioxidants in Human Health and Disease. Oxid. Med. Cell. Longev. 2009, 2(5), 270. DOI: 10.4161/OXIM.2.5.9498.
  • De Mello Andrade, J. M.; Fasolo, D. Polyphenol Antioxidants from Natural Sources and Contribution to Health Promotion. Polyphenols in Human Health and Disease. 2014, 1, 253–265. DOI: 10.1016/B978-0-12-398456-2.00020-7.
  • Betteridge, D. J. What Is Oxidative Stress? Metabolism. 2000, 49(2 Suppl 1), 3–8. DOI: 10.1016/S0026-0495(00)80077-3.
  • Gligorijevic, N.; Radomirovic, M.; Nedic, O.; Stojadinovic, M.; Khulal, U.; Stanic-Vucinic, D.; Velickovic, T. C. Molecular Mechanisms of Possible Action of Phenolic Compounds in COVID-19 Protection and Prevention. Int. J. Mol. Sci. 2021, 22, 22. DOI: 10.3390/IJMS222212385.
  • Avila-Sosa, R.; Montero-Rodríguez, A. F.; Aguilar-Alonso, P.; Vera-López, O.; Lazcano-Hernández, M.; Morales-Medina, J. C.; Navarro-Cruz, A. R. Antioxidant Properties of Amazonian Fruits: A Mini Review of in Vivo and in Vitro Studies. Oxid. Med. Cell. Longev. 2019, 2019, 1–11. DOI: 10.1155/2019/8204129.
  • Peixoto Araujo, N. M.; Arruda, H. S.; Marques, D. R. P.; de Oliveira, W. Q.; Pereira, G. A.; Pastore, G. M. Functional and Nutritional Properties of Selected Amazon Fruits: A Review. Food Res. Int. 2021, 147, 110520. DOI: 10.1016/J.FOODRES.2021.110520.
  • Osorio, C. Almanza, O. Antioxidant Activity of Anthocyanin-Rich Colombian Tropical Fruits. In ACS Symposium Series; 2013. 10.1021/bk-2013-1129.ch005.
  • Contreras, J.; Calderón, L.; Guerra, E.; García, B. A. C. Phenolic Content and Vitamin C in Pulp, Peel and Seed from 24 Exotic Fruits from Colombia. Food Res. Int. 2011, 44(7), 2047–2053. DOI: 10.1016/j.foodres.2010.11.003.
  • Sotelo, D.; Casas, I.; F, N.; Camelo, M. G. Borojó (Borojoa Patinoi): Source of Polyphenols with Antimicrobial Activity. Vitae. 2010, 17(3), 329–336.
  • Ricker, M.; Jessen, J. H.; Daly, D. C. El caso paraBorojoa patinoi en la región del Chocó, Colombia. Econ. Bot. 1997, 51(1), 39–48. DOI: 10.1007/BF02910402.
  • Chaves-López, C.; Usai, D.; Donadu, M. G.; Serio, A.; González-Mina, R. T.; Simeoni, M. C.; Molicotti, P.; Zanetti, S.; Pinna, A.; Paparella, A. Potential of Borojoa Patinoi Cuatrecasas Water Extract to Inhibit Nosocomial Antibiotic Resistant Bacteria and Cancer Cell Proliferation in Vitro. Food Funct. 2018, 9(5), 2725–2734. DOI: 10.1039/c7fo01542a.
  • López, C. C.; Mazzarrino, G.; Rodríguez, A.; Fernández-López, J.; Pérez-Álvarez, J. A.; Viuda-Martos, M. Assessment of Antioxidant and Antibacterial Potential of Borojo Fruit (Borojoa Patinoi Cuatrecasas) from the Rainforests of South America. Ind. Crops Prod. 2015, 63, 79–86. DOI: 10.1016/j.indcrop.2014.10.047.
  • Leterme, P.; Garc??a, M. F.; Londo??o, A. M.; Rojas, M. G.; Buldgen, A.; Souffrant, W. B. Chemical Composition and Nutritive Value of Peach Palm (Bactris Gasipaes Kunth) in Rats. J. Sci. Food Agric. 2005, 85(9), 1505–1512. DOI: 10.1002/jsfa.2146.
  • Smith, N. Bactris Gasipaes. Palms and People in the Amazon 2015, 177–193.
  • Radice, M.; Viafara, D.; Neill, D.; Asanza, M.; Sacchetti, G.; Guerrini, A.; Maietti, S. Chemical Characterization and Antioxidant Activity of Amazonian (Ecuador) Caryodendron Orinocense Karst. and Bactris Gasipaes Kunth Seed Oils. J. Oleo Sci. 2014, 63(12), 1243–1250. DOI: 10.5650/jos.ess14007.
  • Hernández, M. S.; Carrillo, M.; Barrera, J.; Fernández-Trujillo, J. P. Camu-Camu (Myrciaria Dubia Kunth McVaugh). Postharvest Biology and Technology of Tropical and Subtropical Fruits 2011, 352–375e. DOI: 10.1533/9780857092762.352.
  • Akter, M. S.; Oh, S.; Eun, J.-B.; Ahmed, M. Nutritional Compositions and Health Promoting Phytochemicals of Camu-Camu (Myrciaria Dubia) Fruit: A Review. Food Res. Int. 2011, 44(7), 1728–1732. DOI: 10.1016/j.foodres.2011.03.045.
  • Genovese, M. I.; Da Silva Pinto, M.; De Souza Schmidt Gonçalves, A. E.; Lajolo, F. M. Bioactive Compounds and Antioxidant Capacity of Exotic Fruits and Commercial Frozen Pulps from Brazil. Food Sci. Technol. Int. 2008, 14(3), 207–214. DOI: 10.1177/1082013208092151.
  • De Souza Schmidt Gonçalves, A. E.; Lajolo, F. M.; Genovese, M. I. Chemical Composition and Antioxidant/Antidiabetic Potential of Brazilian Native Fruits and Commercial Frozen Pulps. J. Agric. Food Chem. 2010, 58(8), 4666–4674. DOI: 10.1021/jf903875u.
  • Mascherpa, D.; Carazzone, C.; Marrubini, G.; Gazzani, G.; Papetti, A. Identification of Phenolic Constituents in Cichorium Endivia Var. Crispum and Var. Latifolium Salads by High-Performance Liquid Chromatography with Diode Array Detection and Electrospray Ioniziation Tandem Mass Spectrometry. J. Agric. Food Chem. 2012, 60(49), 12142–12150. DOI: 10.1021/jf3034754.
  • Contreras-Calderón, J.; Calderón-Jaimes, L.; Guerra-Hernández, E.; García-Villanova, B. A. C. Phenolic Content and Vitamin C in Pulp, Peel and Seed from 24 Exotic Fruits from Colombia. Food Res. Int. 2011, 44(7), 2047–2053. DOI: 10.1016/j.foodres.2010.11.003.
  • Carazzone, C.; Mascherpa, D.; Gazzani, G.; Papetti, A. Identification of Phenolic Constituents in Red Chicory Salads (Cichorium Intybus) by High-Performance Liquid Chromatography with Diode Array Detection and Electrospray Ionisation Tandem Mass Spectrometry. Food Chem. 2013, 138(2–3), 1062–1071. DOI: 10.1016/j.foodchem.2012.11.060.
  • Molyneux, P. The Use of the Stable Free Radical Diphenylpicryl-Hydrazyl (DPPH) for Estimating Antioxidant Activity. Songklanakarin Journal of Science and Technology, 2004, 26 (December 2003), 211–219. 10.1287/isre.6.2.144.
  • DeLong, J. M.; Prange, R. K.; Hodges, D. M.; Forney, C. F.; Bishop, M. C.; Quilliam, M. Using a Modified Ferrous Oxidation-Xylenol Orange (FOX) Assay for Detection of Lipid Hydroperoxides in Plant Tissue. J. Agric. Food Chem. 2002, 50(2), 248–254. DOI: 10.1021/jf0106695.
  • Owokotomo, I. A.; Ekundayo, O.; Abayomi, T. G.; Chukwuka, A. V. In-Vitro Anti-Cholinesterase Activity of Essential Oil from Four Tropical Medicinal Plants. Toxicol. Rep. 2015, 2, 850–857. DOI: 10.1016/j.toxrep.2015.05.003.
  • Konrath, E. L.; Neves, B. M.; Lunardi, P. S.; Passos, C. D. S.; Simões-Pires, A.; Ortega, M. G.; Gonalves, C. A.; Cabrera, J. L.; Moreira, J. C. F.; Henriques, A. T. Investigation of the in Vitro and Ex Vivo Acetylcholinesterase and Antioxidant Activities of Traditionally Used Lycopodium Species from South America on Alkaloid Extracts. J. Ethnopharmacol. 2012, 139(1), 58–67. DOI: 10.1016/j.jep.2011.10.042.
  • Chirinos, R.; , et al. Antioxidant Compounds and Antioxidant Capacity of Peruvian Camu Camu (Myrciaria Dubia (H.B.K.) McVaugh) Fruit at Different Maturity Stages. Food Chem. 2010, 120(4), 1019–1024. DOI: 10.1016/j.foodchem.2009.11.041.
  • Bravo, K.; Sepulveda-Ortega, S.; Lara-Guzman, O.; Navas-Arboleda, A. A.; Osorio, E. Influence of Cultivar and Ripening Time on Bioactive Compounds and Antioxidant Properties in Cape Gooseberry (Physalis Peruviana L.). J. Sci. Food Agric. 2015, 95(7), 1562–1569. DOI: 10.1002/jsfa.6866.
  • Lago-Vanzela, E. S.; Da-Silva, R.; Gomes, E.; García-Romero, E.; Hermosín-Gutiérrez, I. Phenolic Composition of the Edible Parts (Flesh and Skin) of Bordô Grape (Vitis Labrusca) Using HPLC–DAD–ESI-MS/MS. J. Agric. Food Chem. 2011, 59(24), 13136–13146. DOI: 10.1021/jf203679n.
  • Złotek, U.; Mikulska, S.; Nagajek, M.; Świeca, M. The Effect of Different Solvents and Number of Extraction Steps on the Polyphenol Content and Antioxidant Capacity of Basil Leaves (Ocimum Basilicum L.) Extracts. Saudi J. Biol. Sci. 2016, 23(5), 628–633. DOI: 10.1016/j.sjbs.2015.08.002.
  • Gonçalves, S.; Romano, A. Inhibitory Properties of Phenolic Compounds against Enzymes Linked with Human Diseases. 2017, Phenolic Compounds - Biological Activity. DOI: 10.5772/66844.
  • Prior, R. L.; Wu, X.; Schaich, K. Standardized Methods for the Determination of Antioxidant Capacity and Phenolics in Foods and Dietary Supplements. J. Agric. Food Chem. 2005, 53(10), 4290–4302. DOI: 10.1021/jf0502698.
  • El Sayed, A. M.; Basam, S. M.; El-Naggar, E.-M. B. A.; Marzouk, H. S.; El-Hawary, S. LC–MS/MS and GC–MS Profiling as Well as the Antimicrobial Effect of Leaves of Selected Yucca Species Introduced to Egypt. Sci. Rep. 2020, 10(1), 17778. DOI: 10.1038/s41598-020-74440-y.
  • Willems, J. L.; Khamis, M. M.; Mohammed Saeid, W.; Purves, R. W.; Katselis, G.; Low, N. H.; El-Aneed, A. Analysis of a Series of Chlorogenic Acid Isomers Using Differential Ion Mobility and Tandem Mass Spectrometry. Anal. Chim. Acta. 2016, 933, 164–174. DOI: 10.1016/j.aca.2016.05.041.
  • Noman, L.; Oke-Altuntas, F.; Zellagui, A.; Sahin Yaglioglu, A.; Demirtas, I.; Cardoso, M.; Akkal, S.; Gherraf, N.; Rhouati, S. A Novel Benzimidazole and Other Constituents with Antiproliferative and Antioxidant Properties from Thymelaea Microphylla Coss. Et Dur. Nat. Prod. Res. 2017, 31(17), 2032–2041. DOI: 10.1080/14786419.2016.1274888.
  • Li, Z.; Liu, J.; Zhang, D.; Du, X.; Han, L.; Lv, C.; Li, Y.; Wang, R.; Wang, B.; Huang, Y. Nuciferine and Paeoniflorin Can Be Quality Markers of Tangzhiqing Tablet, a Chinese Traditional Patent Medicine, Based on the Qualitative, Quantitative and Dose-Exposure-Response Analysis. Phytomedicine. 2018, 44, 155–163. DOI: 10.1016/j.phymed.2018.02.006.
  • Justino, G. C.; Borges, C. M.; Helena Florêncio, M. Electrospray Ionization Tandem Mass Spectrometry Fragmentation of Protonated Flavone and Flavonol Aglycones: A Re-Examination. Rapid Commun. Mass Spectrom. 2009, 23(2), 237–248. DOI: 10.1002/rcm.3869.
  • Yi, T.; Zhu, L.; Tang, Y. N.; Zhang, J. Y.; Liang, Z. T.; Xu, J.; Zhao, Z. Z.; Yu, Z. L.; Bian, Z. X.; Yang, Z. J., et al. An Integrated Strategy Based on UPLC-DAD-QTOF-MS for Metabolism and Pharmacokinetic Studies of Herbal Medicines: Tibetan “Snow Lotus” Herb (Saussurea Laniceps), a Case Study. J. Ethnopharmacol. 2014, 153(3), 701–713. DOI: 10.1016/j.jep.2014.03.031.
  • Barnaba, C.; Larcher, R.; Nardin, T.; Dellacassa, E.; Nicolini, G. Glycosylated Simple Phenolic Profiling of Food Tannins Using High Resolution Mass Spectrometry (Q-Orbitrap). Food Chem. 2018, 267, 196–203. DOI: 10.1016/j.foodchem.2017.11.048.
  • Huang, H. C.; Lin, M. K.; Hwang, S. Y.; Hwang, T. L.; Kuio, Y. H.; Chang, C. I.; Ou, C. Y.; Kuo, Y. H. Two Anti-Inflammatory Steroidal Saponins from Dracaena Angustifolia Roxb. Molecules. 2013, 18(8), 8752–8763. DOI: 10.3390/molecules18088752.
  • Bah, M.; Chérigo, L.; Cardoso Taketa, A. T.; Fragoso-Serrano, M.; Hammond, G. B.; Pereda-Miranda, R. I. I.-V. I. I. Pentasaccharides from the Seeds of Ipomoea Intrapilosa. J. Nat. Prod. 2007, 70(7), 1153–1157. DOI: 10.1021/np0701529.
  • Tanaka, Y.; Yanagida, A.; Komeya, S.; Kawana, M.; Honma, D.; Tagashira, M.; Kanda, T.; Shibusawa, Y. Comprehensive Separation and Structural Analyses of Polyphenols and Related Compounds from Bracts of Hops (Humulus Lupulus L.). J. Agric. Food Chem. 2014, 62(10), 2198–2206. DOI: 10.1021/jf405544n.
  • Seraglio, S. K. T.; Valese, A. C.; Daguer, H.; Bergamo, G.; Azevedo, M. S.; Gonzaga, L. V.; Fett, R.; Costa, A. C. O. Development and Validation of a LC-ESI-MS/MS Method for the Determination of Phenolic Compounds in Honeydew Honeys with the Diluted-and-Shoot Approach. Food Res. Int. 2016, 87, 60–67. DOI: 10.1016/j.foodres.2016.06.019.
  • Wabaidur, S. M.; Alothman, Z. A.; Khan, M. R. A Rapid Method for the Simultaneous Determination of L-Ascorbic Acid and Acetylsalicylic Acid in Aspirin C Effervescent Tablet by Ultra Performance Liquid Chromatography-Tandem Mass Spectrometry. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2013, 108, 20–25. DOI: 10.1016/j.saa.2013.01.070.
  • Chen, S. D.; Lu, C. J.; Zhao, R. Z. Qualitative and Quantitative Analysis of Rhizoma Smilacis Glabrae by Ultra High Performance Liquid Chromatography Coupled with LTQ OrbitrapXL Hybrid Mass Spectrometry. Molecules. 2014, 19(7), 10427–10439. DOI: 10.3390/molecules190710427.
  • De Marino, S.; Festa, C.; Zollo, F.; Rusolo, F.; Capone, F.; Guerriero, E.; Costantini, S.; De Felice, V.; Iorizzi, M. Phytochemical Profile of Juniperus Oxycedrus Ssp. Oxycedrus Berries: A New Monoterpene Glucoside and Evaluation of the Effects on Cancer Cell Lines. Phytochem. Lett. 2014, 10, 152–159. DOI: 10.1016/j.phytol.2014.08.015.
  • Mihajlovic, L.; Radosavljevic, J.; Burazer, L.; Smiljanic, K.; Cirkovic Velickovic, T. Composition of Polyphenol and Polyamide Compounds in Common Ragweed (Ambrosia Artemisiifolia L.) Pollen and Sub-Pollen Particles. Phytochemistry. 2015, 109, 125–132. DOI: 10.1016/j.phytochem.2014.10.022.
  • Liu, M. H.; Zhang, Q.; Zhang, Y. H.; Lu, X. Y.; Fu, W. M.; He, J. Y. Chemical Analysis of Dietary Constituents in Rosa Roxburghii and Rosa Sterilis Fruits. Molecules. 2016, 21(9), 1204. DOI: 10.3390/molecules21091204.
  • Wei, X. H.; Yang, S. J.; Liang, N.; Hu, D. Y.; Jin, L. H.; Xue, W.; Yang, S. Chemical Constituents of Caesalpinia Decapetala (Roth) Alston. Molecules. 2013, 18(1), 1325–1336. DOI: 10.3390/molecules18011325.
  • Lin, L. Z.; Harnly, J. M. Phenolic Compounds and Chromatographic Profiles of Pear Skins (Pyrus Spp.). J. Agric. Food Chem. 2008, 56(19), 9094–9101. DOI: 10.1021/jf8013487.
  • Mäkilä, L.; Laaksonen, O.; Alanne, A. L.; Kortesniemi, M.; Kallio, H.; Yang, B. Stability of Hydroxycinnamic Acid Derivatives, Flavonol Glycosides, and Anthocyanins in Black Currant Juice. J. Agric. Food Chem. 2016, 64(22), 4584–4598. DOI: 10.1021/acs.jafc.6b01005.
  • Saldanha, L. L.; Vilegas, W.; Dokkedal, A. L. Characterization of Flavonoids and Phenolic Acids in Myrcia Bella Cambess. Using FIA-ESI-IT-MSn and HPLC-PAD-ESI-IT-MS Combined with NMR. Molecules. 2013, 18(7), 8402–8416. DOI: 10.3390/molecules18078402.
  • Agar, O. T.; Dikmen, M.; Ozturk, N.; Yilmaz, M. A.; Temel, H.; Turkmenoglu, F. P. Comparative Studies on Phenolic Composition, Antioxidant, Wound Healing and Cytotoxic Activities of Selected Achillea L. Species Growing in Turkey. Molecules. 2015, 20(10), 17976–18000. DOI: 10.3390/molecules201017976.
  • Seibert, J. B.; Bautista-Silva, J. P.; Amparo, T. R.; Petit, A.; Pervier, P.; Dos Santos Almeida, J. C.; Azevedo, M. C.; Silveira, B. M.; Brandão, G. C.; de Souza, G. H. B., et al. Development of Propolis Nanoemulsion with Antioxidant and Antimicrobial Activity for Use as a Potential Natural Preservative. Food Chem. 2019, 287, 61–67. DOI: 10.1016/j.foodchem.2019.02.078.
  • Zhu, J.-X.; Qin, -J.-J.; Zhang, F.; Chang, R.-J.; Ren, J.; Cheng, X.-R.; Zeng, Q.; Jin, H.-Z.; Zhang, W.-D. Chemical Constiuents of Euonymus Acanthocarpus. Chem. Nat. Compd. 2013, 49(2), 383–387. DOI: 10.1007/s10600-013-0616-y.
  • Vagula, J. M.; Sinosaki, N. M.; Ribeiro, M. A. S.; Magon, T.; Bertozzi, J.; Meurer, E. C.; Santos, O. O.; Visentainer, J. V. Simple and Fast Method for Identification and Quantification of Anthocyanidins in Berries by Ultra Performance Liquid Chromatography-Mass Spectrometry. J. Braz. Chem. Soc. 2018, 29(1), 38–44. DOI: 10.21577/0103-5053.20170110.
  • Barnes, J. S.; Nguyen, H. P.; Shen, S.; Schug, K. A. General Method for Extraction of Blueberry Anthocyanins and Identification Using High Performance Liquid Chromatography-Electrospray Ionization-Ion Trap-Time of Flight-Mass Spectrometry. J. Chromatogr. A. 2009, 1216(23), 4728–4735. DOI: 10.1016/j.chroma.2009.04.032.
  • Barnes, J. S.; Schug, K. A. Structural Characterization of Cyanidin-3,5-Diglucoside and Pelargonidin-3,5-Diglucoside Anthocyanins: Multi-Dimensional Fragmentation Pathways Using High Performance Liquid Chromatography-Electrospray Ionization-Ion Trap-Time of Flight Mass Spectrometry. Int. J. Mass Spectrom. 2011, 308(1), 71–80. DOI: 10.1016/j.ijms.2011.07.026.
  • Montoro, P.; Tuberoso, C. I. G.; Perrone, A.; Piacente, S.; Cabras, P.; Pizza, C. Characterisation by Liquid Chromatography-Electrospray Tandem Mass Spectrometry of Anthocyanins in Extracts of Myrtus Communis L. Berries Used for the Preparation of Myrtle Liqueur. J. Chromatogr. A. 2006, 1112(1–2), 232–240. DOI: 10.1016/j.chroma.2005.11.055.
  • Mirali, M.; Purves, R. W.; Vandenberg, A. Profiling the Phenolic Compounds of the Four Major Seed Coat Types and Their Relation to Color Genes in Lentil. J. Nat. Prod. 2017, 80(5), 1310–1317. DOI: 10.1021/acs.jnatprod.6b00872.
  • Spencer, J. P.; Schroeter, H.; Kuhnle, G.; Srai, S. K.; Tyrrell, R. M.; Hahn, U.; Rice-Evans, C. Epicatechin and Its in Vivo Metabolite, 3’-O-Methyl Epicatechin, Protect Human Fibroblasts from Oxidative-Stress-Induced Cell Death Involving Caspase-3 Activation. Biochem. J. 2001, 354(Pt 3), 493–500. DOI: 10.1042/0264-6021:3540493.
  • Hatano, T.; Miyatake, H.; Natsume, M.; Osakabe, N.; Takizawa, T.; Ito, H.; Yoshida, T. Proanthocyanidin Glycosides and Related Polyphenols from Cacao Liquor and Their Antioxidant Effects. Phytochemistry. 2002, 59(7), 749–758. DOI: 10.1016/S0031-9422(02)00051-1.
  • Lakenbrink, C.; Engelhardt, U. H.; Wray, V. Identification of Two Novel Proanthocyanidins in Green Tea. J. Agric. Food Chem. 1999, 47(11), 4621–4624. DOI: 10.1021/jf9813081.
  • Kim, M. S.; Nam, M.; Hwang, G. S. Metabolic Alterations in Two Cirsium Species Identified at Distinct Phenological Stages Using UPLC-QTOF/MS. Phytochem. Anal. 2018, 29(1), 77–86. DOI: 10.1002/pca.2716.
  • Taamalli, A.; Arráez-Román, D.; Abaza, L.; Iswaldi, I.; Fernández-Gutiérrez, A.; Zarrouk, M.; Segura-Carretero, A. LC-MS-Based Metabolite Profiling of Methanolic Extracts from the Medicinal and Aromatic Species Mentha Pulegium and Origanum Majorana. Phytochem. Anal. 2015, 26(5), 320–330. DOI: 10.1002/pca.2566.
  • Jeong, S. J.; Miyamoto, T.; Inagaki, M.; Kim, Y. C.; Higuchi, R. R. A.-C. Three Novel Sesquiterpene Alkaloids from Cyperus Rotundus. J. Nat. Prod. 2000, 63(5), 673–675. DOI: 10.1021/np990588r.
  • García-Villalba, R.; Tomás-Barberán, F. A.; Fança-Berthon, P.; Roller, M.; Zafrilla, P.; Issaly, N.; García-Conesa, M. T.; Combet, E. Targeted and Untargeted Metabolomics to Explore the Bioavailability of the Secoiridoids from A Seed/Fruit Extract (Fraxinus Angustifolia Vahl) in Human Healthy Volunteers: A Preliminary Study. Molecules. 2015, 20(12), 22202–22219. DOI: 10.3390/molecules201219845.