2,403
Views
0
CrossRef citations to date
0
Altmetric
Review

Natural molecules as promising players against diabetic peripheral neuropathy: an emerging nutraceutical approach

, , , , , , , ORCID Icon, , , , , , ORCID Icon & ORCID Icon show all
Pages 894-914 | Received 29 Nov 2022, Accepted 03 Mar 2023, Published online: 19 Mar 2023

References

  • Kharroubi, A. T. Diabetes Mellitus: The Epidemic of the Century. World J. Diabetes. 2015, 6(6), 850. DOI: 10.4239/wjd.v6.i6.850.
  • Galtier, F. Definition, Epidemiology, Risk Factors. Diabetes. Metab. 2010, 36(6), 628–651. DOI: 10.1016/j.diabet.2010.11.014.
  • Chobanian, A. V.; Bakris, G. L.; Black, H. R.; Cushman, W. C.; Green, L. A.; Izzo, J. L.; Jones, D. W.; Materson, B. J.; Oparil, S.; Wright, J. T., et al. The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. J. Am. Med. Assoc. 2003, 289(19), 2560.
  • Aynalem, S. B.; Zeleke, A. J. Prevalence of Diabetes Mellitus and Its Risk Factors Among Individuals Aged 15 Years and Above in Mizan-Aman Town, Southwest Ethiopia, 2016: A Cross Sectional Study. Int. J. Endocrinol. 2018, 2018, 1–7. DOI: 10.1155/2018/9317987.
  • Saeedi, P.; Petersohn, I.; Salpea, P.; Malanda, B.; Karuranga, S.; Unwin, N.; Colagiuri, S.; Guariguata, L.; Motala, A. A.; Ogurtsova, K., et al. Global and Regional Diabetes Prevalence Estimates for 2019 and Projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas 9th. Diabetes res. clin. pract. 2019, 157, 107843. DOI: 10.1016/j.diabres.2019.107843.
  • Bellelli, A.; Santi, D.; Simoni, M.; Greco, C. Diabetic Neuropathic Cachexia: A Clinical Case and Review of Literature. Life (Basel, Switzerland). 2022, 12(5). DOI: 10.3390/LIFE12050680.
  • Kasznicki, J. Advances in the Diagnosis and Management of Diabetic Distal Symmetric Polyneuropathy. Arch. Med. Sci. 2014, 2, 345. DOI: 10.5114/AOMS.2014.42588.
  • Mizisin, A. P. Mechanisms of Diabetic Neuropathy: Schwann Cells. Handb. Clin. Neurol.2014, 126, 401–428. DOI: 10.1016/B978-0-444-53480-4.00029-1.
  • Brown, A. M.; Evans, R. D.; Black, J.; Ransom, B. R. Schwann Cell Glycogen Selectively Supports Myelinated Axon Function. Ann. Neurol. 2012, 72(3), 406–418. DOI: 10.1002/ana.23607.
  • Naruse, K. Schwann Cells as Crucial Players in Diabetic Neuropathy. Adv. Exp. Med. Biol. 2019, 1190, 345–356. DOI: 10.1007/978-981-32-9636-7_22.
  • Eckersley, L. Role of the Schwann Cell in Diabetic Neuropathy. Int. Rev. Neurobiol. 2002, 50, 293–321.
  • Gonçalves, N. P.; Vægter, C. B.; Pallesen, L. T. Peripheral Glial Cells in the Development of Diabetic Neuropathy. Front. Neurol. 2018, 9. DOI: 10.3389/fneur.2018.00268.
  • Leinninger, G. M.; Vincent, A. M.; Feldman, E. L. The Role of Growth Factors in Diabetic Peripheral Neuropathy. J. Peripher. Nerv. Syst. 2004, 9(1), 26–53. DOI: 10.1111/j.1085-9489.2004.09105.x.
  • Obrosova, I. G.; Drel, V. R.; Pacher, P.; Ilnytska, O.; Wang, Z. Q.; Stevens, M. J.; Yorek, M. A. Oxidative-Nitrosative Stress and Poly(adp-Ribose) Polymerase (PARP) Activation in Experimental Diabetic Neuropathy: The Relation is Revisited. Diabetes. 2005, 54(12), 3435–3441. DOI: 10.2337/diabetes.54.12.3435.
  • Komirishetty, P.; Areti, A.; Gogoi, R.; Sistla, R.; Kumar, A. Poly(adp-Ribose) Polymerase Inhibition Reveals a Potential Mechanism to Promote Neuroprotection and Treat Neuropathic Pain. Neural. Regen. Res. 2016, 11(10), 1545–1548. DOI: 10.4103/1673-5374.193222.
  • Lukic, I. K.; Humpert, P. M.; Nawroth, P. P.; Bierhaus, A. The RAGE Pathway: Activation and Perpetuation in the Pathogenesis of Diabetic Neuropathy. In Proceedings of the Annals of the New York Academy of Sciences; Blackwell Publishing Inc, 2008; Vol. 1126, pp. 76–80.
  • Mišur, I.; Žarković, K.; Barada, A.; Batelja, L.; Miličević, Z.; Turk, Z. Advanced Glycation End Products in Peripheral Nerve in Type 2 Diabetes with Neuropathy. Acta Diabetol. 2004, 41(4), 158–166. DOI: 10.1007/s00592-004-0160-0.
  • Ramana, K. V. Aldose Reductase: New Insights for an Old Enzyme. Biomol. Concepts. 2011, 2(1–2), 103–114. DOI: 10.1515/bmc.2011.002.
  • Alter, M. L.; Ott, I. M.; Von Websky, K.; Tsuprykov, O.; Sharkovska, Y.; Krause-Relle, K.; Raila, J.; Henze, A.; Klein, T.; Hocher, B. DPP-4 Inhibition on Top of Angiotensin Receptor Blockade Offers a New Therapeutic Approach for Diabetic Nephropathy. Kidney Blood Press. Res. 2012, 36(1), 119–130. DOI: 10.1159/000341487.
  • Yamagishi, S. I.; Maeda, S.; Matsui, T.; Ueda, S.; Fukami, K.; Okuda, S. Role of Advanced Glycation End Products (AGEs) and Oxidative Stress in Vascular Complications in Diabetes. Biochim. Biophys. Acta - Gen. Subj. 2012, 1820(5), 663–671. DOI: 10.1016/j.bbagen.2011.03.014.
  • Schemmel, K. E.; Padiyara, R. S.; D’souza, J. J. Aldose Reductase Inhibitors in the Treatment of Diabetic Peripheral Neuropathy: A Review. J. Diabetes Complications. 2010, 24(5), 354–360. DOI: 10.1016/j.jdiacomp.2009.07.005.
  • Ho, E. C. M.; Lam, K. S. L.; Yuk, S. C.; Yip, J. C. W.; Arvindakshan, M.; Yamagishi, S. I.; Yagihashi, S.; Oates, P. J.; Ellery, C. A.; Chung, S. S. M., et al. Aldose Reductase–Deficient Mice are Protected from Delayed Motor Nerve Conduction Velocity, Increased C-Jun NH2-Terminal Kinase Activation, Depletion of Reduced Glutathione, Increased Superoxide Accumulation, and DNA Damage. Diabetes. 2006, 55(7), 1946–1953.
  • Steinberg, S. F. Structural Basis of Protein Kinase C Isoform Function. Physiol. Rev. 2008, 88(4), 1341–1378. DOI: 10.1152/physrev.00034.2007.
  • Chandrasekaran, K.; Zilliox, L. A.; Russell, J. W. Diabetic Neuropathy – Research Basic and Translational Research in Diabetic Neuropathy. Microvasc. Dis. Diabetes Hum. 2020, 129–155.
  • Geraldes, P.; King, G. L. Activation of Protein Kinase C Isoforms and Its Impact on Diabetic Complications. Circ. Res. 2010, 106, 1319–1331. DOI: 10.1161/CIRCRESAHA.110.217117.
  • Du, X. L.; Edelstein, D.; Rossetti, L.; Fantus, I. G.; Goldberg, H.; Ziyadeh, F.; Wu, J.; Brownlee, M. Hyperglycemia-Induced Mitochondrial Superoxide Overproduction Activates the Hexosamine Pathway and Induces Plasminogen Activator Inhibitor-1 Expression by Increasing Sp1 Glycosylation. Proc. Natl. Acad. Sci. U. S. A. 2000, 97, 12222–12226. DOI: 10.1073/pnas.97.22.12222.
  • Guo, J.; Whittemore, R.; He, G. P. The Relationship Between Diabetes Self-Management and Metabolic Control in Youth with Type 1 Diabetes: An Integrative Review. J. Adv. Nurs. 2011, 67, 2294–2310. DOI: 10.1111/j.1365-2648.2011.05697.x.
  • Francis, G.; Martinez, J.; Liu, W.; Nguyen, T.; Ayer, A.; Fine, J.; Zochodne, D.; Hanson, L. R.; Frey, W. H.; Toth, C. Intranasal Insulin Ameliorates Experimental Diabetic Neuropathy. Diabetes. 2009, 58, 934–945. DOI: 10.2337/db08-1287.
  • Kim, B.; Feldman, E. L. Insulin Resistance in the Nervous System. Trends Endocrinol. Metab. 2012, 23, 133–141. DOI: 10.1016/j.tem.2011.12.004.
  • Eguchi, K.; Manabe, I. Macrophages and Islet Inflammation in Type 2 Diabetes. Diabetes Obes. Metab. 2013, 15, 152–158. DOI: 10.1111/dom.12168.
  • Pop-Busui, R.; Herman, W. H.; Feldman, E. L.; Low, P. A.; Martin, C. L.; Cleary, P. A.; Waberski, B. H.; Lachin, J. M.; Albers, J. W. DCCT and EDIC Studies in Type 1 Diabetes: Lessons for Diabetic Neuropathy Regarding Metabolic Memory and Natural History. Curr. Diab. Rep. 2010, 10, 276–282. DOI: 10.1007/s11892-010-0120-8.
  • Han, J. W.; Sin, M. Y.; Yoon, Y. S. Cell Therapy for Diabetic Neuropathy Using Adult Stem or Progenitor Cells. Diabetes Metab. J. 2013, 37, 91–105. DOI: 10.4093/dmj.2013.37.2.91.
  • Huang, E. J.; Reichardt, L. F. Neurotrophins: Roles in Neuronal Development and Function. Annu. Rev. Neurosci. 2001, 24, 677–736. DOI: 10.1146/annurev.neuro.24.1.677.
  • Kermani, P.; Rafii, D.; Jin, D. K.; Whitlock, P.; Schaffer, W.; Chiang, A.; Vincent, L.; Friedrich, M.; Shido, K.; Hackett, N. R., et al. Neurotrophins Promote Revascularization by Local Recruitment of TrkB+ Endothelial Cells and Systemic Mobilization of Hematopoietic Progenitors. J. Clin. Invest. 2005, 115, 653–663. DOI: 10.1172/jci22655.
  • Khdour, M. R. Treatment of Diabetic Peripheral Neuropathy: A Review. J. Pharm. Pharmacol. 2020, 72, 863–872. DOI: 10.1111/jphp.13241.
  • Snyder, M. J.; Gibbs, L. M.; Lindsay, T. J. Treating Painful Diabetic Peripheral Neuropathy: An Update. Am. Fam. Physician. 2016, 94(3), 227–234.
  • Atef, M.; El-Sayed, N.; Mostafa, Y.; Ahmed, A. Recent Updates in Treatment of Diabetic Neuropathy. Rec. Pharm. Biomed. Sci. 2019, 0, 15–27. DOI: 10.21608/rpbs.2019.12385.1033.
  • Javed, S.; Petropoulos, I. N.; Alam, U.; Malik, R. A. Treatment of Painful Diabetic Neuropathy. Ther. Adv. Chronic Dis. 2015, 6, 15–28. DOI: 10.1177/2040622314552071.
  • Hosseini, A.; Abdollahi, M. Diabetic Neuropathy and Oxidative Stress: Therapeutic Perspectives. OXID. MED. CELL LONGEV. 2013, 2013, 1–15. DOI: 10.1155/2013/168039.
  • Stevens, M.; Shakher, J. Update on the Management of Diabetic Polyneuropathies. Diabetes, Metab. Syndr. Obes. Targets Ther. 2011, 289. DOI: 10.2147/dmso.s11324.
  • Edwards, J. L.; Vincent, A. M.; Cheng, H. T.; Feldman, E. L. Diabetic Neuropathy: Mechanisms to Management. Pharmacol. Ther. 2008, 120, 1–34. DOI: 10.1016/j.pharmthera.2008.05.005.
  • Li, R.; Ma, J.; Wu, Y.; Nangle, M.; Zou, S.; Li, Y.; Yin, J.; Zhao, Y.; Xu, H.; Zhang, H., et al. Dual Delivery of NGF and bFgf Coacervater Ameliorates Diabetic Peripheral Neuropathy via Inhibiting Schwann Cells Apoptosis. Int. J. Biol. Sci. 2017, 13, 640–651. DOI: 10.7150/ijbs.18636.
  • Stavniichuk, R.; Drel, V. R.; Shevalye, H.; Maksimchyk, Y.; Kuchmerovska, T. M.; Nadler, J. L.; Obrosova, I. G. Baicalein Alleviates Diabetic Peripheral Neuropathy Through Inhibition of Oxidative-Nitrosative Stress and P38 MAPK Activation. Exp. Neurol. 2011, 230, 106–113. DOI: 10.1016/j.expneurol.2011.04.002.
  • Kandhare, A. D.; Raygude, K. S.; Ghosh, P.; Ghule, A. E.; Bodhankar, S. L. Neuroprotective Effect of Naringin by Modulation of Endogenous Biomarkers in Streptozotocin Induced Painful Diabetic Neuropathy. Fitoterapia. 2012, 83, 650–659. DOI: 10.1016/j.fitote.2012.01.010.
  • Bachewal, P.; Gundu, C.; Yerra, V. G.; Kalvala, A. K.; Areti, A.; Kumar, A. Morin Exerts Neuroprotection via Attenuation of ROS Induced Oxidative Damage and Neuroinflammation in Experimental Diabetic Neuropathy. BioFactors. 2018, 44, 109–122. DOI: 10.1002/biof.1397.
  • Yang, R.; Li, L.; Yuan, H.; Liu, H.; Gong, Y.; Zou, L.; Li, S.; Wang, Z.; Shi, L.; Jia, T., et al. Quercetin Relieved Diabetic Neuropathic Pain by Inhibiting Upregulated P2X4 Receptor in Dorsal Root Ganglia. J. Cell. Physiol. 2019, 234, 2756–2764. DOI: 10.1002/jcp.27091.
  • Tian, R.; Yang, W.; Xue, Q.; Gao, L.; Huo, J.; Ren, D.; Chen, X. Rutin Ameliorates Diabetic Neuropathy by Lowering Plasma Glucose and Decreasing Oxidative Stress via Nrf2 Signaling Pathway in Rats. Eur. J. Pharmacol. 2016, 771, 84–92. DOI: 10.1016/j.ejphar.2015.12.021.
  • Bao, L.; Li, J.; Zha, D.; Zhang, L.; Gao, P.; Yao, T.; Wu, X. Chlorogenic Acid Prevents Diabetic Nephropathy by Inhibiting Oxidative Stress and Inflammation Through Modulation of the Nrf2/HO-1 and NF-ĸb Pathways. Int. Immunopharmacol. 2018, 54, 245–253. DOI: 10.1016/j.intimp.2017.11.021.
  • Sun, W.; Liu, X.; Zhang, H.; Song, Y.; Li, T.; Liu, X.; Liu, Y.; Guo, L.; Wang, F.; Yang, T., et al. Epigallocatechin Gallate Upregulates NRF2 to Prevent Diabetic Nephropathy via Disabling KEAP1. Free Radic Biol. Med. 2017, 108, 840–857. DOI: 10.1016/j.freeradbiomed.2017.04.365.
  • Ahad, A.; Ganai, A. A.; Mujeeb, M.; Siddiqui, W. A. Ellagic Acid, an NF-Κb Inhibitor, Ameliorates Renal Function in Experimental Diabetic Nephropathy. Chem. Biol. Interact. 2014, 219, 64–75. DOI: 10.1016/j.cbi.2014.05.011.
  • Sharaf El Din, U. A. A.; Mansour Salem, M.; Abdulazim, D. O. Recent Advances in Management of Diabetic Nephropathy. J. Clin. Exp. Nephrol. 2017, 02, 1–22. DOI: 10.21767/2472-5056.100035.
  • Vincent, A. M.; Callaghan, B. C.; Smith, A. L.; Feldman, E. L. Diabetic Neuropathy: Cellular Mechanisms as Therapeutic Targets. Nat. Rev. Neurol. 2011, 7, 573–583. DOI: 10.1038/nrneurol.2011.137.
  • Spallone, V. Management of Painful Diabetic Neuropathy: Guideline Guidance or Jungle? Curr. Diab. Rep. 2012.
  • Chong, M. S.; Hester, J. Diabetic Painful Neuropathy: Current and Future Treatment Options. Drugs. 2007, 67, 569–585. DOI: 10.2165/00003495-200767040-00006.
  • Rudroju, N.; Bansal, D.; Teja Talakokkula, S.; Gudala, K.; Hota, D.; Bhansali, A.; Ghai, B. Comparative Efficacy and Safety of Six Antidepressants and Anticonvulsants in Painful Diabetic Neuropathy: A Network Meta-Analysis. Pain Physician. 2013, 16, E705–14.
  • Baba, M.; Matsui, N.; Kuroha, M.; Wasaki, Y.; Ohwada, S. Mirogabalin for the Treatment of Diabetic Peripheral Neuropathic Pain: A Randomized, Double-Blind, Placebo-Controlled Phase III Study in Asian Patients. J. Diabetes Investig. 2019, 10(5), 1299–1306. DOI: 10.1111/jdi.13013.
  • Tetsunaga, T.; Tetsunaga, T.; Nishida, K.; Misawa, H.; Takigawa, T.; Yamane, K.; Tsuji, H.; Takei, Y.; Ozaki, T. Short-Term Outcomes of Mirogabalin in Patients with Peripheral Neuropathic Pain: A Retrospective Study. J. Orthopaedic Surg Res. 2020, 15, 1–8. DOI: 10.1186/s13018-020-01709-3.
  • Javed, S.; Alam, U.; Malik, R. A. Mirogabalin and Emerging Therapies for Diabetic Neuropathy. J. Pain Res. 2018, Volume 11, 1559–1566. DOI: 10.2147/JPR.S145999.
  • Barbano, R. L.; Herrmann, D. N.; Hart-Gouleau, S.; Pennella-Vaughan, J.; Lodewick, P. A.; Dworkin, R. H. Effectiveness, Tolerability, and Impact on Quality of Life of the 5% Lidocaine Patch in Diabetic Polyneuropathy. Arch. Neurol. 2004, 61, 914. DOI: 10.1001/archneur.61.6.914.
  • Viola, V.; Newnham, H. H.; Simpson, R. W. Treatment of Intractable Painful Diabetic Neuropathy with Intravenous Lignocaine. J. Diabetes Complications. 2006, 20, 34–39. DOI: 10.1016/j.jdiacomp.2005.05.007.
  • Dworkin, R. H.; O’connor, A. B.; Backonja, M.; Farrar, J. T.; Finnerup, N. B.; Jensen, T. S.; Kalso, E. A.; Loeser, J. D.; Miaskowski, C.; Nurmikko, T. J., et al. Pharmacologic Management of Neuropathic Pain: Evidence-Based Recommendations. Pain. 2007, 132, 237–251. DOI: 10.1016/j.pain.2007.08.033.
  • Finnerup, N. B.; Sindrup, S. H.; Jensen; Jensen, T. S. T.S. The Evidence for Pharmacological Treatment of Neuropathic Pain. Pain. 2010, 150, 573–581. DOI: 10.1016/j.pain.2010.06.019.
  • Gimbel, J. S.; Richards, P.; Portenoy, R. K. Controlled-Release Oxycodone for Pain in Diabetic Neuropathy: A Randomized Controlled Trial. Neurology. 2003, 60, 927–934. DOI: 10.1212/01.WNL.0000057720.36503.2C.
  • Chou, R.; Fanciullo, G. J.; Fine, P. G.; Adler, J. A.; Ballantyne, J. C.; Davies, P.; Donovan, M. I.; Fishbain, D. A.; Foley, K. M.; Fudin, J., et al. Clinical Guidelines for the Use of Chronic Opioid Therapy in Chronic Noncancer Pain. J. Pain. 2009, 10, 113–130.e22. DOI: 10.1016/j.jpain.2008.10.008.
  • Mcnicol, E. D.; Midbari, A.; Eisenberg, E. Opioids for Neuropathic Pain. Cochrane Database Syst. Rev. 2013, 2019. DOI: 10.1002/14651858.CD006146.pub2.
  • Oates, P. J. Polyol Pathway and Diabetic Peripheral Neuropathy. Int. Rev. Neurobiol. 2002, 50, 325–392. DOI: 10.1016/s0074-7742(02)50082-9.
  • R, M.; R, O. Targeting Aldose Reductase for the Treatment of Diabetes Complications and Inflammatory Diseases: New Insights and Future Directions. J. Med. Chem. 2015, 58, 2047–2067. DOI: 10.1021/JM500907A.
  • Chalk, C.; Benstead, T. J.; Moore, F. Aldose Reductase Inhibitors for the Treatment of Diabetic Polyneuropathy. Cochrane Database Syst. Rev. 2007, 2010. DOI: 10.1002/14651858.CD004572.PUB2.
  • Ramirez, M. A.; Borja, N. L. Epalrestat: An Aldose Reductase Inhibitor for the Treatment of Diabetic Neuropathy. Pharmacotherapy. 2008, 28, 646–655. DOI: 10.1592/phco.28.5.646.
  • Hotta, N.; Akanuma, Y.; Kawamori, R.; Matsuoka, K.; Oka, Y.; Shichiri, M.; Toyota, T.; Nakashima, M.; Yoshimura, I.; Sakamoto, N., et al. Long-Term Clinical Effects of Epalrestat, an Aldose Reductase Inhibitor, on Diabetic Peripheral Neuropathy: The 3-Year, Multicenter, Comparative Aldose Reductase Inhibitor-Diabetes Complications Trial. Diabetes Care. 2006, 29, 1538–1544. DOI: 10.2337/dc05-2370.
  • Jannapureddy, S.; Sharma, M.; Yepuri, G.; Schmidt, A. M.; Ramasamy, R. Aldose Reductase: An Emerging Target for Development of Interventions for Diabetic Cardiovascular Complications. Front. Endocrinol. (Lausanne). 2021, 12, 78. DOI: 10.3389/FENDO.2021.636267.
  • Oyenihi, A. B.; Ayeleso, A. O.; Mukwevho, E.; Masola, B. Antioxidant Strategies in the Management of Diabetic Neuropathy. Biomed Res. Int. 2015, 2015, 1–15. DOI: 10.1155/2015/515042.
  • Vinik, A. I.; Bril, V.; Kempler, P.; Litchy, W. J.; Tesfaye, S.; Price, K. L.; Bastyr, E. J. Treatment of Symptomatic Diabetic Peripheral Neuropathy with the Protein Kinase C β-Inhibitor Ruboxistaurin Mesylate During a 1-Year, Randomized, Placebo-Controlled, Double-Blind Clinical Trial. Clin. Ther. 2005, 27, 1164–1180. DOI: 10.1016/j.clinthera.2005.08.001.
  • Haupt, E.; Ledermann, H.; Köpcke, W. Benfotiamine in the Treatment of Diabetic Polyneuropathy - a Three-Week Randomized, Controlled Pilot Study (BEDIP Study). Int. J. Clin. Pharmacol. Ther. 2005, 43, 71–77. DOI: 10.5414/CPP43071.
  • Jolivalt, C. G.; Fineman, M.; Deacon, C. F.; Carr, R. D.; Calcutt, N. A. GLP-1 Signals via ERK in Peripheral Nerve and Prevents Nerve Dysfunction in Diabetic Mice. Diabetes Obes. Metab. 2011, 13, 990–1000. DOI: 10.1111/j.1463-1326.2011.01431.x.
  • Le, T. D.; Nguyen, N. P. T.; Tran, H. T. T.; Cong, T. L.; Nguyen, L. H. T.; Nhu, B. D.; Nguyen, S. T.; Ngo, M. V.; Dinh, H. T.; Nguyen, H. T., et al. Diabetic Peripheral Neuropathy Associated with Cardiovascular Risk Factors and Glucagon-Like Peptide-1 Concentrations Among Newly Diagnosed Patients with Type 2 Diabetes Mellitus. Diabetes, Metab. Syndr. Obes. Targets Ther. 2022, 15, 35–44. DOI: 10.2147/DMSO.S344532.
  • Kawanami, D.; Matoba, K.; Sango, K.; Utsunomiya, K. Incretin-Based Therapies for Diabetic Complications: Basic Mechanisms and Clinical Evidence. Int. J. Mol. Sci. 2016, 17, 1223. DOI: 10.3390/IJMS17081223.
  • Kawano, T. A Current Overview of Diabetic Neuropathy – Mechanisms, Symptoms, Diagnosis, and Treatment. Peripheral Neuropathy; InTech. 2014. DOI: 10.5772/58308.
  • Schratzberger, P.; Walter, D. H.; Rittig, K.; Bahlmann, F. H.; Pola, R.; Curry, C.; Silver, M.; Krainin, J. G.; Weinberg, D. H.; Ropper, A. H., et al. Reversal of Experimental Diabetic Neuropathy by VEGF Gene Transfer. J. Clin. Invest. 2001, 107, 1083–1092. DOI: 10.1172/JCI12188.
  • Ropper, A. H.; Gorson, K. C.; Gooch, C. L.; Weinberg, D. H.; Pieczek, A.; Ware, J. H.; Kershen, J.; Rogers, A.; Simovic, D.; Schratzberger, P., et al. Vascular Endothelial Growth Factor Gene Transfer for Diabetic Polyneuropathy: A Randomized, Double-Blinded Trial. Ann. Neurol. 2009, 65, 386–393. DOI: 10.1002/ana.21675.
  • Ii, M.; Nishimura, H.; Kusano, K. F.; Qin, G.; Yoon, Y. S.; Wecker, A.; Asahara, T.; Losordo, D. W. Neuronal Nitric Oxide Synthase Mediates Statin-Induced Restoration of Vasa Nervorum and Reversal of Diabetic Neuropathy. Circulation. 2005, 112, 93–102. DOI: 10.1161/CIRCULATIONAHA.104.511964.
  • Tague, S. E.; Smith, P. G. Vitamin D Receptor and Enzyme Expression in Dorsal Root Ganglia of Adult Female Rats: Modulation by Ovarian Hormones. J. Chem. Neuroanat. 2011, 41, 1–12. DOI: 10.1016/j.jchemneu.2010.10.001.
  • Tague, S. E.; Clarke, G. L.; Winter, M. K.; McCarson, K. E.; Wright, D. E.; Smith, P. G. Vitamin D Deficiency Promotes Skeletal Muscle Hypersensitivity and Sensory Hyperinnervation. J. Neurosci. 2011, 31, 13728–13738. DOI: 10.1523/JNEUROSCI.3637-11.2011.
  • Basit, A.; Basit, K. A.; Fawwad, A.; Shaheen, F.; Fatima, N.; Petropoulos, I. N.; Alam, U.; Malik, R. A. Vitamin D for the Treatment of Painful Diabetic Neuropathy. BMJ Open Diabetes Res. Care. 2016, 4, 1–6. DOI: 10.1136/bmjdrc-2015-000148.
  • Solanki, N. D.; Patel, R.; Bhavsar, S. K.; Pandya, D. T.; Solanki, N. D.; Bhavsar, S. K.; Pandya, D. T. NAAS Score: 4.11; IC Value: 74.82. UGC-India Approved J. Phytopharm. 2018, 7, 152–161. DOI: 10.31254/phyto.2018.7209.
  • Liang, Y. Z.; Xie, P.; Chan, K. Quality Control of Herbal Medicines. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2004, 812, 53–70. DOI: 10.1016/S1570-0232(04)00676-2.
  • Hussain, G.; Wang, J.; Rasul, A.; Anwar, H.; Qasim, M.; Zafar, S.; Aziz, N.; Razzaq, A.; Hussain, R.; Aguilar, J. G. D., et al. Current Status of Therapeutic Approaches Against Peripheral Nerve Injuries: A Detailed Story from Injury to Recovery. Int. J. Bio. Sci. 2020, 16, 116–134. DOI: 10.7150/ijbs.35653.
  • Al-Adwani, D. G.; Renno, W. M.; Orabi, K. Y.; D’Mello, S. R. Neurotherapeutic Effects of Ginkgo Biloba Extract and Its Terpene Trilactone, Ginkgolide B, on Sciatic Crush Injury Model: A New Evidence. PLoS One. 2019, 14, e0226626. DOI: 10.1371/journal.pone.0226626.
  • Choi, K. M.; Kim, D. R.; Kim, N. H.; Baik, S. H.; Choi, D. S. The Effect of Ginkgo Biloba Extract on Diabetic Peripheral Neuropathy - a 12 Week, Randomized, Placebo-Controlled, Double-Blind Trial -. Korean Diabetes J. 2001, 24, 375–384.
  • Numan, A.; Masud, F.; Khawaja, K. I.; Khan, F. F.; Qureshi, A. B.; Burney, S.; Ashraf, K.; Ahmad, N.; Yousaf, M. S.; Rabbani, I., et al. Clinical and Electrophysiological Efficacy of Leaf Extract of Gingko Biloba L (Ginkgoaceae) in Subjects with Diabetic Sensorimotor Polyneuropathy. Trop. J. Pharm. Res. 2016, 15, 2137–2145. DOI: 10.4314/tjpr.v15i10.12.
  • da Silva, G. G. P.; Zanoni, J. N.; Buttow, N. C. Neuroprotective Action of Ginkgo Biloba on the Enteric Nervous System of Diabetic Rats. World J. Gastroenterol. 2011, 17, 898–905. DOI: 10.3748/wjg.v17.i7.898.
  • Cheung, Z. H.; So, K. F.; Lu, Q.; Yip, H. K.; Wu, W.; Shan, J. J.; Pang, P. K. T.; Chen, C. F. Enhanced Survival and Regeneration of Axotomized Retinal Ganglion Cells by a Mixture of Herbal Extracts. J. Neurotrauma. 2002, 19, 369–378. DOI: 10.1089/089771502753594936.
  • Carla, L.; Schneider, L.; Perez, G. G.; Banzi, S. R.; Zanoni, J. N.; Raquel, M.; Natali, M.; Buttow, N. C. Evaluation of the Effect of Ginkgo Biloba Extract (EGb 761) on the Myenteric Plexus of the Small Intestine of Wistar Rats. J. Gastroenterol. 2007, 42, 624–630. DOI: 10.1007/S00535-007-2079-Z.
  • Kim, J.; Yokoyama, K.; Araki, S. The Effects of Ginkgo Biloba Extract (GBe) on Axonal Transport Microvasculature and Morphology of Sciatic Nerve in Streptozotocin-Induced Diabetic Rats. Environ. Health Prev. Med. 2000, 5, 53–59. DOI: 10.1007/bf02932004.
  • Pottathil, S.; Nain, P.; Morsy, M. A.; Kaur, J.; Al-Dhubiab, B. E.; Jaiswal, S.; Nair, A. B. Mechanisms of Antidiabetic Activity of Methanolic Extract of Punica Granatum Leaves in Nicotinamide/streptozotocin-Induced Type 2 Diabetes in Rats. Plants. 2020, 9, 1–15. DOI: 10.3390/plants9111609.
  • Guerrero-Solano, J. A.; Jaramillo-Morales, O. A.; Velázquez-González, C.; De la O-Arciniega, M.; Castañeda-Ovando, A.; Betanzos-Cabrera, G.; Bautista, M. Pomegranate as a Potential Alternative of Pain Management: A Review. Plants. 2020, 9, 1–18. DOI: 10.3390/plants9040419.
  • Li, Y.; Wen, S.; Kota, B. P.; Peng, G.; Li, G. Q.; Yamahara, J.; Roufogalis, B. D. Punica Granatum Flower Extract, a Potent α-Glucosidase Inhibitor, Improves Postprandial Hyperglycemia in Zucker Diabetic Fatty Rats. J. Ethnopharmacol. 2005, 99, 239–244. DOI: 10.1016/j.jep.2005.02.030.
  • Raafat, K.; Samy, W. Amelioration of Diabetes and Painful Diabetic Neuropathy by Punica Granatum L. Extract and Its Spray Dried Biopolymeric Dispersions. Evidence-Based Complement. Altern. Med. 2014, 2014, 1–12. DOI: 10.1155/2014/180495.
  • Nazma Yesmin, M.; Sarder Nasir Uddin, S. M.; Akond, M. A. Antioxidant and Antibacterial Activities of. Society. 2005, 28, 2225–2230.
  • Ahmad, M. B.; Gwarzo, M. Y.; Anwar, S. Antioxidative and Anti-Hyperglycaemic Effect of Calotropis Procera in Alloxan Induced Diabetic Rats. J. Med. Plants Res. 2016, 10, 54–58. DOI: 10.5897/jmpr2014.5704.
  • Zafar, S.; Rasul, A.; Iqbal, J.; Anwar, H.; Imran, A.; Jabeen, F.; Shabbir, A.; Akram, R.; Maqbool, J.; Sajid, F., et al. Calotropis Procera (Leaves) Supplementation Exerts Curative Effects on Promoting Functional Recovery in a Mouse Model of Peripheral Nerve Injury. Food Sci. Nutr. 2021, 9(9), 2455.
  • Zafar, S.; Anwar, H.; Qasim, M.; Irfan, S.; Maqbool, J.; Sajid, F.; Naqvi, S. A. R.; Hussain, G. Calotropis Procera (Root) Escalates Functions Rehabilitation and Attenuates Oxidative Stress in a Mouse Model of Peripheral Nerve Injury. Pak. J. Pharm. Sci. 2020, 33, 2801–2807.
  • Neto, M. C. L.; de Vasconcelos, C. F. B.; Thijan, V. N.; Caldas, G. F. R.; Araújo, A. V.; Costa-Silva, J. H.; Amorim, E. L. C.; Ferreira, F.; de Oliveira, A. F. M.; Wanderley, A. G. Evaluation of Antihyperglycaemic Activity of Calotropis Procera Leaves Extract on Streptozotocin-Induced Diabetes in Wistar Rats. Brazilian J. Pharmacogn. 2013, 23, 913–919. DOI: 10.1590/S0102-695X2013000600008.
  • Yadav, S. K.; Nagori, B. P.; Desai, P. K. Pharmacological Characterization of Different Fractions of Calotropis Procera (Asclepiadaceae) in Streptozotocin Induced Experimental Model of Diabetic Neuropathy. J. Ethnopharmacol. 2014, 152, 349–357. DOI: 10.1016/j.jep.2014.01.020.
  • Thaifa, M. S.; Roshna, N.; Arya, U. S.; Babu, A. G. A Review on Diabetes Mellitus and Diabetic Neuropathy: A Plant Based Approach. J. Pharmacogn. Phytochem. 2017, 6, 506–510.
  • Ghazanfar, K.; Ganai, B. A.; Akbar, S.; Mubashir, K.; Dar, S. A.; Dar, M. Y.; Tantry, M. A. Antidiabetic Activity of Artemisia Amygdalina Decne in Streptozotocin Induced Diabetic Rats. Biomed Res. Int. 2014, 2014, 1–10. DOI: 10.1155/2014/185676.
  • Wang, Z. Q.; Ribnicky, D.; Zhang, X. H.; Zuberi, A.; Raskin, I.; Yu, Y.; Cefalu, W. T. An Extract of Artemisia Dracunculus L. Enhances Insulin Receptor Signaling and Modulates Gene Expression in Skeletal Muscle in KK-Ay Mice. J. Nutr Biochem. 2011, 22, 71–78. DOI: 10.1016/j.jnutbio.2009.11.015.
  • Watcho, P.; Stavniichuk, R.; Tane, P.; Shevalye, H.; Maksimchyk, Y.; Pacher, P.; Obrosova, I. G. Evaluation of PMI-5011, an Ethanolic Extract of Artemisia Dracunculus L., on Peripheral Neuropathy in Streptozotocin-Diabetic Mice. Int. J. Mol. Med. 2011, 27, 299–307. DOI: 10.3892/ijmm.2011.597.
  • Watcho, P.; Stavniichuk, R.; Ribnicky, D. M.; Raskin, I.; Obrosova, I. G. High-Fat Diet-Induced Neuropathy of Prediabetes and Obesity: Effect of PMI-5011, an Ethanolic Extract of Artemisia Dracunculus L. Mediators Inflamm. 2010, 2010, 1–10. DOI: 10.1155/2010/268547.
  • Shane-McWhorter, L. Dietary Supplements for Diabetes: An Evaluation of Commonly Used Products. Diabetes Spectr. 2009, 22, 206–213. DOI: 10.2337/diaspect.22.4.206.
  • Raju, M. G.; Satyanarayana, S.; Kumar, E. Safety of Gliclazide with the Aqueous Extract of Gymnema Sylvestre on Pharmacodynamic Activity in Normal and Alloxan Induced Diabetic Rats. Am. J. Phytomed. Clin. Ther. 2014, 2, 901–909.
  • Fatani, A. J.; Al-Rejaie, S. S.; Abuohashish, H. M.; Al-Assaf, A.; Parmar, M. Y.; Ola, M. S.; Ahmed, M. M. Neuroprotective Effects of Gymnema Sylvestre on Streptozotocin-Induced Diabetic Neuropathy in Rats. Exp. Ther. Med. 2015, 9, 1670–1678. DOI: 10.3892/etm.2015.2305.
  • Lingumpelly, R.; Jytothirmaye, P.; Naveen Kumar, G.; Ravi Kumar, M. Anti Diabetic Neuropathy and Pharmacological Evaluation of the Indian Traditional Herb Gymnema Sylvestre. Int. J. Toxicol. Pharmacol. Res. 2015, 7, 60–64.
  • Jain, V.; Pareek, A.; Ratan, Y.; Singh, N. Standardized Fruit Extract of Momordica Charantia L Protect Against Vincristine Induced Neuropathic Pain in Rats by Modulating GABAergic Action, Antimitotoxic, NOS Inhibition, Anti-Inflammatory and Antioxidative Activity. South African J. Bot. 2015, 97, 123–132. DOI: 10.1016/j.sajb.2014.12.010.
  • Malik, Z. A.; Singh, M.; Sharma, P. L. Neuroprotective Effect of Momordica Charantia in Global Cerebral Ischemia and Reperfusion Induced Neuronal Damage in Diabetic Mice. J. Ethnopharmacol. 2011, 133, 729–734. DOI: 10.1016/j.jep.2010.10.061.
  • Malik, Z. A.; Tabassum, N.; Sharma, P. L. Attenuation of Experimentally Induced Diabetic Neuropathy in Association with Reduced Oxidative-Nitrosative Stress by Chronic Administration of Momordica Charantia. Adv. Biosci. Biotechnol. 2013, 04, 356–363. DOI: 10.4236/abb.2013.43047.
  • Mahmood, K. T.; Mugal, T.; Haq, I. U. Moringa Oleifera: A Natural Gift-A Review. J. Pharm. Sci. Res. 2010, 2, 775–781.
  • Razzaq, A.; Ahmad Malik, S.; Saeed, F.; Imran, A.; Rasul, A.; Qasim, M.; Zafar, S.; Kamran, S. K. S.; Maqbool, J.; Imran, M., et al. Moringa Oleifera Lam.Ameliorates the Muscles Function Recovery Following an Induced Insult to the Sciatic Nerve in a Mouse Model. Food Sci. Nutr. 2020, 8, 1–8. DOI: 10.1002/fsn3.1620.
  • Khongrum, J.; Wattanathorn, J.; Muchimapura, S.; Thukhum-Mee, W.; Thipkaew, C.; Wannanon, P.; Tong-Un, T. Moringa Oleifera Leaves Extract Attenuates Neuropathic Pain Induced by Chronic Constriction Injury. Am. J. Appl. Sci. 2012. DOI: 10.3844/ajassp.2012.1182.1187.
  • Raafat, K.; Hdaib, F. Neuroprotective Effects of Moringa Oleifera: Bio-Guided GC-MS Identification of Active Compounds in Diabetic Neuropathic Pain Model. Chin. J. Integr. Med. 2017. DOI: 10.1007/s11655-017-2758-4.
  • Zahara, K. Clinical and Therapeutic Benefits of Centella Asiatica. Pure Appl. Biol. 2014, 3, 152–159. DOI: 10.19045/bspab.2014.34004.
  • Lou, J. -S.; Dimitrova, D. M.; Murchison, C.; Arnold, G. C.; Belding, H.; Seifer, N.; Le, N.; Andrea, S. B.; Gray, N. E.; Wright, K. M., et al. Centella Asiatica Triterpenes for Diabetic Neuropathy: A Randomized, Double-Blind, Placebo-Controlled, Pilot Clinical Study. Esperienze dermatologiche. 2018, 20. DOI: 10.23736/S1128-9155.18.00455-7.
  • Khan, M. Y.; Panchal, S.; Vyas, N.; Butani, A.; Kumar, V. Olea Europaea: A Phyto-Pharmacological Review. Pharmacogn. Rev. 2007, 1(1), 114–118.
  • Guex, C. G.; Reginato, F. Z.; de Jesus, P. R.; Brondani, J. C.; Lopes, G. H. H.; Bauermann, L. D. F. Antidiabetic Effects of Olea Europaea L. Leaves in Diabetic Rats Induced by High-Fat Diet and Low-Dose Streptozotocin. J. Ethnopharmacol. 2019, 235, 1–7. DOI: 10.1016/j.jep.2019.02.001.
  • Kaeidi, A.; Esmaeili-Mahani, S.; Sheibani, V.; Abbasnejad, M.; Rasoulian, B.; Hajializadeh, Z.; Afrazi, S. Olive (Olea Europaea L.) Leaf Extract Attenuates Early Diabetic Neuropathic Pain Through Prevention of High Glucose-Induced Apoptosis: In vitro and in vivo Studies. J. Ethnopharmacol. 2011, 136, 188–196. DOI: 10.1016/j.jep.2011.04.038.
  • Spandana, U.; Ali, S. L.; Nirmala, T.; Santhi, M.; Sipai Babu, S. D. A Review on Tinospora Cordifolia. Int. J. Curr. Pharm. Rev. Res. 2013, 4(2), 61–68.
  • Nadig, P.; Aliyar, R.; Dethe, S.; Narayanswamy, S.; Revankar, M. Effect of Tinospora Cordifolia on Experimental Diabetic Neuropathy. Indian J. Pharmacol. 2012, 44, 580. DOI: 10.4103/0253-7613.100380.
  • Zangiabadi, N.; Asadi-Shekaari, M.; Sheibani, V.; Jafari, M.; Shabani, M.; Asadi, A. R.; Tajadini, H.; Jarahi, M. Date Fruit Extract is a Neuroprotective Agent in Diabetic Peripheral Neuropathy in Streptozotocin-Induced Diabetic Rats: A Multimodal Analysis. OXID. MED. CELL LONGEV. 2011, 2011, 1–9. DOI: 10.1155/2011/976948.
  • Mia, M. A. T.; Mosaib, M. G.; Khalil, M. I.; Islam, M. A.; Gan, S. H. Potentials and Safety of Date Palm Fruit Against Diabetes: A Critical Review. Foods. 2020, 9, 1–21. DOI: 10.3390/foods9111557.
  • Heydari, M.; Homayouni, K.; Hashempur, M. H.; Shams, M. Topical Citrullus Colocynthis (Bitter Apple) Extract Oil in Painful Diabetic Neuropathy: A Double-Blind Randomized Placebo-Controlled Clinical Trial. J. Diabetes. 2016, 8, 246–252. DOI: 10.1111/1753-0407.12287.
  • Hussain, A. I.; Rathore, H. A.; Sattar, M. Z. A.; Chatha, S. A. S.; Sarker, S. D.; Gilani, A. H. Citrullus Colocynthis (L.) Schrad (Bitter Apple Fruit): A Review of Its Phytochemistry, Pharmacology, Traditional Uses and Nutritional Potential. J. Ethnopharmacol. 2014, 155, 54–66. DOI: 10.1016/j.jep.2014.06.011.
  • Ostovar, M.; Akbari, A.; Anbardar, M. H.; Iraji, A.; Salmanpour, M.; Hafez Ghoran, S.; Heydari, M.; Shams, M. Effects of Citrullus Colocynthis L. in a Rat Model of Diabetic Neuropathy. J. Integr. Med. 2020, 18, 59–67. DOI: 10.1016/j.joim.2019.12.002.
  • Cardoso, A. L. B. D.; Frederico, É. H. F. F.; Guimarães, C. A. S.; Moura-Fernandes, M. C.; Guedes-Aguiar, E. O.; da Silva, A. L. P.; Reis-Silva, A.; Francisca-Santos, A.; de Souza, L. F. F.; Mendonça-Guimarães, R., et al. Effects of Coriandrum Sativum L. in Association with Physical Exercise in Alloxan-Induced Type 1 Diabetes Mellitus in Rats. Appl. Sci. 2019, 9, 5409. DOI: 10.3390/app9245409.
  • Kajal, A.; Singh, R. Coriandrum Sativum Seeds Extract Mitigate Progression of Diabetic Nephropathy in Experimental Rats via AGEs Inhibition. PLoS One. 2019, 14, e0213147. DOI: 10.1371/journal.pone.0213147.
  • Kajal, A.; Singh, R. Coriandrum Sativum Improve Neuronal Function via Inhibition of Oxidative/Nitrosative Stress and TNF-α in Diabetic Neuropathic Rats. J. Ethnopharmacol. 2020, 263, 112959. DOI: 10.1016/j.jep.2020.112959.
  • Anjaneyulu, M.; Chopra, K. Quercetin, a Bioflavonoid, Attenuates Thermal Hyperalgesia in a Mouse Model of Diabetic Neuropathic Pain. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2003, 27, 1001–1005. DOI: 10.1016/S0278-5846(03)00160-X.
  • Je, H. D.; Shin, C. Y.; Park, S. Y.; Yim, S. H.; Kum, C.; Huh, I. H.; Kim, J. H.; Sohn, U. D. Combination of Vitamin C and Rutin on Neuropathy and Lung Damage of Diabetes Mellitus Rats. Arch. Pharm. Res. 2002, 25, 184–190. DOI: 10.1007/BF02976561.
  • Dodda, D.; Ciddi, V. Plants Used in the Management of Diabetic Complications. Indian J. Pharm. Sci. 2014, 76, 97.
  • Maqbool, J.; Anwar, H.; Rasul, A.; Imran, A.; Saadullah, M.; Malik, S. A.; Shabbir, A.; Akram, R.; Sajid, F.; Zafar, S., et al. Comparative Evaluation of Ethyl Acetate and N-Hexane Extracts of Cannabis Sativa L. Leaves for Muscle Function Restoration After Peripheral Nerve Lesion. Food Sci. Nutr. 2023, 00, 1–9. DOI: 10.1002/fsn3.3255.
  • Islam, F.; Amer Ali, Y.; Imran, A.; Afzaal, M.; Zahra, S. M.; Fatima, M.; Saeed, F.; Usman, I.; Shehzadi, U.; Mehta, S., et al. Vegetable Proteins as Encapsulating Agents: Recent Updates and Future Perspectives. Food Sci. Nutr. 2023, 00, 1–13. DOI: 10.1002/fsn3.3234.
  • Bagdas, D.; Cinkilic, N.; Ozboluk, H. Y.; Ozyigit, M. O.; Gurun, M. S. Antihyperalgesic Activity of Chlorogenic Acid in Experimental Neuropathic Pain. J. Nat. Med. 2013, 67, 698–704. DOI: 10.1007/s11418-012-0726-z.
  • Baluchnejadmojarad, T.; Roghani, M. Chronic Epigallocatechin-3-Gallate Ameliorates Learning and Memory Deficits in Diabetic Rats via Modulation of Nitric Oxide and Oxidative Stress. Behav. Brain Res. 2011, 224, 305–310. DOI: 10.1016/j.bbr.2011.06.007.
  • Uzar, E.; Alp, H.; Cevik, M. U.; Firat, U.; Evliyaoglu, O.; Tufek, A.; Altun, Y. Ellagic Acid Attenuates Oxidative Stress on Brain and Sciatic Nerve and Improves Histopathology of Brain in Streptozotocin-Induced Diabetic Rats. Neurol. Sci. 2012, 33, 567–574. DOI: 10.1007/s10072-011-0775-1.