4,860
Views
15
CrossRef citations to date
0
Altmetric
Review

A review on bioactive compounds in sprouts: extraction techniques, food application and health functionality

, , , , , & show all
Pages 647-665 | Received 07 Nov 2022, Accepted 20 Jan 2023, Published online: 09 Feb 2023

References

  • Mart´ınez-Villaluenga, C.; Fr´ıas, J.; Gulewicz, P.; Gulewicz, K.; VidalValverde, C. Food Safety Evaluation of Broccoli and Radish Sprouts. Food Chem. Toxicol. 2008, 46, 1635–1644.
  • Aloo, S. O.; Ofosu, F. K.; Oh, D. H. Effect of Germination on Alfalfa and Buckwheat: Phytochemical Profiling by UHPLC-ESI-QTOFMS/MS, Bioactive Compounds, and in-Vitro Studies of Their Diabetes and Obesity-Related Functions. Antioxidants. 2021, 10, 1613. DOI: 10.3390/antiox10101613.
  • Penãs, E.; Martínez-Villaluenga, C. Advances in Production, Properties and Applications of Sprouted Seeds. Foods. 2020, 9(6), 790. DOI: 10.3390/foods9060790.
  • Reed, E.; Ferreira, C. M.; Bell, R.; Brown, E. W.; Zheng, J.; Schaffner, D. W. Plant-microbe and Abiotic Factors Influencing Salmonella Survival and Growth on Alfalfa Sprouts and Swiss Chard Microgreens. Appl. Environ. Microbiol. 2018, 84(9), 1–11. DOI: 10.1128/AEM.02814-17.
  • Hesterman, O. O. B.; Teuber, L. R.; Livingston, A. L. Effect of Environment and Genotype on Alfalfa Sprout Production 1. Crop Sci. 1981, 21(5), 720–726. DOI: 10.2135/cropsci1981.0011183X002100050023x.
  • Zielinski, H.; Piskuta, M. K.; Michalska, A. Kozlowska H, Antioxidant ´ Capacity and Its Components of Cruciferous Sprouts. Pol. J. Food Nutr. Sci. 2007, 57, 315–322.
  • Oh, M. M.; Rajashekar, C. B. Antioxidant Content of Edible Sprouts: Effects of Environmental Shocks. J. Sci. Food Agric. 2009, 89(13), 2221–2227. DOI: 10.1002/jsfa.3711.
  • Finley, J. W.;. Proposed Criteria for Assessing the Efficacy of Cancer Reduction by Plant Foods Enriched in Carotenoids, Glucosinolates, Polyphenols and Selenocompounds. Ann. Bot 2005, 95, 1075–1096. DOI: 10.1093/aob/mci123.
  • Schenker, S.;. Facts behind the Headlines, Broccoli, British Nutrition Foundation. Nutr. Bull. 2002, 159–160.
  • Webb, G. P.;. Dietary Supplements and Functional Foods; Blackwell Publishing Ltd: Oxford, 2006; pp 1–120.
  • Sytar, O.; Bośko, P.; Živčák, M.; Brestic, M.; Smetanska, I. Bioactive Phytochemicals and Antioxidant Properties of the Grains and Sprouts of Colored Wheat Genotypes. Molecules. 2018, 23(9), 2282. DOI: 10.3390/molecules23092282.
  • Hanlon, P. R.; Barnes, D. M. Phytochemical Composition and Biological Activity of 8 Varieties of Radish (Raphanus Sativus L.) Sprouts and Mature Taproots. Food Sci. 2011, 76, 185–192. DOI: 10.1111/j.1750-3841.2010.01972.x.
  • Cevallos-Casals, B. A.; Cisneros-Zevallos, L. Impact of Germination on Phenolic Content and Antioxidant Activity of 13 Edible Seed Species. Food Chem. 2010, 119, 1485–1490. DOI: 10.1016/j.foodchem.2009.09.030.
  • Benincasa, P.; Galieni, A.; Manetta, A. C.; Pace, R.; Guiducci, M.; Pisante, M.; Stagnari, F. Phenolic Compounds in Grains, Sprouts and Wheatgrass of Hulled and non-hulled Wheat Species. J. Sci. Food Agric. 2015, 95, 1795–1803.
  • Dixon, R. A.; Paiva, N. L. Stress-induced Phenylpropanoid Metabolism. Plant Cell. 1995, 7, 1085–1097. DOI: 10.2307/3870059.
  • Zobayed, S. M. A.; Afreen, F.; Kozai, T. Phytochemical and Physiological Changes in the Leaves of St John’s Wort Plants under a Water Stress Condition. Environ. Exp. Bot. 2007, 59(2), 109–116. DOI: 10.1016/j.envexpbot.2005.10.002.
  • Falcinelli, B.; Famiani, F.; Paoletti, A.; D’Egidio, S.; Stagnari, F.; Galieni, A.; Benincasa, P. Phenolic Compounds and Antioxidant Activity of Sprouts from Seeds of Citrus Species. Agriculture. 2020, 10(2), 33. DOI: 10.3390/agriculture10020033.
  • Benincasa, P.; Falcinelli, B.; Lutts, S.; Stagnari, F.; Galieni, A. Sprouted Grains: A Comprehensive Review. Nutrients. 2019, 11, 421. DOI: 10.3390/nu11020421.
  • Falcinelli, B.; Marconi, O.; Maranghi, S.; Lutts, S.; Rosati, A.; Famiani, F.; Benincasa, P. Effect of Genotype on the Sprouting of Pomegranate (Punicagranatum L.) Seeds as a Source of Phenolic Compounds from Juice Industry by-products. Plant. Food Hum. Nutr. 2017, 72, 432–438. DOI: 10.1007/s11130-017-0645-y.
  • Falcinelli, B.; Maranghi, S.; Paoletti, A.; Marconi, O.; Rosati, A.; Famiani, F.; Benincasa, P. Sprouting Olive (Oleaeuropaea, L.) Seeds as a Source of Antioxidants from Residual Whole Stones. Sci. Hortic. 2018, 240, 558–560. DOI: 10.1016/j.scienta.2018.06.066.
  • Pellegrini, N.; Chiavaro, E.; Gardana, C.; Mazzeo, T.; Contino, D.; Gallo, M.; Riso, P.; Fogliano, V.; Porrini, M. Effect of Different Cooking Methods on Color, Phytochemical Concentration, and Antioxidant Capacity of Raw and Frozen Brassica Vegetables. J. Agric. Food Chem. 2010, 58, 4310–4321. DOI: 10.1021/jf904306r.
  • Koubaa, M.; Roselló-Soto, E.; Šic Žlabur, J.; Režek Jambrak, A.; Brnčić, M.; Grimi, N.; Boussetta, N.; Barba, F. J. Current and New Insights in the Sustainable and Green Recovery of Nutritionally Valuable Compounds from Stevia Rebaudiana Bertoni. J. Agric. Food Chem. 2015, 63, 6835–6846. DOI: 10.1021/acs.jafc.5b01994.
  • Suzara, S.; Costa, D. A.; Gariepyb, Y.; Rochaa, S. C. S.; Raghavanb, V. Spilanthol Extraction Using Microwave: Calibration Curve for Gas Chromatography. Chem. Eng. Trans. 2013, 32, 1783–1788.
  • Williams, O. J.; Raghavan, G. S. V.; Orsat, V.; Dai, J. Microwave-assisted Extraction of Capsaicinoids from Capsicum Fruit. J. Food Biochem. 2004, 28, 113–122. DOI: 10.1111/j.1745-4514.2004.tb00059.x.
  • Wagner, A. E.; Terschluesen, A. M.; Rimbach, G. Health Promoting Effects of Brassica-derived Phytochemicals: From Chemopreventive and Antiinflammatory Activities to Epigenetic Regulation. Oxid. Med. Cell Longev. 2013, 2013, 1–12. 12 Article ID 964539 DOI: 10.1155/2013/964539.
  • Suffredini, I. B.; Sader, H. S.; Gonçalves, A. G.; Reis, A. O.; Gales, A. C.; Varella, A. D.; Younes, R. N. Screening of Antibacterial Extracts from Plants Native to the Brazilian Amazon Rain Forest and Atlantic Forest. Braz. J. Med. Biol. Res. 2004, 37(3), 379–384. DOI: 10.1590/S0100-879X2004000300015.
  • Koffi, E.; Sea, T.; Dodehe, Y.; Soro, S. Effect of Solvent Type on Extraction of Polyphenols from Twenty Three Ivorian Plants. J. Anim. Plant Sci. 2010, 5, 550–558.
  • Zhang, C.; Zhao, Z.; Yang, G.; Shi, Y.; Zhang, Y.; Xia, X.; Shi, C. Effect of Slightly Acidic Electrolyzed Water on Natural Salmonella Reduction and Seed Germination in the Production of Alfalfa Sprouts. Food Microbiol. 2020.
  • Šamec, D.; Pavlović, I.; Redovniković, I. R.; Salopek-Sondi, B. Comparative Analysis of Phytochemicals and Activity of Endogenous Enzymes Associated with Their Stability, Bioavailability and Food Quality in Five Brassicaceae Sprouts. Food Chem. 2018, 269, 96–102. DOI: 10.1016/j.foodchem.2018.06.133.
  • Mir, S. A.; Farooq, S.; Shah, M. A.; Sofi, S. A.; Dar, B. N.; Hamdani, A. M.; Khaneghah, A. M. An Overview of Sprouts Nutritional Properties, Pathogens and Decontamination Technologies. LWT. 2021, 141, 110900. DOI: 10.1016/j.lwt.2021.110900.
  • De la Fuente, B.; López-García, G.; Mañez, V.; Alegría, A.; Barberá, R.; Cilla, A. Evaluation of the Bioaccessibility of Antioxidant Bioactive Compounds and Minerals of Four Genotypes of Brassicaceae Microgreens. Foods. 2019, 8, 250. DOI: 10.3390/foods8070250.
  • Baenas, N.; Gómez-Jodar, I.; Moreno, D. A.; García-Viguera, C.; Periago, P. M. Broccoli and Radish Sprouts are Safe and Rich in Bioactive Phytochemicals. Postharvest Boil. Technol. 2017, 127, 60–67. DOI: 10.1016/j.postharvbio.2017.01.010.
  • Sola, I.; Vujci´c Bok, V.; Pinteri´c, M.; Auer, S.; Ludwig-Müller, J.; Rusak, G. Improving the Phytochemical Profile and Bioactivity of Chinese Cabbage Sprouts by Interspecific Transfer of Metabolites. Food Res. Int. 2020, 137, 109726. DOI: 10.1016/j.foodres.2020.109726.
  • Di Bella, M. C.; Niklas, A.; Toscano, S.; Picchi, V.; Romano, D.; Lo Scalzo, R.; Branca, F. Morphometric Characteristics, Polyphenols and Ascorbic Acid Variation in Brassica Oleracea L. Novel Foods: Sprouts, Microgreens and Baby Leaves. Agronomy. 2020, 10(6), 782. DOI: 10.3390/agronomy10060782.
  • Neugart, S.; Baldermann, S.; Hanschen, F. S.; Klopsch, R.; Wiesner-Reinhold, M.; Schreiner, M. The Intrinsic Quality of Brassicaceous Vegetables: How Secondary Plant Metabolites are Affected by Genetic, Environmental, and Agronomic Factors. Sci. Hortic. 2018, 233, 460–478. DOI: 10.1016/j.scienta.2017.12.038.
  • Lenzi, A.; Orlandini, A.; Bulgari, R.; Ferrante, A.; Bruschi, P. Antioxidant and Mineral Composition of Three Wild Leafy Species: A Comparison between Microgreens and Baby Greens. Foods. 2019, 8(10), 487. DOI: 10.3390/foods8100487.
  • Bantis, F.;. Light Spectrum Differentially Affects the Yield and Phytochemical Content of Microgreen Vegetables in a Plant Factory. Plants. 2021, 10(10), 2182. DOI: 10.3390/plants10102182.
  • Hasib, A.; Jaouad, A.; Mahrouz, M.; Khouili, M. Hplc Determination of Organic Acids in Moroccan Apricot Determinación Por Hplc de Ácidos Orgánicos En Albaricoque Marroquí Determinación Por Hplc de Ácidos Orgánicos En Albaricoque Marroquí. CYTA- J. Food Sci. 2002, 3(4), 207–211.
  • De La Lastra, C. A.; Villegas, I. Resveratrol as an anti-inflammatory and anti-aging Agent: Mechanisms and Clinical Implications. Mol. Nutr. Food Res. 2005, 49(5), 405–430. DOI: 10.1002/mnfr.200500022.
  • Wang, K. H.; Lai, Y. H.; Chang, J. C.; Ko, T. F.; Shyu, S. L.; Chiou, R. Y. Y. Germination of Peanut Kernels to Enhance Resveratrol Biosynthesis and Prepare Sprouts as a Functional Vegetable. J. Agric. Food Chem. 2005, 53(2), 242–246. DOI: 10.1021/jf048804b.
  • Prgomet, I.; Gonçalves, B.; Domínguez-Perles, R.; Pascual-Seva, N.; Barros, A. Valorization Challenges to Almond Residues: Phytochemical Composition and Functional Application. Molecules. 2017, 22, 1774. DOI: 10.3390/molecules22101774.
  • Kim, S. J.; Zaidul, I. S. M.; Suzuki, T.; Mukasa, Y.; Hashimoto, N.; Takigawa, S.; Noda, T.; Matsuura-Endo, C.; Yamauchi, H. Comparison of Phenolic Compositions between Common and Tartary Buckwheat (Fagopyrum) Sprouts. Food Chem. 2008, 110, 814–820. DOI: 10.1016/j.foodchem.2008.02.050.
  • Nam, T. G.; Kim, D. O.; Eom, S. H. Effects of Light Sources on Major Flavonoids and Antioxidant Activity in Common Buckwheat Sprouts. Food Sci. Biotechnol. 2018, 27(1), 169–176. DOI: 10.1007/s10068-017-0204-1.
  • Kim, E. H.; Kim, S. H.; Chung, J. I.; Chi, H. Y.; Kim, J. A.; Chung, I. M. Analysis of Phenolic Compounds and Isoflavones in Soybean Seeds (Glycine Max (L.) Merill) and Sprouts Grown under Different Conditions. Eur. Food Res. Technol. 2006, 222(1), 201–208. DOI: 10.1007/s00217-005-0153-4.
  • Prokudina, E. A.; Havlíček, L.; Al-Maharik, N.; Lapčík, O.; Strnad, M.; Gruz, J. Rapid UPLC–ESI–MS/MS Method for the Analysis of Isoflavonoids and Other Phenylpropanoids. J. Food Compos. Anal. 2012, 26(1–2), 36–42. DOI: 10.1016/j.jfca.2011.12.001.
  • Wang, M. L.; Gillaspie, A. G.; Morris, J. B.; Pittman, R. N.; Davis, J.; Pederson, G. A. Flavonoid Content in Different Legume Germplasm Seeds Quantified by HPLC. Plant Genet. Res. 2008, 6(1), 62–69. DOI: 10.1017/S1479262108923807.
  • Paśko, P.; Bartoń, H.; Zagrodzki, P.; Gorinstein, S.; Fołta, M.; Zachwieja, Z. Anthocyanins, Total Polyphenols and Antioxidant Activity in Amaranth and Quinoa Seeds and Sprouts during Their Growth. Food Chem. 2009, 115(3), 994–998. DOI: 10.1016/j.foodchem.2009.01.037.
  • Perrelli, A.; Goitre, L.; Salzano, A. M.; Moglia, A.; Scaloni, A.; Retta, S. F. Biological Activities, Health Benefits, and Therapeutic Properties of Avenanthramides: From Skin Protection to Prevention and Treatment of Cerebrovascular Diseases. Oxid. Med. Cell. Longev. 2018, 6015351, Oxidative Medicine and Cellular Longevity, 2018 10.1155/2018/6015351
  • Billaud, C.;. Composition, Nutritional Value and Physiological Properties. Adrian J. Fenugreek Sci-des-ailment. 2001, 21, 3–26.
  • Ma, R. H.; Ni, Z. J.; Zhu, Y. Y.; Thakur, K.; Zhang, F.; Zhang, Y. Y.; Hu, F.; Zhang, J. G.; Wei, Z. J. A Recent Update on the Multifaceted Health Benefits Associated with Ginger and Its Bioactive Components. Food Funct. 2021, 12(2), 519–542. DOI: 10.1039/D0FO02834G.
  • Retana-Cordero, M.; Fisher, P. R.; Gómez, C. Modeling the Effect of Temperature on Ginger and Turmeric Rhizome Sprouting. Agronomy. 2021, 11(10), 1931. DOI: 10.3390/agronomy11101931.
  • Saini, D.; Rawat, N.; Negi, T.; Barthwal, R.; Sharma, S. K. Utilization, Valorization and Functional Properties of Wild Apricot Kernels. J. Pharmacogn. Phytochem. 2021, 10(4), 119–126.
  • Guenter, D.; Friebel, M. “Method of Producing a Cosmetic Abrasive.” 2010; U.S. Patent Application No. 20080248144
  • Aziz, A.; Noreen, S.; Khalid, W.; Mubarik, F.; Niazi, M. K.; Koraqi, H.; AL-Farga, A.; Lima, C. M. G.; Alansari, W. S.; Eskandrani, A. A. Extraction of Bioactive Compounds from Different Vegetable Sprouts and Their Potential Role in the Formulation of Functional Foods against Various Disorders: A Literature-Based Review. Molecules. 2022, 27(21), 7320. DOI: 10.3390/molecules27217320.
  • Renna, M.; Gioia, F. D.; Leoni, B.; Santamaria, P. Due espressioni dell’agrobiodiversita ` in orticoltura: Germogli e microortaggi. Italus Hortus 2016, 23(1), 31–44.
  • Chon, S.-U.; Kim, D.-K.; Kim, Y.-M. Phenolics Content and Antioxidant Activity of Sprouts in Several Legume Crops. Korean J. Plant Res. 2013, 26(2), 159–168. DOI: 10.7732/kjpr.2013.26.2.159.
  • Le, L.; Gong, X.; An, Q.; Xiang, D.; Zou, L.; Peng, L.; Wan, Y.; Tan, M.; Nie, Z.; Wu, Q. Quinoa Sprouts as Potential Vegetable Source: Nutrient Composition and Functional Contents of Different Quinoa Sprout Varieties. Food Chem. 2021, 357, 129752. DOI: 10.1016/j.foodchem.2021.129752.
  • Chaudhary, A.; Choudhary, S.; Sharma, U.; Vig, A. P.; Singh, B.; Arora, S. Purple Head Broccoli (Brassica Oleracea L. Var. Italica Plenck), a Functional Food Crop for Antioxidant and Anticancer Potential. J. Food Sci. Technol. 2018, 55, 1806–1815. DOI: 10.1007/s13197-018-3095-0.
  • Fahey, J. W.; Wade, K. L.; Stephenson, K. K.; Panjwani, A. A.; Liu, H.; Cornblatt, G.; Cornblatt, B. S.; Ownby, S. L.; Fuchs, E.; Holtzclaw, W. D. Bioavailability of Sulforaphane following Ingestion of Glucoraphanin-Rich Broccoli Sprout and Seed Extracts with Active Myrosinase: A Pilot Study of the Effects of Proton Pump Inhibitor Administration. Nutrients. 2019, 11(7), 1489. DOI: 10.3390/nu11071489.
  • Moreira-Rodríguez, M.; Nair, V.; Benavides, J.; Cisneros-Zevallos, L.; Jacobo-Velázquez, D. UVA, UVB Light, and Methyl Jasmonate, Alone or Combined, Redirect the Biosynthesis of Glucosinolates, Phenolics, Carotenoids, and Chlorophylls in Broccoli Sprouts. Int. J. Mol. Sci. 2017, 18(11), 2330. DOI: 10.3390/ijms18112330.
  • Vidueiros, S. M.; Curti, R. N.; Dyner, L.; Binaghi, M. J.; Peterson, G.; Bertero, H. D.; Pallaro, A. Diversity and Interrelationships in Nutritional Traits in Cultivated Quinoa (Chenopodium Quinoa Willd.) from Northwest Argentina. J. Cereal. Sci. 2015, 62, 87–93. DOI: 10.1016/j.jcs.2015.01.001.
  • Lim, J. G.; Park, H.-M.; Yoon, K. S. Analysis of Saponin Composition and Comparison of the Antioxidant Activity of Various Parts of the Quinoa Plant (Chenopodium Quinoa Willd.). Food Sci. Nutr. 2020, 8(1), 694–702. DOI: 10.1002/fsn3.1358.
  • Mattioli, S.; Dal Bosco, A.; Castellini, C.; Falcinelli, B.; Sileoni, V.; Marconi, O.; Mancinelli, A. C.; Cotozzolo, E.; Benincasa, P. Effect of Heat- and Freeze-Drying Treatments on Phytochemical Content and Fatty Acid Profile of Alfalfa and Flax Sprouts. J. Sci. Food Agric. 2019, 99, 4029–4035. DOI: 10.1002/jsfa.9630.
  • Baenas, N.; Ferreres, F.; García-Viguera, C.; Moreno, D. A. Radish sprouts—Characterization and Elicitation of Novel Varieties Rich in Anthocyanins. Food Res. Int. 2015, 69, 305–312. DOI: 10.1016/j.foodres.2015.01.009.
  • Qian, H.; Liu, T.; Deng, M.; Miao, H.; Cai, C.; Shen, W.; Wang, Q. Effects of Light Quality on Main health-promoting Compounds and Antioxidant Capacity of Chinese Kale Sprouts. Food Chem. 2016, 196, 1232–1238. DOI: 10.1016/j.foodchem.2015.10.055.
  • Sandoval-Ramírez, B. A.; Catalán, Ú.; Fernández-Castillejo, S.; Rubió, L.; Macià, A.; Solà, R. Anthocyanin Tissue Bioavailability in Animals: Possible Implications for Human Health. A Systematic Review. J. Agric. Food Chem. 2018, 66, 11531–11543. DOI: 10.1021/acs.jafc.8b04014.
  • Poole, N.; Donovan, J.; Erenstein, O. Agri-nutrition Research: Revisiting the Contribution of Maize and Wheat to Human Nutrition and Health. Food Policy. 2021, 100, 101976. DOI: 10.1016/j.foodpol.2020.101976.
  • Brouns, F.; van Rooy, G.; Shewry, P.; Rustgi, S.; Jonkers, D. Adverse Reactions to Wheat or Wheat Components. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1437–1452. DOI: 10.1111/1541-4337.12475.
  • Nelson, K.; Stojanovska, L.; Vasiljevic, T.; Mathai, M. Germinated Grains: A Superior Whole Grain Functional Food. J. Physiol. Pharmacol. 2013, 91, 429–441. DOI: 10.1139/cjpp-2012-0351.
  • Gulpinar, A. R.; Orhan, I. E.; Kan, A.; Senol, F. S.; Celik, S. A.; Kartal, M. Estimation of in Vitro Neuroprotective Properties and Quantification of Rutin and Fatty Acids in Buckwheat (Fagopyrum Esculentum Moench) Cultivated in Turkey. Food Res. Int. 2012, 46, 536–543. DOI: 10.1016/j.foodres.2011.08.011.
  • Xiao, J.; Capanoglu, E.; Jassbi, A. R.; Miron, A. Advance on the Flavonoid C-glycosides and Health Benefits. Crit. Rev. Food Sci. Nutr. 2016, 56, S29–S45. DOI: 10.1080/10408398.2015.1067595.
  • Gan, R. Y.; Wang, M. F.; Lui, W. Y.; Wu, K.; Corke, H. Dynamic Changes in Phytochemical Composition and Antioxidant Capacity in Green and Black Mung Bean (Vigna Radiata) Sprouts. Int. J. Food Sci. Technol. 2016, 51, 2090–2098. DOI: 10.1111/ijfs.13185.
  • Gan, R. Y.; Lui, W. Y.; Wu, K.; Chan, C. L.; Dai, S. H.; Sui, Z. Q.; Corke, H. Bioactive Compounds and Bioactivities of Germinated Edible Seeds and Sprouts: An Updated Review. Trends Food Sci. Technol. 2017, 59, 1–14. DOI: 10.1016/j.tifs.2016.11.010.
  • Miyahira, R. F.; Lopes, J. D. O.; Antunes, A. E. C. The Use of Sprouts to Improve the Nutritional Value of Food Products: A Brief Review. Plant Foods Hum. Nutr. 2021, 76(2), 143–152. DOI: 10.1007/s11130-021-00888-6.
  • Gupta, O. P.; Sharma, P.; Gupta, R. K.; Sharma, I. MicroRNA Mediated Regulation of Metal Toxicity in Plants: Present Status and Future Perspectives. Plant Mol. Biol. 2014, 84(1), 1–18. DOI: 10.1007/s11103-013-0120-6.
  • Honcu, I.; Krejcirova, L.; Prihoda, J.; Slukova, M. The Effect of Addition of Malt Flour on the Dough, Volume and Sensory Properties of Bread. Indian J. Sci. 2015, 4(9), 152–155.
  • Sur, R.; Nigam, A.; Grote, D.; Liebel, F.; Southall, M. D. Avenanthramides, Polyphenols from Oats, Exhibit anti-inflammatory and anti-itch Activity. Arch. Derm. Res. 2008, 300, 569–574. DOI: 10.1007/s00403-008-0858-x.
  • Jiménez-Pulido, I. J.; Rico, D.; Martinez-Villaluenga, C.; Pérez-Jiménez, J.; Luis, D. D.; Martín-Diana, A. B. Sprouting and Hydrolysis as Biotechnological Tools for Development of Nutraceutical Ingredients from Oat Grain and Hull. Foods. 2022, 11(18), 2769. DOI: 10.3390/foods11182769.
  • Cicero, N.; Gervasi, T.; Durazzo, A.; Lucarini, M.; Macrì, A.; Nava, V.; Santini, A.; Tardugno, R.; Vadalà, R.; Santini, A. Mineral and Microbiological Analysis of Spices and Aromatic Herbs. Foods. 2022, 11(4), 548. DOI: 10.3390/foods11040548.
  • Narayana, P. K.; Bueno, E.; Baur, A.; Ahmed, S.; von Wettberg, E. J. Fenugreek, A Legume Spice and Multiuse Crop Adapted to A Changing Climate. In Developing Climate Resilient Grain and Forage Legumes, 2022; pp 105–123.
  • El-Gebaly, A. A.; Sadek, E. S.; Taha, N. M.; Abou Hadid, A. F. Effect of Salinity on Seed Germination, Growth and Amino Acid Content in Fenugreek (Trigonella foenum-graecum L) Sprouts. Arab Univ J Agric Sci 2022, 30(2), 1–9.
  • Meghwal, M.; Goswami, T. K. A Review on the Functional Properties, Nutritional Content, Medicinal Utilization and Potential Application of Fenugreek. Journal of Food Processing and Technology. 2012, 3(9).
  • Nguyen, L.; Duong, L. T.; Mentreddy, R. S.; The, U. S. Import Demand for Spices and Herbs by Differentiated Sources. J. Appl. Res. Med. Aromat. Plants. 2019, 12, 13–20.
  • Amagova, Z.; Golubkina, N.; Matsadze, V.; Elmurzaeva, F.; Muligova, R.; Caruso, G. Biochemical Characteristics of Allium Ursinum L. Sprouts as Affected by the Growing Location in Chechen Republic. Italus Hortus. 2020, 27(2), 66–81. DOI: 10.26353/j.itahort/2020.2.6681.
  • Sekara, A.; Pokluda, R.; Del Vacchio, L.; Somma, S.; Caruso, G. Interactions among Genotype, Environment and Agronomic Practices on Production and Quality of Storage Onion (Allium Cepa L.). Review. Hortic. Sci. 2017, 44(1), 21–42. DOI: 10.17221/92/2015-HORTSCI.
  • Sobolewska, D.; Podolak, I.; Makowska-Was, J. Allium Ursinum: Botanical, Phytochemical and Pharmacological Overview. Phytochem Rev. 2015, 14, 81–97. DOI: 10.1007/s11101-013-9334-0.
  • Molyneux, R. J.; Lee, S. T.; Gardner, D. R.; Panter, K. E.; James, L. F. Phytochemicals: The Good, the Bad and the Ugly? Phytochem. 2007, 68(22–24), 2973–2985. DOI: 10.1016/j.phytochem.2007.09.004.
  • Yang, Y.; Meier, F.; Ann, L.; Yuan, J.; Lee Pei, W.; Sze, V.; Chung, H. J.; Yuk, H. G. Overview of Recent Events in the Microbiological Safety of Sprouts and New 597 Intervention Technologies. Compr. Rev. Food Sci. Food Saf. 2013, 598 12(3), 265–280. DOI: 10.1111/1541-4337.12010.
  • Martinez-Villaluenga, C.; Peñas, E.; Ciska, E.; Piskula, M. K.; Kozlowska, H.; Vidal Valverde, C.; Frias, J. Time Dependence of Bioactive Compounds and 524 Antioxidant Capacity during Germination of Different Cultivars of Broccoli and Radish 525 Seeds. Food Chem. 2010, 120(3), 710–716. DOI: 10.1016/j.foodchem.2009.10.067.
  • Podsędek, A.;. Natural Antioxidants and Antioxidant Capacity of Brassica Vegetables: A Review. LWT. Food Sci. Technol. 2007, 40(1), 1–11.
  • Vale, A. P.; Cidade, H.; Pinto, M.; Oliveira, M. B. P. P. Effect of Sprouting 584 and Light Cycle on Antioxidant Activity of Brassica Oleracea Varieties. Food Chem. 2014, 585 165, 379–387. DOI: 10.1016/j.foodchem.2014.05.122.
  • Fahey, J. W.; Zhang, Y.; Talalay, P. Broccoli Sprouts: An Exceptionally Rich Source of Inducers of Enzymes that Protect against Chemical Carcinogens. Proc 479 Nat Acad of Sci USA. 1997, 94(19), 10367–480 10372. DOI: 10.1073/pnas.94.19.10367.
  • Moreno, D. A.; Pérez-Balibrea, S.; Ferreres, F.; Gil-Izquierdo, Á.; García-Viguera, C. Acylated Anthocyanins in Broccoli Sprouts. Food Chem. 2010, 123(2), 358–363. 528. DOI: 10.1016/j.foodchem.2010.04.044.
  • Pérez-Balibrea, S.; Moreno, D. A.; García-Viguera, C. Influence of Light on health-promoting Phytochemicals of Broccoli Sprouts. J. Sci. Food Agric. 2008, 88(5), 904–910. DOI: 10.1002/jsfa.3169.
  • Sousa, C.; Lopes, G.; Pereira, D. M.; Taveira, M.; Valentao, P.; Seabra, R. M.; Pereira, J. A.; Baptista, P.; Ferreres, F.; Andrade, P. B. Screening of Antioxidant Compounds during Sprouting of Brassica Oleracea L. Var. Costata DC. Comb. Chem. High Throughput Screen. 2007, 10(5), 377–386. DOI: 10.2174/138620707781662817.
  • Troszyńska, A.; Lamparski, G.; Kozłowska, H. Sensory Quality of Sprouts of Selected Cruciferous Species. Pol. J. Food Nutr. Sci. 2002, 52(SI 1), 582 138–141.
  • Cartea, M. E.; Francisco, M.; Soengas, P.; Velasco, P. Phenolic Compounds in Brassica Vegetables. Molecules. 2010, 16(1), 251–280. DOI: 10.3390/molecules16010251.
  • Moreno, D. A.; Pérez-Balibrea, S.; García-Viguera, C. Phytochemical Quality and Bioactivity of Edible Sprouts. Nat. Prod. Commun. 2006, 1, 1037–1048.
  • Podsedek, A.;. Natural Antioxidants and Antioxidant Capacity of Brassica Vegetables: A Review. LWT. 2007, 40(1), 1–11. DOI: 10.1016/j.lwt.2005.07.023.
  • Singh, J.; Rai, M.; Upadhyay, A. K.; Bahadur, A.; Chaurasia, S. N. S.; Singh, K. P. Antioxidant Phytochemicals in Broccoli (Brassica Oleracea L. Var. Italica Plenck) Cultivars. J. Food Sci. Technol. 2006, 43(4), 391–393.
  • Wojdyło, A.; Nowicka, P.; Tkacz, K.; Turkiewicz, I. P. Sprouts Vs. Microgreens as Novel Functional Foods: Variation of Nutritional and Phytochemical Profiles and Their in Vitro Bioactive Properties. Molecules. 2020, 12;25(20), 4648. DOI: 10.3390/molecules25204648.
  • Chuo, S. C.; Nasir, H. M.; Mohd-Setapar, S. H.; Mohamed, S. F.; Ahmad, A.; Wani, W. A.; Muddassir, M.; Alarifi, A. A. Glimpse into the Extraction Methods of Active Compounds from Plants. Crit. Rev. Anal. Chem. 2022, 52(4), 667–696. DOI: 10.1080/10408347.2020.1820851.
  • Abuduwaili, A.; Rozi, P.; Mutailifu, P.; Gao, Y.; Nuerxiati, R.; Aisa, H. A.; Yili, A. Effects of Different Extraction Techniques on Physicochemical Properties and Biological Activities of Polysaccharides from Fritillaria Pallidiflora Schrenk. Process Biochem. 2019, 83, 189–197. DOI: 10.1016/j.procbio.2019.05.
  • Ali, A.; Yu, L.; Kousar, S.; Khalid, W.; Maqbool, Z.; Aziz, A.; Arshad, M. S.; Aadil, R. M.; Trif, M.; Riaz, S., et al. Functional Characteristics, Extraction, Food Applications and Efficacy against Brain Related Disorders. Front. Nutr. 2022, 9,1009807.
  • Koçak, E.; Pazır, F. Ffect of Extraction Methods on Bioactive Compounds of Plant Origin. Turkish J. Agri.-Food Sci. Tech. 2018, 6(6), 663–675. DOI: 10.24925/turjaf.v6i6.663-675.1527.
  • Soxhlet, F. V.;. Die gewichtsanalytische bestimmung des milchfettes. Dingler’s Polytech. J. 1879, 232, 461–465.
  • Jafari, S. M.; Tsimidou, M. Z.; Rajabi, H.; Kyriakoudi, A. Bioactive Ingredients of Saffron: Extraction, Analysis, Applications. In Saffron; Woodhead Publishing, 2020; pp 261–290.
  • Heydari, S.; Haghayegh, G. H. Extraction and Microextraction Techniques for the Determination of Compounds from Saffron. Can Chem. Trans. 2014, 2, 221–247.
  • Rifna, E. J. N. N.; Misra, M. D.; Dwivedi, M. Recent Advances in Extraction Technologies for Recovery of Bioactive Compounds Derived from Fruit and Vegetable Waste Peels: A Review. Crit. Rev. Food Sci. Nutr. 2021, 1–34. DOI: 10.1080/10408398.2021.1952923.
  • Azmir, J.; Zaidul, I.; Rahman, M.; Sharif, K.; Mohamed, A.; Sahena, F.; Jahurul, M.; Ghafoor, K.; Norulaini, N.; Omar, A. Techniques for Extraction of Bioactive Compounds from Plant Materials: A Review. J. Food Eng. 2013, 117(4), 426–436. DOI: 10.1016/j.jfoodeng.2013.01.014.
  • El Asbahani, A.; Miladi, K.; Badri, W.; Sala, M.; Addi, E. A.; Casabianca, H.; El Mousadik, A.; Hartmann, D.; Jilale, A.; Renaud, F. Essential Oils: From Extraction to Encapsulation. Int. J. Pharm. 2015, 483(1–2), 220–243. DOI: 10.1016/j.ijpharm.2014.12.069.
  • Chemat, F. N.; Rombaut,; Meullemiestre, A.; Turk, M.; Perino, S.; Fabiano-Tixier, A. S.; Abert-Vian, M. Review of Green Food Processing Techniques. Preservation, Transformation, and Extraction. Innov. Food Sci. Emerg. Technol. 2017, 41, 357–377. DOI: 10.1016/j.ifset.2017.04.016.
  • Cravotto, G.; Binello, A.; Orio, L. Green Extraction Techniques. Agro food Ind. Hi Tech. 2011, 22, 57–59.
  • Sadeghi, A.; Hakimzadeh, V.; Karimifar, B. Microwave Assisted Extraction of Bioactive Compounds from Food: A Review. Int. J. Food Sci. Nutr. Eng. 2017, 7, 19–27. DOI: 10.5923/j.food.20170701.03.
  • Refaat, A. A.; Sheltawy, E.; Sadek, K. U. Optimum Reaction Time, Performance and Exhaust Emissions of Biodiesel Produced by Microwave Irradiation. Int. J. Environ. Sci. Technol. 2008, 5, 315–322. DOI: 10.1007/BF03326026.
  • Sania, Z.; Khan, M. R.; Shabbir, M. A.; Aslam. Maan, A.; Khan, M. K. I.; Nadeem, M.; Khalil, A. A.; Din, A.; Aadil, R. M. An Inclusive Overview of Advanced Thermal and Nonthermal Extraction Techniques for Bioactive Compounds in Food and Food-related Matrices. Food Rev. Int. 2022, 38(6), 1166–1196. DOI: 10.1080/87559129.2020.1772283.
  • Awulachew, M. T.;. A Review to Nutritional and Health Aspect of Sprouted Food. Int. J. Food Sci. Nutr. Diet. 2022, 10(7), 564–568. DOI: 10.19070/2326-3350-2200097.
  • Santos, C. S.; Silva, B.; Valente, L. M. P.; Gruber, S.; Vasconcelos, M. W. The Effect of Sprouting in Lentil (Lens Culinaris) Nutritional and Microbiological Profile. Foods. 2020, 9(4), 1–11. DOI: 10.3390/foods9040400.
  • Abellán, Á.; Domínguez-Perles, R.; Moreno, D. A.; García-Viguera, C. Sorting Out the Value of Cruciferous Sprouts as Sources of Bioactive Compounds for Nutrition and Health. Nutrients. 2019, 11, 1–22. DOI: 10.3390/nu11020429.
  • Lemmens, E.; Moroni, A. V.; Pagand, J.; Heirbaut, P.; Ritala, A.; Karlen, Y.; Lê, K. A.; den Broeck, H. C.; Brouns, F. J. P. H.; Brier, N., et al. Impact of Cereal Seed Sprouting on Its Nutritional and Technological Properties: A Critical Review. Compr. Rev. Food Sci. Food Saf. 2019, 18(1), 305–328. DOI: 10.1111/1541-4337.12414.
  • Khalid, W.; Arshad, M. S.; Aslam, N.; Mukhtar, S.; Rahim, M. A.; Ranjha, M. M. A. N.; Awuchi, C. G. Food Applications of Sorghum Derived Kafirins Potentially Valuable in Celiac Disease. Int J. Food Propet 2022, 25, 2348–2363. DOI: 10.1080/10942912.2022.2135532.
  • Liu, Y.; Xu, M.; Wu, H.; Jing, L.; Gong, B.; Gou, M.; Zhao, K.; Li, W. The Compositional, Physicochemical and Functional Properties of Germinated Mung Bean Flour and Its Addition on Quality of Wheat Flour Noodle. J. Food Sci. Technol. 2018, 55(12), 5142–5552. DOI: 10.1007/s13197-018-3460-z.
  • Ojha, P.; Adhikari, R.; Karki, R.; Mishra, A.; Subedi, U.; Karki, T. B. Malting and Fermentation Effects on Antinutritional Components and Functional Characteristics of Sorghum Flour. Food Sci. Nutr. 2018, 6(1), 47–53. DOI: 10.1002/fsn3.525.
  • Świeca, M.; Dziki, D.; Gawlik-Dziki, U. Starch and Protein Analysis of Wheat Bread Enriched with phenolics-rich Sprouted Wheat Flour. Food Chem. 2017, 228, 643–648. DOI: 10.1016/j.foodchem.2017.02.052.
  • Beaulieu, J. C.; Reed, S. S.; Obando-Ulloa, J. M.; McClung, A. M. Green Processing Protocol for Germinating and Wet Milling Brown Rice for Beverage Formulations: Sprouting, Milling and Gelatinization Effects. Food Sci. Nutr. 2020, 8, 2445–2457. DOI: 10.1002/fsn3.1534.
  • Argüelles-López, O. D.; Reyes-Moreno, C.; Gutiérrez-Dorado, R.; Sánchez-Osuna, M. F.; López-Cervantes, J.; Cuevas-Rodríguez, E. O.; Milán-Carrillo, J.; Perales-Sánchez, J. X. K. Functional Beverages Elaborated from Amaranth and Chia Flours Processed by Germination and Extrusion. Biotecnia. 2018, 20(3), 135–145. DOI: 10.18633/biotecnia.v20i3.721.
  • Tang, D.; Dong, Y.; Ren, H.; Li, L.; He, C. A Review of Phytochemistry, Metabolite Changes, and Medicinal Uses of the Common Food Mung Bean and Its Sprouts (Vigna Radiata). Chem. Cent. J. 2014, 8(1), 1–9. DOI: 10.1186/1752-153X-8-4.
  • Diego, S. E.; Andrea, B.; Stefania, I.; Marengo, M.; Pagani, M. A.; Alessandra, M. Effect of Sprouting on Proteins and Starch in Quinoa (Chenopodium Quinoa Willd.). Plant Foods for Human Nutrition. 2020, 75(4).
  • Alvarez-Jubete, L.; Auty, M.; Arendt, E. K.; Gallagher, E. Baking Properties and Microstructure of Pseudocereal Flours in gluten-free Bread Formulations. Eur. Food Res. Technol. 2010, 230(3), 437–445. DOI: 10.1007/s00217-009-1184-z.
  • Hernandez-Aguilar, C.; Dominguez-Pacheco, A.; Palma Tenango, M.; Valderrama-Bravo, C.; Soto Hernández, M.; Cruz-Orea, A.; Ordonez-Miranda, J. Lentil Sprouts: A Nutraceutical Alternative for the Elaboration of Bread. J. Food Sci. Technol. 2020, 57(5), 1817–1829. DOI: 10.1007/s13197-019-04215-5.
  • HO, C. Y.; LIN, Y. T.; Labbe, R. G.; Shetty, K. Inhibition of Helicobacter Pylori by Phenolic Extracts of Sprouted Peas (Pisum Sativum L.). J. Food Biochem. 2006, 30(1), 21–34. DOI: 10.1111/j.1745-4514.2005.00032.x.
  • Khalid, W.; Ali, A.; Arshad, M. S.; Afzal, F.; Akram, R.; Siddeeg, A.; Saeed, A.; Rahim, M. A.; Aziz, A.; Maqbool, Z. Nutrients and Bioactive Compounds of Sorghum Bicolor L. Used to Prepare Functional Foods: A Review on the Efficacy against Different Chronic Disorders. Int J. Food Prop. 2022, 25(1), 1045–1062. DOI: 10.1080/10942912.2022.2071293.
  • Konaté, K.; Sanou, A.; Aworet-Samseny, R. R.; Benkhalti, F.; Sytar, O.; Brestic, M.; Dicko, M. H.; Dicko, M. H. Safety Profile, in Vitro anti-inflammatory Activity, and in Vivo Antiulcerogenic Potential of Root Barks from Annona Senegalensis Pers. (Annonaceae). J. Evid. Based Complementary Altern. Med. 2021, 2021, 1–12. DOI: 10.1155/2021/4441375.
  • Akoto, C. O.; Acheampong, A.; Boakye, Y. D.; Akwata, D.; Okine, M. In Vitro Anthelminthic, Antimicrobial and Antioxidant Activities and FTIR Analysis of Extracts of Alchornea Cordifolia Leaves. J. Pharmacogn. Phytochem. 2019, 8(4), 2432–2442.
  • Gawlik-Dziki, U.; Świeca, M.; Dziki, D.; Sęczyk, Ł.; Złotek, U.; Różyło, R.; Czyż, J.; Ryszawy, D.; Czyż, J. Anticancer and Antioxidant Activity of Bread Enriched with Broccoli Sprouts. BioMed Res. Int. 2014, 2014, 1–14. DOI: 10.1155/2014/608053.
  • Macharia, J. M.; Mwangi, R. W.; Rozmann, N.; Zsolt, K.; Varjas, T.; Uchechukwu, P. O.; Wagara, I. N.; Raposa, B. L. Medicinal Plants with anti-colorectal Cancer Bioactive Compounds: Potential game-changers in Colorectal Cancer Management. Biomed. Pharmacother. 2022, 153, 113383. DOI: 10.1016/j.biopha.2022.113383.
  • Shankar, S.; Segaran, G.; Sundar, R. D. V.; Settu, S.; Sathiavelu, M. Brassicaceae-A Classical Review on Its Pharmacological Activities. Int. J. Pharm. Sci. Rev. Res. 2019, 55, 107–113.
  • Ramirez, D.; Abellán-Victorio, A.; Beretta, V.; Camargo, A.; Moreno, D. A. Functional Ingredients from Brassicaceae Species: Overview and Perspectives [CrossRef]. Int. J. Mol. Sci. 2020, 21(6), 1998. DOI: 10.3390/ijms21061998.
  • Peña, M.; Guzmán, A.; Martínez, R.; Mesas, C.; Prados, J.; Porres, J. M.; Melguizo, C. Preventive Effects of Brassicaceae Family for Colon Cancer Prevention: A Focus on in Vitro Studies. Biomed. Pharmacother. 2022, 151, 113145. DOI: 10.1016/j.biopha.2022.113145.
  • da Mattosinhos, P. S.; Sarandy, M. M.; Novaes, R. D.; Esposito, D.; Gonçalves, R. V. Anti-Inflammatory, Antioxidant, and Skin Regenerative Potential of Secondary Metabolites from Plants of the Brassicaceae Family: A Systematic Review of in Vitro and in Vivo Preclinical Evidence (Biological Activities Brassicaceae Skin Diseases). Antioxidants. 2022, 11(7), 1346. DOI: 10.3390/antiox11071346.
  • Sekirov, I.; Russell, S. L.; Antunes, L. C. M.; Finlay, B. B. Gut Microbiota in Health and Disease. Physiol. Rev. 2010, 90, 859–904. DOI: 10.1152/physrev.00045.2009.
  • Yagishita, Y.; Fahey, J. W.; Dinkova-Kostova, A. T.; Kensler, T. W. Broccoli or Sulforaphane: Is It the Source or Dose that Matters. Molecules. 2019, 24, 3593. DOI: 10.3390/molecules24193593.
  • Gu, Y.; Guo, Q.; Zhang, L.; Chen, Z.; Han, Y.; Gu, Z. Physiological and Biochemical Metabolism of Germinating Broccoli Seeds and Sprouts. J. Agric. Food Chem. 2012, 60, 209–213. DOI: 10.1021/jf203599v.
  • Uddin, M. S.; Mamun, A. A.; Jakaria, M.; Thangapandiyan, S.; Ahmad, J.; Rahman, M. A.; Mathew, B.; Abdel-Daim, M. M.; Aleya, L. Emerging Promise of sulforaphane-mediated Nrf2 Signaling Cascade against Neurological Disorders. Sci. Total Environ. 2020, 707, 135624. DOI: 10.1016/j.scitotenv.2019.135624.
  • Ruhee, R. T.; Suzuki, K. The Integrative Role of Sulforaphane in Preventing Inflammation, Oxidative Stress and Fatigue: A Review of A Potential Protective Phytochemical. Antioxidants. 2020, 9, 521. DOI: 10.3390/antiox9060521.
  • Kamal, M. M.; Akter, S.; Lin, C. N.; Nazzal, S. Sulforaphane as an Anticancer Molecule: Mechanisms of Action, Synergistic Effects, Enhancement of Drug Safety, and Delivery Systems. Arch. Pharm. Res. 2020, 43, 371–384. DOI: 10.1007/s12272-020-01225-2.
  • Kang, Y.; Zhang, G.; Huang, E. C.; Huang, J.; Cai, J.; Cai, L.; Wang, S.; Keller, B. B. Sulforaphane Prevents Right Ventricular Injury and Reduces Pulmonary Vascular Remodeling in Pulmonary Arterial Hypertension. Am. J. Physiol. Heart Circ. Physiol. 2020, 318, H853–H866. DOI: 10.1152/ajpheart.00321.2019.
  • Salehi, B.; Quispe, C.; Butnariu, M.; Sarac, I.; Marmouzi, I.; Kamle, M.; Tripathi, V.; Kumar, P.; Bouyahya, A.; Capanoglu, E. Phytotherapy and Food Applications from Brassica Genus. Phytother. Res. 2021, 35, 3590–3609. DOI: 10.1002/ptr.7048.
  • Nawaz, H.; Shad, M. A.; Muzaffar, S. Phytochemical Composition and Antioxidant Potential of Brassica. Brassica Germplasm Charact. Breed. Util. 2018, 1, 7–26.
  • Mustard, G. A.;. Seeds as a Bioactive Component of Food. Food Rev. Int. 2022, 1–14.
  • Dua, A.; Chander, S.; Agrawal, S.; Mahajan, R. Antioxidants from Defatted Indian Mustard (Brassica Juncea) Protect Biomolecules against in Vitro Oxidation. Physiol. Mol. Biol. Plants. 2014, 20, 539–543. DOI: 10.1007/s12298-014-0260-4.
  • Kwak, Y.; Lee, J.; Ju, J. Anti-Cancer Activities of Brassica Juncea Leaves in Vitro. EXCLI J. 2016, 15, 699. DOI: 10.17179/excli2016-586.
  • Mori, N.; Shimazu, T.; Sasazuki, S.; Nozue, M.; Mutoh, M.; Sawada, N.; Iwasaki, M.; Yamaji, T.; Inoue, M.; Takachi, R. Cruciferous Vegetable Intake Is Inversely Associated with Lung Cancer Risk among Current Nonsmoking Men in the Japan Public Health Center (JPHC) Study. J. Nutr. 2017, 147, 841–849. DOI: 10.3945/jn.117.247494.
  • Fang, Y.; Yang, C.; Yu, Z.; Li, X.; Mu, Q.; Liao, G.; Yu, B. Natural Products as LSD1 Inhibitors for Cancer Therapy. Acta Pharm. Sin. B. 2021, 11, 621–631. DOI: 10.1016/j.apsb.2020.06.007.
  • Ghanbari-Movahed, M.; Jackson, G.; Farzaei, M. H.; Bishayee, A.; Systematic, A. Review of the Preventive and Therapeutic Effects of Naringin against Human Malignancies. Front. Pharmacol. 2021, 12, 639840. DOI: 10.3389/fphar.2021.639840.
  • Afzal, M. F.; Khalid, W.; Akram, S.; Khalid, M. A.; Zubair, M.; Kauser, S.; Anusha Siddiqui, S.; Aziz, A.; Anusha Siddiqui, S. Bioactive Profile and Functional Food Applications of Banana in Food Sectors and Health: A Review. Int. J. Food Prop. 2022, 25(1), 2286–2300. DOI: 10.1080/10942912.2022.2130940.
  • Ayadi, J.; Debouba, M.; Rahmani, R.; Bouajila, J. Brassica Genus Seeds: A Review on Phytochemical Screening and Pharmacological Properties. Molecules. 2022, 27(18), 6008. DOI: 10.3390/molecules27186008.
  • Ganesan, K.; Xu, B. A Critical Review on Phytochemical Profile and Health Promoting Effects of Mung Bean (Vigna Radiata). Food Sci. Hum. Wellness. 2018, 7(1), 11–33. DOI: 10.1016/j.fshw.2017.11.002.
  • Shapiro, K.; Stephenson, W.; Fahey, L.; Wade, Chemoprotective, L. J. C. 1998, 7.
  • Tanaka, T.; Kohno, H.; Suzuki, R.; Yamada, Y.; Sugie, S.; Mori, H. A Novel Inflammation‐related Mouse Colon Carcinogenesis Model Induced by Azoxymethane and Dextran Sodium Sulfate. Cancer Sci. 2003, 94(11), 965–973. DOI: 10.1111/j.1349-7006.2003.tb01386.x.
  • Tanaka, T.; Shnimizu, M.; Moriwaki, H. Chemoprevention by Carotenoids. Molecules. 2012, 17(3), 3202–3242. DOI: 10.3390/molecules17033202.
  • Tong, L. T.; Zhong, K.; Liu, L.; Qiu, J.; Guo, L.; Zhou, X.; Cao, L.; Zhou, S. Effects of Dietary Wheat Bran Arabinoxylans on Cholesterol Metabolism of Hypercholesterolemic Hamsters. Carbohydr. Polym. 2014, 112, 1–5. DOI: 10.1016/j.carbpol.2014.05.061.
  • He, W. S.; Zhu, H.; Chen, Z. Y. Plant Sterols: Chemical and Enzymatic Structural Modifications and Effects on Their Cholesterol Lowering Activity. J. Agric. Food Chem. 2018, 66, 3047–3062. DOI: 10.1021/acs.jafc.8b00059.
  • Feig, J. E.;. Regression of Atherosclerosis: Insights from Animal and Clinical Studies. Ann. Glob. Health. 2014, 80, 13–23. DOI: 10.1016/j.aogh.2013.12.001.
  • Liska, D. J.; Dioum, E.; Chu, Y.; Mah, E. Narrative Review on the Effects of Oat and Sprouted Oat Components on Blood Pressure. Nutrients. 2022, 14, 4772. DOI: 10.3390/nu14224772.
  • Maqbool, Z.; Arshad, M. S.; Ali, A.; Aziz, A.; Khalid, W.; Afzal, M. F.; Lorenzo, J. M.; Addi, M.; Hano, C.; Lorenzo, J. M. Potential Role of Phytochemical Extract from Saffron in Development of Functional Foods and Protection of Brain-Related Disorders. Oxid. Med. Cell. Longev. 2022, 2022, 6480590–6480590. DOI: 10.1155/2022/6480590.
  • Patel, B.; Mann, G. E.; Chapple, S. J. Concerted Redox Modulation by Sulforaphane Alleviates Diabetes and Cardiometabolic Syndrome, Free Radic. Biol. Med. 2018, 122, 150–160. DOI: 10.1016/j.freeradbiomed.2018.02.004.
  • Kowalska, K.; Olejnik, A.; Rychlik, J.; Grajek, W. Cranberries (Oxycoccus Quadripetalus) Inhibit Adipogenesis and Lipogenesis in 3T3-L1 Cells. Food Chem. 2014, 148, 246–252. DOI: 10.1016/j.foodchem.2013.10.032.
  • Cariou, B.; Postic, C.; Boudou, P.; Burcelin, R.; Kahn, C. R.; Girard, J.; Burnol, A. F.; Mauvais-Jarvis, F. Cellular and Molecular Mechanisms of Adipose Tissue Plasticity in Muscle Insulin Receptor Knockout Mice. Endocrinology.2004 (145), 1926–1932.
  • Grover, J. K.; Yadav, S.; Vats, V. Hypoglycemic and Antihyperglycemic Effect of Brassica Juncea Diet and Their Effect on Hepatic Glycogen Content and the Key Enzymes of Carbohydrate Metabolism. Mol. Cell. Biochem. 2002, 241, 95–101. DOI: 10.1023/A:1020814709118.
  • Khalid, W.; Arshad, M. S.; Ranjha, M. M. A. Z.; Różańska, M. B.; Irfan, S.; Shafique, B.; Rahim, M. A.; Khalid, M. Z.; Abdi, G.; Kowalczewski, P. L. Functional Constituents of plant-based Foods Boost Immunity against Acute and Chronic Disorders. Open Life Sci. 2022, 17(1), 1–19. DOI: 10.1515/biol-2022-0104.
  • Eckel, R. H.; Grundy, S. M.; Zimmet, P. Z. The Metabolic Syndrome. Lancet. 2005, 365, 1415–1428. DOI: 10.1016/S0140-6736(05)66378-7.
  • Bhandari, R.; Kaur, J.; Kaur, S.; Kuhad, A. The Nrf2 Pathway in Psychiatric Disorders: Pathophysiological Role and Potential Targeting. Expert Opin. Ther. Targets 2021, 25, 115–139. DOI: 10.1080/14728222.2021.1887141.
  • Jing, W.; Zhao, X.; Liu, A.; Wei, F.; Ma, S. Two New Nitrogenous Compounds from the Seeds of Brassica Napus. Chem. Nat. Compd. 2022, 58, 501–505. DOI: 10.1007/s10600-022-03719-5.
  • Bavarsad, N.; Mapar, M. A.; Safaezadeh, M.; Latifi, S. M. A double-blind, placebo-controlled Randomized Trial of skin-lightening Cream Containing Lycopene and Wheat Bran Extract on Melasma. J. Cosmet. Dermatol. 2021, 20, 1795–1800.
  • Lee, J. H.; Ki, H. H.; Kim, D. K.; Lee, Y. M. Triticum Aestivum Sprout Extract Attenuates 2, 4-dinitrochlorobenzene-induced Atopic dermatitis-like Skin Lesions in Mice and the Expression of Chemokines in Human Keratinocytes. Mol. Med. Rep. 2018, 18, 3461–3468. DOI: 10.3892/mmr.2018.9339.