1,253
Views
1
CrossRef citations to date
0
Altmetric
Original Article

Application of high-intensity ultrasound to modify the rheological properties of a guamuchil Pithecellobium dulce (Roxb.) seed protein isolate

, , &
Pages 739-751 | Received 07 Dec 2022, Accepted 16 Feb 2023, Published online: 24 Feb 2023

References

  • Yu, X.-Y.; Zou, Y.; Zheng, Q.-W.; Lu, F.-X.; Li, D.-H.; Guo, L.-Q.; Lin, J.-F. Physicochemical, Functional and Structural Properties of the Major Protein Fractions Extracted from Cordyceps Militaris Fruit Body. Food Res. Int. 2021, 142, 110211. DOI: 10.1016/j.foodres.2021.110.
  • Flores-Jiménez, N. T.; Ulloa, J. A.; Urías-Silvas, J. E.; Ramírez-Ramírez, J. C.; Bautista-Rosales, P. U.; Gutiérrez-Leyva, R. Influence of high-intensity Ultrasound on Physicochemical and Functional Properties of a Guamuchil Pithecellobium Dulce (Roxb.). Ultrason. Sonochem. 2022, 84, 105976. DOI: 10.1016/j.ultsonch.2022.105976.
  • Nasrabadi, M. N.; Doost, A. S.; Mezzenga, R. Modification Approaches of plant-based Proteins to Improve Their techno-functionality and Use in Food Products. Food Hydrocolloids. 2021, 118, 106789. DOI: 10.1016/j.foodhyd.2021.106789.
  • Miranda, C. G.; Speranza, P.; Kurozawa, L. E.; Kawazoe Sato, A. C. Lentil Protein: Impact of Different Extraction Methods on Structural and Functional Properties. Heliyon. 2022, 8(11), e11775. DOI: 10.1016/j.heliyon.2022.e11775.
  • Cui, L.; Bandillo, N.; Wang, Y.; Ohm, J.-B.; Chen, B.; Rao, J. Functionality and Structure of Yellow Pea Protein Isolate as Affected by Cultivars and Extraction pH. Food Hydrocolloids. 2020, 108, 106008. DOI: 10.1016/j.foodhyd.2020.106008.
  • López, D.; Ingrassia, R.; Busti, P.; Wagner, J.; Boeris, V.; Spelzini, D. Effects of Extraction pH of Chia Protein Isolates on Functional Properties. LWT-Food Sci. Technol. 2018, 97, 523–529. DOI: 10.1016/j.lwt.2018.07.036.
  • Wang, F.; Zhang, Y.; Xu, L.; Ma, H. An Efficient ultrasound-assisted Extraction Method of Pea Protein and Its Effect on Protein Functional Properties and Biological Activities. LWT-Food Sci. Technol. 2020a, 127, 109348. DOI: 10.1016/j.lwt.2020.109348.
  • Biswas, B.; Sit, N. Effect of Ultrasonication on Functional Properties of Tamarind Seed Protein Isolates. J. Food Sci. Technol. 2020, 57(6), 2070–2078. DOI: 10.1007/s13197-020-04241-8.
  • Ahmed, J.; Al-Ruwaih, N.; Mulla, M.; Rahman, M. H. Effect of High Pressure Treatment on Functional, Rheological and Structural Properties of Kidney Bean Protein Isolate. LWT-Food Sci. Technol. 2018, 91, 191–197. DOI: 10.1016/j.lwt.2018.01.054.
  • Zheng, Y.; Li, Z.; Zhang, C.; Zheng, B.; Tian, Y. Effects of microwave-vacuum pre-treatment with Different Power Levels on the Structural and Emulsifying Properties of Lotus Seed Protein Isolates. Food Chem. 2020, 311, 125932. DOI: 10.1016/j.foodchem.2019.12.
  • Wang, H.; Wang, N.; Chen, X.; Wu, Z.; Zhong, W.; Yu, D.; Zhang, H. Effects of Moderate Electric Field on the Structural Properties and Aggregation Characteristics of Soybean Protein Isolate. Food Hydrocolloids. 2022a, 133, 107911. DOI: 10.1016/j.foodhyd.2022.107911.
  • Wang, X. B.; Wang, C. N.; Zhang, Y. C.; Liu, T. T.; Lv, J. P.; Shen, X.; Guo, M. R. Effects of Gamma Radiation on Microbial, Physicochemical, and Structural Properties of Whey Protein Model System. J. Dairy Sci. 2018, 101(6), 4879–4890. DOI: 10.3168/jds.2017-14085.
  • Flores-Jiménez, N. T.; Ulloa, J. A.; Urías-Silvas, J. E.; Ramírez-Ramírez, J. C.; Rosas-Ulloa, P.; Bautista-Rosales, P. U.; Silva-Carrillo, Y.; Gutiérrez-Leyva, R. Effect of high-intensity Ultrasound on the Compositional, Physicochemical, Biochemical, Functional and Structural Properties of Canola (Brassica Napus L.) Protein Isolate. Food Res. Int. 2019, 121, 947–956. DOI: 10.1016/j.foodres.2019.01.025.
  • Su, J.; Cavaco-Paulo, A. Effect of Ultrasound on Protein Functionality. Ultrason. Sonochem. 2021, 76, 105653. DOI: 10.1016/j.ultsonch.2021.105653.
  • Ren, X.; Li, C.; Yang, F.; Huang, Y.; Huang, C.; Zhang, K.; Yan, L. Comparison of Hydrodynamic and Ultrasonic Cavitation Effects on Soy Protein Isolate Functionality. J. Food Eng. 2020, 265, 109697. DOI: 10.1016/j.jfoodeng.2019.10969.
  • Chen, W.; Ma, H.; Wang, Y. Y. Recent Advances in Modified Food Proteins by High Intensity Ultrasound for Enhancing Functionality: Potential Mechanisms, Combination with Other Methods, Equipment Innovations and Future Directions. Ultrason. Sonochem. 2022, 85, 105993. DOI: 10.1016/j.ultsonch.2022.105993.
  • Pérez-Orozco, J. P.; Sánchez-Herrera, L. M.; Ortiz-Basurto, R. I. Effect of Concentration, Temperature, pH, co-solutes on the Rheological Properties of Hyptis Suaveolens L. Food Hydrocolloids. 2019, 87, 297–306. DOI: 10.1016/j.foodhyd.2018.08.0.
  • Sebii, H.; Karra, S.; Blecker, C.; Karoui, R.; Attia, H.; Besbes, S. Effect of Sonication and Succinylation on Rheological Properties and Secondary Structures of Date Palm Pollen Protein Concentrate. Rheol. Acta. 2021a, 60(9), 543–551. DOI: 10.1007/s00397-021-01291-3.
  • Liang, Y.; Teng, F.; He, M.; Jiang, L.; Yu, J.; Wang, X.; Li, Y.; Wang, Z. Effects of Ultrasonic Treatment on the Structure and Rehydration Peculiarity of freeze-dried Soy Protein Isolate Gel. Food Struct. 2021, 28, 100169. DOI: 10.1016/j.foostr.2020.100169.
  • Lo, B.; Kasapis, S.; Farahnaky, A. Effect of Low Frequency Ultrasound on the Functional Characteristics of Isolated Lupin Protein. Food Hydrocolloids. 2022, 124, 107345. DOI: 10.1016/j.foodhyd.2021.107345.
  • Wang, Y.; Wang, Y.; Li, K.; Bai, Y.; Li, B.; Xu, W. Effect of High Intensity Ultrasound on Physicochemical, Interfacial and Gel Properties of Chickpea Protein Isolate. LWT-Food Sci. Technol. 2020b, 129, 109563. DOI: 10.1016/j.lwt.2020.109563.
  • Du, H.; Zhang, J.; Wang, S.; Manyande, A.; Wang, J. Effect of high-intensity Ultrasonic Treatment on the Physicochemical, Structural, Rheological, Behavioral, and Foaming Properties of Pumpkin (Cucurbita Moschata Duch.)-seed. LWT-Food Sci. Technol. 2022, 155, 112952. DOI: 10.1016/j.lwt.2021.112952.
  • Kim, Y. J.; Lee, M.; Kim, H.; Kim, S.-M.; Yong, B.-K.; Choi, H. I. Improvement of Structural, Physicochemical, and Rheological Properties of Porcine Myofibrillar Proteins by high-intensity Ultrasound Treatment for Application as Pickering Stabilizers. Ultrason. Sonochem. 2023, 92, 106263. DOI: 10.1016/j.ultsonch.2022.106263.
  • Chandra Sekhar, S.; Karuppasamya, K.; Vedaraman, N.; Kabeel, A. E.; Sathyamurthy, R.; Elkelawy, M.; Alm Eldin Bastawissi, H. Biodiesel Production Process Optimization from Pithecellobium Dulce Seed Oil: Performance, Combustion, and Emission Analysis on Compression Ignition Engine Fuelled with diesel/biodiesel Blends. Energy Convers. Manag. 2018, 161, 141–154. DOI: 10.1016/j.enconman.2018.01.074.
  • Chaudhari, B. B.; Annapure, U. S. Physiochemical and Rheological Characterization of Pithecellobium Dulce (Roxb.) Benth Gum Exudate as a Potential Wall Material for the Encapsulation of Rosemary Oil. Carbohydr. Polym. Technol. Appl. 2020, 1, 100005. DOI: 10.1016/j.carpta.2020.100005.
  • AOAC. Official Methods of Analysis, 17th ed.; Association of Official Analytical Chemists: Arlington, VI, 2000.
  • Li, Y.; Zeng, Q.-H.; Liu, G.; Peng, Z.; Wang, Y.; Zhu, Y.; Liu, H.; Zhao, Y.; Wang, J. J. Effects of Ultrasoundassisted Basic Electrolyzed Water (BEW) Extraction on Structural and Functional Properties of Antarctic Krill (Euphausia Superba) Proteins. Ultrason. Sonochem. 2021, 71, 105364. DOI: 10.1016/j.ultsonch.2020.105364.
  • Liu, P.; Xu, H.; Zhao, Y.; Yang, Y. Rheological Properties of Soy Protein Isolate Solution for Fibers and Films. Food Hydrocolloids. 2017, 64, 149–156. DOI: 10.1016/j.foodhyd.2016.11.001.
  • Hauswirth, S. C.; Bowers, C. A.; Fowler, C. P.; Schultz, P. B.; Hauswirth, A. D.; Weigand, T.; Miller, C. T. Modeling Cross Model non-Newtonian Fluid Flow in Porous Media. J. Contam. Hydrol. 2020, 235, 103708. DOI: 10.1016/j.jconhyd.2020.103708.
  • Hu, H.; Wu, J.; Li-Chan, E. C. Y.; Zhu, L.; Zhang, F.; Xu, X.; Fan, G.; Wang, L.; Huang, X.; Pan, S. Effects of Ultrasound on Structural and Physical Properties of Soy Protein Isolate (SPI) Dispersions. Food Hydrocolloids. 2013, 30(2), 647–655. DOI: 10.1016/j.foodhyd.2012.08.001.
  • Aliyari, M. A.; Salami, M.; Hosseini, E.; Emam-Djomeh, Z.; Karboune, S.; Waglay, A. Biophysical, Rheological, and Functional Properties of Complex of Sodium Caseinate and Olive Leaf Aqueous Polyphenolic Extract Obtained Using ultrasound-assisted Extraction. Food Biophys. 2021, 16(3), 325–336. DOI: 10.1007/s11483-021-09671-1.
  • Wu, C.; Navicha, W. B.; Hua, Y.; Chen, Y.; Kong, X.; Zhang, C. Effects of Removal of non-network Protein on the Rheological Properties of heat-induced Soy Protein Gels. LWT-Food Sci. Technol. 2018, 95, 193–199. DOI: 10.1016/j.lwt.2018.04.077.
  • Ghebremedhin, M.; Seiffert, S.; Vilgis, T. A. Physics of Agarose Fluid Gels: Rheological Properties and Microstructure. Curr. Res. Food Sci. 2021, 4, 436–448. DOI: 10.1016/j.crfs.2021.06.003.
  • Chen, J.; Zhang, X.; Chen, Y.; Zhao, X.; Anthony, B.; Xu, X. Effects of Different Ultrasound Frequencies on the Structure, Rheological and Functional Properties of Myosin: Significance of Quorum Sensing. Ultrason. Sonochem. 2020, 69, 105268. DOI: 10.1016/j.ultsonch.2020.105268.
  • Mir, N. A.; Riar, C. S.; Singh, S. Structural Modification in Album (Chenopodium Album) Protein Isolates Due to Controlled Thermal Modification and Its Relationship with Protein Digestibility and Functionality. Food Hydrocolloids. 2020, 103, 105708. DOI: 10.1016/j.foodhyd.2020.105708.
  • Mir, N. A.; Riar, C. S.; Singh, S. Structural Modification of Quinoa Seed Protein Isolates (Qpis) by Variable Time Sonification for Improving Its Physicochemical and Functional Characteristics. Ultrason. Sonochem. 2019, 58, 104700. DOI: 10.1016/j.ultsonch.2019.10.
  • Espert, M.; Hernández, M. J.; Sanz, T.; Salvador, A. Rheological Properties of Emulsion Templated Oleogels Based on Xanthan Gum and Different Structuring Agents. Curr. Res. Food Sci. 2022, 5, 564–570. DOI: 10.1016/j.crfs.2022.03.001.
  • Zhang, Z.; Regenstein, J.; Zhou, P.; Yang, Y. Effects of High Intensity Ultrasound Modification on Physicochemical Property and Water in Myofibrillar Protein Gel. Ultrason. Sonochem. 2017, 34, 960–967. DOI: 10.1016/j.ultsonch.2016.08.008.
  • Malik, M. A.; Saini, C. S. Rheological and Structural Properties of Protein Isolates Extracted from Dephenolized Sunflower Meal: Effect of High Intensity Ultrasound. Food Hydrocolloids. 2018, 81, 229–241. DOI: 10.1016/j.foodhyd.2018.02.052.
  • Liu, X.; Sun, X.; Wei, Y.; Ma, Y.; Sun, P.; Li, X. Effects of Ultrasonic Treatment on physico-chemical Properties and Structure of Tuna (Thunnus Tonggol) Myofibrillar Proteins. J. Food Compost. Anal. 2022, 108, 104438. DOI: 10.1016/j.jfca.2022.104438.
  • Frydenberg, R. P.; Hammershøj, M.; Andersen, U.; Greve, M. T.; Wiking, L. Protein Denaturation of Whey Protein Isolates (Wpis) Induced by High Intensity Ultrasound during Heat Gelation. Food Chem. 2016, 192, 415–423. DOI: 10.1016/j.foodchem.2015.07.037.
  • Huang, Y.; Zhang, Y.; Zhang, D.; Chen, L.; Bao, P.; Fang, H.; Zhou, C. Combination Effects of Ultrasonic and Basic Amino Acid Treatments on Physicochemical Properties of Emulsion Sausage. J. Food Meas. Charact. 2021, 15(2), 2088–2097. DOI: 10.1007/s11694-020-00800-x.
  • Sebii, H.; Karra, S.; Bchir, B.; Nhouchi, Z.; Ghribi, A. M.; Karoui, R.; Blecker, C.; Besbes, S. Effect of Succinylation on the Secondary Structures, Surface, and Thermal Properties of Date Palm Pollen Protein Concentrate. J. Food Sci. Technol. 2021b, 58(2), 632–640. DOI: 10.1007/s13197-020-04577-1.
  • Amiri, A.; Sharifian, P.; Soltanizadeh, N. Application of Ultrasound Treatment for Improving the Physicochemical, Functional and Rheological Properties of Myofibrillar Proteins. Int. J. Biol. Macromol. 2018, 111, 139–147. DOI: 10.1016/j.ijbiomac.2017.12.167.
  • Shevkani, K.; Singh, N.; Kaur, A.; Rana, J. Structural and Functional Characterization of Kidney Bean and Field Pea Protein Isolates: A Comparative Study. Food Hydrocolloids. 2015, 43, 679–689. DOI: 10.1016/j.foodhyd.2014.07.024.
  • Li, L.; Zhou, Y.; Teng, F.; Zhang, S.; Qi, B.; Wu, C.; Tian, T.; Wang, Z.; Li, Y. Application of Ultrasound Treatment for Modulating the Structural, Functional, and Rheological Properties of Black Bean Protein Isolates. Int. J. Food Sci. Technol. 2020, 55, 1637–1647. DOI: 10.1111/ijfs.
  • Mitra, P.; Nepal, K.; Tavade, P. Effect of Whey and Soy Proteins Fortification on the Textural and Rheological Properties of value-added Yogurts. Appl. Food Biotechnol. 2022, 2, 100195. DOI: 10.1016/j.afres.2022.100195.
  • Tian, Z.; Duan, L.; Wu, L.; Shen, L.; Li, G. Rheological Properties of glutaraldehyde-crosslinked Collagen Solutions Analyzed Quantitatively Using Mechanical Models. Mater. Sci. Eng. C. 2016, 63, 10–17. DOI: 10.1016/j.msec.2016.02.047.
  • Vargas, S. A.; Delgado-Macuil, R. J.; Ruiz-Espinosa, H.; Rojas-López, M.; Amador-Espejo, G. G. High-intensity Ultrasound Pretreatment Influence on Whey Protein Isolate and Its Use on Complex Coacervation with Kappa Carrageenan: Evaluation of Selected Functional Properties. Ultrason. Sonochem. 2021, 70, 105340. DOI: 10.1016/j.ultsonch.2020.105340.
  • Piñeiro-Lago, L.; Franco, I.; Tovar, C. A. Changes in Thermoviscoelastic and Biochemical Properties of Atroncau Blancu and Roxu Afuega’l Pitu Cheese (PDO) during Ripening. Food Res. Int. 2020, 137, 109693. DOI: 10.1016/j.foodres.2020.109.
  • Agi, A.; Junin, R.; Gbadamosi, A.; Abbas, A.; Azli, N. B.; Oseh, J. Influence of Nanoprecipitation on Crystalline Starch Nanoparticle Formed by Ultrasonic Assisted weak-acid Hydrolysis of Cassava Starch and the Rheology of Their Solutions. Chem. Eng. Process. 2019, 142, 107556. DOI: 10.1016/j.cep.2019.107556.
  • Wei, Y.; Lin, Y.; Xie, R.; Xu, Y.; Yao, J.; Zhang, J. The Flow Behavior, Thixotropy and Dynamical Viscoelasticity of Fenugreek Gum. J. Food Eng. 2015, 166, 21–28. DOI: 10.1016/j.jfoodeng.2015.05.015.
  • Wang, T.; Wang, N.; Li, N.; Ji, X.; Zhang, H.; Yu, D.; Wang, L. Effect of high-intensity Ultrasound on the Physicochemical Properties, Microstructure, and Stability of Soy Protein isolate-pectin Emulsion. Ultrason. Sonochem. 2022b, 82, 105871. DOI: 10.1016/j.ultsonch.2021.105871.
  • Albano, K. M.; Nicoletti, V. R. Ultrasound Impact on Whey Protein concentrate-pectin Complexes and in the O/W Emulsions with Low Oil Soybean Content Stabilization. Ultrason. Sonochem. 2018, 41, 562–571. DOI: 10.1016/j.ultsonch.2017.10.01.
  • Karki, B.; Lamsal, B. P.; Grewell, D.; Pometto, A. L.; van Leeuwen, J.; Khanal, S. K.; Jung, S. Functional Properties of Soy Protein Isolates Produced from Ultrasonicated Defatted Soy Flakes. J Am. Oil Chem. Soc. 2009, 86(10), 1021–1028. DOI: 10.1007/s11746-009-1433-0.
  • Li, K.; Li, S.-Y.; He, -Y.-Y.; Wang, Y.-Q.; Zhang, Y.-X.; Zhao, -Y.-Y.; Du, M.-T.; Wang, Y.; Wang, Y.-T.; Bai, Y.-H. Application of ultrasound-assisted Alkaline Extraction for Improving the Solubility and Emulsifying Properties of Pale, Soft, and Exudative (Pse)-like Chicken Breast Meat Protein Isolate. LWT-Food Sci. Technol. 2022, 172, 114234. DOI: 10.1016/j.lwt.2022.114234.
  • Krešić, G.; Lelas, V.; Jambrak, A. R.; Herceg, Z.; Brnčić, S. R. Influence of Novel Food Processing Technologies on the Rheological and Thermophysical Properties of Whey Proteins. J. Food Eng. 2008, 87(1), 64–73. DOI: 10.1016/j.jfoodeng.2007.10.02.
  • Zhang, T.; Zhao, Y.; Tian, X.; Liu, J.; Ye, H.; Shen, X. Effect of Ultrasound Pretreatment on Structural, Physicochemical, Rheological and Gelation Properties of Transglutaminase cross-linked Whey Protein Soluble Aggregates. Ultrason. Sonochem. 2021, 74, 105553. DOI: 10.1016/j.ultsonch.2021.105553.
  • Jambrak, A. R.; Mason, T. J.; Lelas, V.; Krešić, G. Ultrasonic Effect on Physicochemical and Functional Properties of α-lactalbumin. LWT-Food Sci. Technol. 2010, 43(2), 254–262. DOI: 10.1016/j.lwt.2009.09.001.
  • Arredondo-Parada, I.; Torres-Arreola, W.; Suárez-Jiménez, G. M.; Ramírez-Suárez, J. C.; Juárez-Onofre, J. E.; Rodríguez-Félix, F.; Marquez-Rios, E. Effect of Ultrasound on Physicochemical and Foaming Properties of a Protein Concentrate from Giant Squid (Dosidicus Gigas) Mantle. LWT-Food Sci. Technol. 2020, 121, 108954. DOI: 10.1016/j.lwt.2019.108954.
  • Koocheki, A.; Taherian, A. R.; Bostan, A. Studies on the Steady Shear Flow Behavior and Functional Properties of Lepidium Perfoliatum Seed Gum. Food Res. Int. 2013, 50(1), 446–456. DOI: 10.1016/j.foodres.2011.05.002.