1,783
Views
2
CrossRef citations to date
0
Altmetric
Original Article

Ascorbic acid, pigments, anti-nutritional factors, and nutraceutical potential of Anacardium occidentale fruits as affected by temperature

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 471-488 | Received 21 Sep 2022, Accepted 24 Dec 2022, Published online: 27 Jan 2023

References

  • Salehi, B.; Gültekin-Özgüven, M.; Kirkin, C.; Özçelik, B.; Morais-Braga, M. F. B.; Carneiro, J. N. P.; Bezerra, C. F.; Silva, T. G. D.; Coutinho, H. D. M.; Amina, B., et al. Anacardium Plants: Chemical,nutritional Composition and Biotechnological Applications. Biomolecules. 2019, 9(9), 1–34. DOI: 10.3390/biom9090465.
  • FAOSTAT. Crops and Livestock Products. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on August 25, 2022).
  • Oliveira, N. N.; Mothé, C. G.; Mothé, M. G.; Oliveira, L. G. D. Cashew Nut and Cashew Apple: A Scientific and Technological Monitoring Worldwide Review. J. Food Sci. Technol. 2020, 57(1), 12–21. DOI: 10.1007/s13197-019-04051-7.
  • Ogunwolu, S. O.; Henshaw, F. O.; Mock, H. P.; Santros, A.; Awonorin, S. O. Functional Properties of Protein Concentrates and Isolates Produced from Cashew (Anacardium Occidentale L.) Nut. Food Chem. 2009, 115(3), 852–858. DOI: 10.1016/j.foodchem.2009.01.011.
  • Godjo, T.; Tagutchou, J.-P.; Naquin, P.; Gourdon, R. Valorisation des coques d’anacarde par pyrolyse au Bénin. Environnement, Ingénierie & Développement. 2015, N°70-nov(N°70), 11–18.
  • Trevisan, M. T. S.; Pfundstein, B.; Haubner, R.; Würtele, G.; Spiegelhalder, B.; Bartsch, H.; Owen, R. W. Characterization of Alkyl Phenols in Cashew (Anacardium Occidentale) Products and Assay of Their Antioxidant Capacity. Food Chem. Toxicol. 2006, 44(2), 188–197. DOI: 10.1016/j.fct.2005.06.012.
  • Andrade, T. D. J. A. D. S.; Araújo, B. Q.; Citó, A. M. D. G. L.; Silva, J. D.; Saffi, J.; Richter, M. F.; Ferraz, A. D. B. F. Antioxidant Properties and Chemical Composition of Technical Cashew Nut Shell Liquid (Tcnsl). Food Chem. 2011, 126(3), 1044–1048. DOI: 10.1016/j.foodchem.2010.11.122.
  • Emmanuelle, D.; Joseph, D.; Victor, A.; Mohamed, M. S. A Review of Cashew (Anacardiumoccidentale L.) Apple: Effects of Processing Techniques, Properties and Quality of Juice. Afr. J. Biotechnol. 2016, 15(47), 2637–2648. DOI: 10.5897/AJB2015.14974.
  • Petroski, W.; Minich, D. M. Is There Such A Thing as “anti-nutrients”? A Narrative Review of Perceived Problematic Plant Compounds. Nutrients. 2020, 12(10), 1–32. DOI: 10.3390/nu12102929.
  • Amon, A.; Olga, A.; Souleymane, T.; Fatoumata, C.; Gbogouri, G. A.; Kouakou, B. Evaluation of Technological Treatments Impact on Nutritional Value and anti-nutritional Factors of Cashew kernel-based Flour (Anacardium Occidentale) Grown in Côte D. Ivoire. Int. J. Food Sci. Nutr. 2018, 3(1), 20–28.
  • Karamać, M. Chelation of Cu(II), Zn(II), and Fe(II) by Tannin Constituents of Selected Edible Nuts. Int. J. Mol. Sci. 2009, 10(12), 5485–5497. DOI: 10.3390/ijms10125485.
  • Duarte, F. N. D.; Rodrigues, J. B.; Costa Lima, M. D.; Lima, M. D. S.; Pacheco, M. T. B.; Pintado, M. M. E.; Souza Aquino, J. D.; Souza, E. L. D. Potential Prebiotic Properties of Cashew Apple (Anacardium Occidentale L.) agro-industrial Byproduct on Lactobacillus Species. J. Sci. Food Agric. 2017, 97(11), 3712–3719. DOI: 10.1002/jsfa.8232.
  • Rico, R.; Bulló, M.; Salas-Salvadó, J. Nutritional Composition of Raw Fresh Cashew (Anacardium Occidentale L.) Kernels from Different Origin. Food Sci. Nutr. 2016, 4(2), 329–338. DOI: 10.1002/fsn3.294.
  • Sharma, P.; Gaur, V. K.; Sirohi, R.; Larroche, C.; Kim, S. H.; Pandey, A. Valorization of Cashew Nut Processing Residues for Industrial Applications. Ind. Crop Prod. 2020, 152(January), 112550. DOI: 10.1016/j.indcrop.2020.112550.
  • Assunção, R. B.; Mercadante, A. Z. Carotenoids and Ascorbic Acid Composition from Commercial Products of Cashew Apple (Anacardium Occidentale L.). J. Food Compos. Anal. 2003, 16(6), 647–657. DOI: 10.1016/S0889-1575(03)00098-X.
  • Dao, T. P.; Nguyen, D. V.; Tran, T. Y. N.; Pham, T. N.; Nguyen, P. T. N.; Bach, L. G.; Nguyen, V. H.; Do, V. Q.; Nguyen, V. M.; Tran, T. T. Effects of Tannin, Ascorbic Acid, and Total Phenolic Contents of Cashew (Anacardium Occidentale L.) Apples Blanched with Saline Solution. Food Res. 2021, 5(1), 409–416. DOI: 10.26656/fr.2017.5(1).454.
  • Dao, T. P.; Vu, D. N.; Nguyen, D. V.; Pham, V. T.; Tran, T. Y. N. Study of Jelly Drying Cashew Apples (Anacardium Occidentale L.) Processing. Food Sci. Nutr. 2022, 10(2), 363–373. DOI: 10.1002/fsn3.2565.
  • Idris, W. H.; AbdelRahaman, S. M.; ElMaki, H. B.; Babiker, E. E.; Tinay, A. H. E. Effect of Malt Pretreatment on Phytate and Tannin Level of Two Sorghum (Sorghum Bicolor) Cultivars. Int. J. Food Sci. Technol. 2006, 41(10), 1229–1233. DOI: 10.1111/j.1365-2621.2006.01190.x.
  • Carlson, D.; Poulsen, H. D. Phytate Degradation in Soaked and Fermented Liquid Feed - Effect of Diet, Time of Soaking, Heat Treatment, Phytase Activity, pH and Temperature. Anim. Feed Sci. Technol. 2003, 103(1–4), 141–154. DOI: 10.1016/S0377-8401(02)00288-2.
  • Bai, S. H.; Brooks, P.; Gama, R.; Nevenimo, T.; Hannet, G.; Hannet, D.; Randall, B.; Walton, D.; Grant, E.; Wallace, H. M. Nutritional Quality of Almond, Canarium, Cashew and Pistachio and Their Oil Photooxidative Stability. J. Food Sci. Technol. 2019, 56(2), 792–798. DOI: 10.1007/s13197-018-3539-6.
  • Dakuyo, R.; Konaté, K.; Sanou, A.; Kaboré, K.; Sama, H.; Bazié, D.; Diao, M.; Dicko, M. H.; Morales-Quintana, L. Comparison of Proximate and Phytonutrient Compositions of Cashew Nuts and Apples from Different Geographical Areas of Burkina Faso. BioMed. Res. Int. 2022, 2022, 1800091. DOI: 10.1155/2022/1800091.
  • Khonchaisri, R.; Sumonsiri, N.; Prommajak, T.; Rachtanapun, P.; Leksawasdi, N.; Techapun, C.; Taesuwan, S.; Halee, A.; Nunta, R.; Khemacheewakul, J. Optimization of Ultrasonic-Assisted Bioactive Compound Extraction from Green Soybean (Glycine Max L.) and the Effect of Drying Methods and Storage Conditions on Procyanidin Extract. Foods. 2022, 11(12), 1775. DOI: 10.3390/foods11121775.
  • Mehta, N.; Patani, P.; Singhvi, I. Colorimetric Estimation of Ascorbic Acid from Different Varities of Tomatoes Cultivated in Gujarat. World J. Pharm. Res. 2018, 7(4), 1376–1384.
  • Kovalevskaya, R. Z.; Zhukava, H. A.; Adamovich, B. V. Modification of the Method of Spectrophotometric Determination of Chlorophyll A in the Suspended Matter of Water Bodies. J. Appl. Spectrosc. 2020, 87(1), 72–78. DOI: 10.1007/s10812-020-00965-9.
  • Wu, X.; Sun, C.; Yang, L.; Zeng, G.; Liu, Z.; Li, Y. β-carotene Content in Sweet Potato Varieties from China and the Effect of Preparation on β-carotene Retention in the Yanshu No. 5. Innov. Food Sci. Emerg. Technol. 2008, 9(4), 581–586. DOI: 10.1016/j.ifset.2008.06.002.
  • Lee, J. AOAC Official Method 2005.02 Total Monomeric Anthocyanin Pigment Content of Fruit Juices, Beverages, Natural Colorants, and Wines pH Differential Method First Action 2005. Official Methods of Analysis of AOAC International. 2006, 37.1.68.
  • Hasperué, J. H.; Rodoni, L. M.; Guardianelli, L. M.; Chaves, A. R.; Martínez, G. A. Use of LED Light for Brussels Sprouts Postharvest Conservation. Sci. Hortic. (Amsterdam). 2016, 213(25), 281–286. DOI: 10.1016/j.scienta.2016.11.004.
  • Price, M. L.; Butler, L. G. Rapid Visual Estimation and Spectrophotometric Determination of Tannin Content of Sorghum Grain. J. Agric. Food Chem. 1977, 25(6), 1268–1273. DOI: 10.1021/jf60214a034.
  • Latta, M.; Eskin, M. A Simple and Rapid Colorimetric Method for Phytate Determination. J. Agric. Food Chem. 1980, 28(6), 1313–1315. DOI: 10.1021/jf60232a049.
  • Singleton, V. L.; Orthofer, R.; Lamuela-Raventós, R. M. Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of folin-ciocalteu Reagent. Methods Enzymol. 1999, 299, 152–178.
  • Arvouet-Grand, A.; Vennat, B.; Pourrat, A.; Legret, P. Standardisation D’Un Extrait De Propolis Et Identification Des Principaux Constituants. J. Pharm. Belg. 1994, 49(6), 462–468.
  • Ahmed, Z. B.; Yousfi, M.; Viaene, J.; Dejaegher, B.; Demeyer, K.; Mangelings, D.; Heyden, Y. V. Determination of Optimal Extraction Conditions for Phenolic Compounds From: Pistacia Atlantica Leaves Using the Response Surface Methodology. Anal. Methods. 2016, 8(31), 6107–6114.
  • Velázquez, E.; Tournier, H. A.; Mordujovich De Buschiazzo, P.; Saavedra, G.; Schinella, G. R. Antioxidant Activity of Paraguayan Plant Extracts. Fitoterapia. 2003, 74(1–2), 91–97. DOI: 10.1016/S0367-326X(02)00293-9.
  • Scherer, R.; Godoy, H. T. Antioxidant Activity Index (AAI) by the 2,2-diphenyl-1-picrylhydrazyl Method. Food Chem. 2009, 112(3), 654–658. DOI: 10.1016/j.foodchem.2008.06.026.
  • Mesa-Herrera, F.; Quinto-Alemany, D.; Díaz, M. A Sensitive, Accurate, and Versatile Method for the Quantification of Superoxide Dismutase Activities in Biological Preparations. React. Oxyg. Species. 2019, 7(19), 10–20.
  • Wills, E. D. Mechanisms of Lipid Peroxide Formation in Animal Tissues. Biochem. J. 1966, 99(3), 667–676. DOI: 10.1042/bj0990667.
  • Ruberto, G.; Baratta, M. T.; Deans, S. G.; Dorman, H. J. D. Antioxidant and Antimicrobial Activity of Foeniculum Vulgare and Crithmum Maritimum Essential Oils. Planta Med. 2000, 66(8), 687–693. DOI: 10.1055/s-2000-9773.
  • Chaparro, L.; Dhuique-Mayer, C.; Castillo, S.; Vaillant, F.; Servent, A.; Dornier, M. Concentration and Purification of Lycopene from Watermelon Juice by Integrated microfiltration-based Processes. Innov. Food Sci. Emerg. Technol. 2016, 37, 153–160. DOI: 10.1016/j.ifset.2016.08.001.
  • Imran, M.; Ghorat, F.; Ul-haq, I.; Ur-rehman, H.; Aslam, F.; Heydari, M.; Shariati, M. A.; Okuskhanova, E.; Yessimbekov, Z.; Thiruvengadam, M., et al. Lycopene as a Natural Antioxidant Used to Prevent Human Health Disorders. Antioxidants. 2020, 9(8), 1–27. DOI: 10.3390/antiox9080706.
  • Lopes, M. M. A. D.; Miranda, M. R. A. D.; Moura, C. F. H.; Filho, J. E. Compostos bioativos e atividade antioxidante total de pedúnculos de caju (Anacardium occidentale L.) durante o amadurecimento de clones de cajueiro anão-precoce. Cienc. E Agrotecnologia. 2012, 36(3), 325–332.
  • Semporé, J. N.; Songré-Ouattara, L. T.; Tarpaga, W. V.; Bationo, F.; Dicko, M. H. Morphological Characterization and Quality Assessment of Cashew (Anacardium Occidentale L.) Nuts from 53 Accessions of Burkina Faso. J. Agric. Food Res. 2021, 6(September), 100219. DOI: 10.1016/j.jafr.2021.100219.
  • Legua, P.; Modica, G.; Porras, I.; Conesa, A.; Continella, A. Bioactive Compounds, Antioxidant Activity and Fruit Quality Evaluation of Eleven Blood Orange Cultivars. J. Sci. Food Agric. 2022, 102(7), 2960–2971. DOI: 10.1002/jsfa.11636.
  • Abdullah, S.; Pradhan, R. C.; Aflah, M.; Mishra, S. Efficiency of Tannase Enzyme for Degradation of Tannin from Cashew Apple Juice: Modeling and Optimization of Process Using Artificial Neural Network and Response Surface Methodology. J. Food Process. Eng. 2020, 43(10). DOI: 10.1111/jfpe.13499.
  • Adegunwa, M. O.; Kayode, B. I.; Kayode, R. M. O.; Akeem, S. A.; Adebowale, A. A.; Bakare, H. A. Characterization of Wheat Flour Enriched with Cashew Apple (Anacardium Occidentale L.) Fiber for Cake Production. J. Food Meas. Charact. 2020, 14(4), 1998–2009. DOI: 10.1007/s11694-020-00446-9.
  • Chung, K. T.; Wong, T. Y.; Wei, C. I.; Huang, Y. W.; Lin, Y. Tannins and Human Health: A Review. Crit. Rev. Food Sci. Nutr. 1998, 38(6), 421–464. DOI: 10.1080/10408699891274273.
  • Gibson, R. S.; Raboy, V.; King, J. C. Implications of Phytate in plant-based Foods for Iron and Zinc Bioavailability, Setting Dietary Requirements, and Formulating Programs and Policies. Nutr. Rev. 2018, 76(11), 793–804. DOI: 10.1093/nutrit/nuy028.
  • Lowor, S. T.; Agyeute-Badu, C. K. Mineral and Proximate Composition of Cashew Apple (Anarcadium Occidentale L.) Juice from Northern Savannah, Forest and Coastal Savannah Regions in Ghana. Am. J. Food Technol. 2009, 4(4), 154–161. DOI: 10.3923/ajft.2009.154.161.
  • Moyses-Neto, M.; Brito, B. R. S.; Araújo Brito, D. J. D.; Barros, N. D. C.; Dantas, M.; Salgado-Filho, N.; Costa, R. S.; Silva, G. E. B. Vitamin C-induced Oxalate Nephropathy in A Renal Transplant Patient Related to Excessive Ingestion of Cashew Pseudofruit (Anacardium Occidentale L.): A Case Report 11 Medical and Health Sciences 1103 Clinical Sciences. BMC Nephrol. 2018, 19(1), 1–4. DOI: 10.1186/s12882-018-1060-9.
  • Xie, C.; Jiang, L.; Huang, G.; Pu, H.; Gong, B.; Lin, H.; Ma, S.; Chen, X.; Long, B.; Si, G., et al. Comparison of Different Samples for 2019 Novel Coronavirus Detection by Nucleic Acid Amplification Tests. Int. J. Infect. Dis. 2020, 93, 264–267. DOI: 10.1016/j.ijid.2020.02.050.
  • Sirmali, R.; Giniş, Z.; Sirmali, M.; Solak, O.; Şeliman, B.; Ağaçkiran, Y.; Delibaş, N. Vitamin C as an Antioxidant: Evaluation of Its Role on Pulmonary Contusion Experimental Model. Turkish J. Med. Sci. 2014, 44(6), 905–913.
  • Silva, R. R. D.; Rodrigues, L. U.; Fidélis, R. R.; Faria, Á. J. G. D.; Nascimento, V. L. Nutritional and Morphophysiological Responses of Soybean to Micronutrient Fertilization in Soil. Commun. Plant Sci. 2019, 9(1), 93–99. DOI: 10.26814/cps2019016.
  • Dioha, I.; Olugbemi, O.; Onuegbu, T.; Shahru, Z. Determination of Ascorbic Acid Content of Some Tropical Fruits by Iodometric Titration. Int. J. Biol. Chem. Sci. 2012, 5(5), 2180. DOI: 10.4314/ijbcs.v5i5.37.
  • Kafache, D.; Deli, M.; Galani, B. R. T.; Agume, A. N.; Bouba, A. A.; Njintang, N. Y. Physicochemical and in Vitro Antioxidant Properties of Juice and Cake Filters from Carissa Edulis Vahl Fruits. J. Explor. Res. Pharmacol. 2022, 7(3), 000–000.
  • Nhi, T. T. Y.; Quy, N. N.; Truong, L. D.; Phat, D. T.; Phong, H. X. Comparison of Pretreatment Methods on Total Ascorbic Acid, Total Phenolic Content, and Color of Soursop (Annona Muricata L.) Pulp. Steam Blanching, Hot Water Blanching, and microwave-assisted Blanching. J. Food Process. Preserv. 2022, 46(11). DOI: 10.1111/jfpp.17017.
  • Oboulbiga, B. E.; Parkouda, C.; Dabiré, C.; Guissou, A. W. D. B.; Traore, K.; Semde, Z.; Douamba, Z.; Sawadogo-Lingani, H.; Dicko, M. H. Storage Stability of Dried Tomato Slices during Storage as Affected by Salt and Lemon Pretreatments. Int. J. Food Prop. 2022, 25(1), 450–462.
  • Alda, L. M.; Gogoa, I.; Bordean, D.; Gergen, I.; Alda, S.; Moldovan, C.; Ni, L. Lycopene Content of Tomatoes and Tomato Products. J. Agroaliment. Process Technol. 2009, 15(4), 540–542.
  • Altemimi, A.; Lakhssassi, N.; Baharlouei, A.; Watson, D. G.; Lightfoot, D. A. Phytochemicals: Extraction, Isolation, and Identification of Bioactive Compounds from Plant Extracts. Plants. 2017, 6(4), 42. DOI: 10.3390/plants6040042.
  • Cruz Reina, L. J.; Durán-Aranguren, D. D.; Forero-Rojas, L. F.; Tarapuez-Viveros, L. F.; Durán-Sequeda, D.; Carazzone, C.; Sierra, R. Chemical Composition and Bioactive Compounds of Cashew (Anacardium Occidentale) Apple Juice and Bagasse from Colombian Varieties. Heliyon. 2022, 8(5), e09528. DOI: 10.1016/j.heliyon.2022.e09528.
  • Salehi, B.; Gültekin-Özgüven, M.; Kirkin, C.; Özçelik, B.; Morais-Braga, M. F. B.; Carneiro, J. N. P.; Bezerra, C. F.; Silva, T. G. D.; Coutinho, H. D. M.; Amina, B., et al. Antioxidant, Antimicrobial, and Anticancer Effects of Anacardium Plants: An Ethnopharmacological Perspective. Front. Endocrinol. (Lausanne). 2020, 11(June), 1–16. DOI: 10.3389/fendo.2020.00295.
  • Cordaro, M.; Siracusa, R.; Fusco, R.; D’amico, R.; Peritore, A. F.; Gugliandolo, E.; Genovese, T.; Scuto, M.; Crupi, R.; Mandalari, G., et al. Cashew (Anacardium Occidentale L.) Nuts Counteract Oxidative Stress and Inflammation in an Acute Experimental Model of carrageenan-induced Paw Edema. Antioxidants. 2020, 9(8), 1–19. DOI: 10.3390/antiox9080660.
  • Dakuyo, R.; Konaté, K.; Bazié, D.; Sanou, A.; Kabakde, K.; Sama, H.; Balmoussa, S.; Konkobo, F. A.; Dicko, M. H. Correlating the Morphology of Anacardium Occidentale L . Fruits from 30 Orchards with Their Physicochemical and Nutritional Properties. Front. Plant Sci. 2022, 13(December), 1033577. DOI: 10.3389/fpls.2022.1033577.