1,205
Views
2
CrossRef citations to date
0
Altmetric
Original Article

Chemical composition and bioactivities of the essential oil of Coreopsis tinctoria and Chrysanthemum morifolium

, , , , , , , & show all
Pages 1036-1046 | Received 18 Jan 2023, Accepted 01 Apr 2023, Published online: 10 Apr 2023

References

  • Zhang, Y.; Shi, S.; Zhao, M.; Jiang, Y.; Tu, P. A Novel Chalcone from Coreopsis Tinctoria Nutt. Biochem. Syst. Ecol. 2006, 34, 766–769. DOI: 10.1016/j.bse.2006.05.005.
  • Yao, X.; Wang, X.; Gu, C.; Zeng, H.; Chen, W.; Tang, H. Chemical Composition, N-Nitrosamine Inhibition and Antioxidant and Antimicrobial Properties of Essential Oil from Coreopsis Tinctoria Flowering Tops. Nat. Prod. Res. 2016, 30, 1170–1173. DOI: 10.1080/14786419.2015.1041943.
  • An, L.; Sun, Y.; Huang, J.; Liu, Y.; Yuan, H.; Zhang, R.; Sun, Y. Chemical Compositions and In Vitro Antioxidant Activity of the Essential Oil from Coreopsis Tinctoria Nutt. Flower. J. Essent. Oil-Bear. Plants. 2018, 21, 876–885. DOI: 10.1080/0972060X.2018.1510792.
  • Qu, Y.; Guo, Y.; Li, W.; Shen, H.; Cui, J.; Li, J.; Liu, J.; Wu, D. The Improvement of Coreopsis Tinctoria Essential Oil on Learning and Memory Impairment of D-Galactose-Induced Mice Through Nrf2/nf-Κb Pathway. Front Pharmacol. 2022, 13, 994705. DOI: 10.3389/fphar.2022.994705.
  • Dias, T.; Bronze, M. R.; Houghton, P. J.; Mota-Filipe, H.; Paulo, A. The Flavonoid-Rich Fraction of Coreopsis Tinctoria Promotes Glucose Tolerance Regain through Pancreatic Function Recovery in Streptozotocin-Induced Glucose-Intolerant Rats. J. Ethnopharmacol. 2010, 132, 483–490. DOI: 10.1016/j.jep.2010.08.048.
  • Guo, J.; Wang, A.; Yang, K.; Ding, H.; Hu, Y.; Yang, Y.; Huang, S.; Xu, J.; Liu, T.; Yang, H., et al. Isolation, Characterization and Antimicrobial Activities of Polyacetylene Glycosides from Coreopsis Tinctoria Nutt. Phytochemistry. 2017, 136, 65–69. DOI: 10.1016/j.phytochem.2016.12.023.
  • Yang, Y.; Sun, X.; Liu, J.; Kang, L.; Chen, S.; Ma, B.; Guo, B. Quantitative and Qualitative Analysis of Flavonoids and Phenolic Acids in Snow Chrysanthemum (Coreopsis Tinctoria Nutt.) by HPLC-DAD and UPLC-ESI-QTOF-MS. Molecules. 2016, 21, 1307. DOI: 10.3390/molecules21101307.
  • Du, D.; Jin, T.; Xing, Z. H.; Hu, L. Q.; Long, D.; Li, S. F.; Gong, M. One New Linear C14 Polyacetylene Glucoside with Antiadipogenic Activities on 3T3-L1 Cells from the Capitula of Coreopsis Tinctoria. J. Asian Nat. Prod. Res. 2016, 18, 784–790. DOI: 10.1080/10286020.2016.1157077.
  • Zhang, Y.; Shi, S.; Zhao, M.; Chai, X.; Tu, P. Coreosides A-D, C14-Polyacetylene Glycosides from the Capitula of Coreopsis Tinctoria and Its Anti-Inflammatory Activity Against COX-2. Fitoterapia. 2013, 87, 93–97. DOI: 10.1016/j.fitote.2013.03.024.
  • Meriem, A.; Msaada, K.; Sebai, E.; Wannes, W. A.; Abbassi, M. S.; Akkari, H. A. Anthelmintic and Antibacterial Activities of Red Juniper (Juniperus Phoenicea L.) Essential Oil. J. Essent. Oil Res. 2022, 34, 163–172. DOI: 10.1080/10412905.2021.1941338.
  • Li, T. X.; Ji, L. B.; Jiang, Z. R.; Geng, Z. Z.; Shentu, H. Q.; Liu, M. C.; Xie, Y. F.; Hu, J.; Liu, Y. F.; Li, D. L. Caramel Products of Glucose with Water During Heating Process and Their Bioactivities. Int. J. Food. Prop. 2020, 23, 971–978. DOI: 10.1080/10942912.2020.1770788.
  • Li, T. X.; Xiong, Y. M.; Chen, X.; Yang, Y. N.; Wang, Y.; Jia, X. W.; Yang, X. P.; Tan, L. L.; Xu, C. P. Antifungal Macrocyclic Trichothecenes from the Insect-Associated Fungus Myrothecium Roridum. J. Agric. Food. Chem. 2019, 67, 13033–13039. DOI: 10.1021/acs.jafc.9b04507.
  • Liu, Q.; Niu, H.; Zhao, J.; Han, J.; Kong, B. Effect of the Reactant Ratio on the Characteristics and Antioxidant Activities of Maillard Reaction Products in a Porcine Plasma Protein Hydrolysate-Galactose Model System. Int. J. Food. Prop. 2016, 19, 99–110. DOI: 10.1080/10942912.2015.1017048.
  • Li, T. X.; Liu, R. H.; Wang, X. B.; Luo, J.; Luo, J. G.; Kong, L. Y.; Yang, M. H. Hypoxia-Protective Azaphilone Adducts from Peyronellaea Glomerata. J. Nat. Prod. 2018, 81, 1148–1153. DOI: 10.1021/acs.jnatprod.7b00663.
  • Zhang, H. J.; Zhang, Y. M.; Luo, J. G.; Luo, J.; Kong, L. Y. Anti-Inflammatory Diterpene Dimers from the Root Barks of Aphanamixis Grandifolia. Org. Biomol. Chem. 2015, 13, 7452–7458. DOI: 10.1039/c5ob00674k.
  • Wang, Z.; Guan, Y.; Yang, R.; Li, J.; Jia, A. Q. Anti-Inflammatory Activity of 3-Cinnamoyltribuloside and Its Metabolomic Analysis in LPS-Activated RAW 264.7 Cells. BMC Complementary Med. Ther. 2020, 20, 329. DOI: 10.1186/s12906-020-03115-y.
  • Su, J.; Guo, Q.; Cai, Y.; Wang, T.; Mao, L.; Gao, Y.; Yuan, F.; Van der Meeren, P. Effect of Ultra-High Temperature Processing on the Physicochemical Properties and Antibacterial Activity of D-Limonene Emulsions Stabilized by β-Lactoglobulin/gum Arabic Bilayer Membranes. Food Chem. 2020, 332, 127391. DOI: 10.1016/j.foodchem.2020.127391.
  • Gupta, A.; Jeyakumar, E.; Lawrence, R. Strategic Approach of Multifaceted Antibacterial Mechanism of Limonene Traced in Escherichia Coli. Sci. Rep. 2021, 11, 13816. DOI: 10.1038/s41598-021-92843-3.