3,683
Views
11
CrossRef citations to date
0
Altmetric
Review

Anticancer, antioxidant, ameliorative and therapeutic properties of kaempferol

, , , , , , , , , , & show all
Pages 1140-1166 | Received 16 Jan 2023, Accepted 16 Apr 2023, Published online: 28 Apr 2023

References

  • Kubina, R.; Iriti, M.; Kabała-Dzik, A. Anticancer Potential of Selected Flavonols: Fisetin, Kaempferol, and Quercetin on Head and Neck Cancers. Nutr. 2021, 13(3), 845.
  • Da, J.; Xu, M.; Wang, Y.; Li, W.; Lu, M.; Wang, Z. Kaempferol Promotes Apoptosis While Inhibiting Cell Proliferation via Androgen-Dependent Pathway and Suppressing Vasculogenic Mimicry and Invasion in Prostate Cancer. Anal. Cell. Pathol. 2019, 2019, 1–10. DOI: 10.1155/2019/1907698.
  • Amjad, E.; Sokouti, B.; Asnaashari, S. A Systematic Review of Anti-Cancer Roles and Mechanisms of Kaempferol as a Natural Compound. Cancer Cell Int. 2022, 22(1), 1–22. DOI: 10.1186/s12935-022-02673-0.
  • Egbuna, C.; Awuchi, C. G.; Kushwaha, G.; Rudrapal, M.; Patrick-Iwuanyanwu, K. C.; Singh, O.; Odoh, U. E.; Khan, J.; Jeevanandam, J.; Kumarasamy, S., et al. Bioactive Compounds Effective Against Type 2 Diabetes Mellitus: A Systematic Review. Curr.Rent Top. Ics in Mmed. Icinal Cchem.Istry. 2021, 21(12), 1067–1095. DOI: 10.2174/1568026621666210509161059.
  • Nwozo, O. S.; Effiong, E. M.; Aja, P. M.; Awuchi, C. G. Antioxidant, Phytochemical, and Therapeutic Properties of Medicinal Plants: A Review. Int. J. Food Prop. 2023, 26(1), 359–388. DOI: 10.1080/10942912.2022.2157425.
  • Boubekeur, S.; Messaoudi, M.; Awuchi, C. G.; Otekunrin, O.; Sawicka, B.; Idjeri-Mecherara, S.; Bouchareb, S.; Hassani, A.; Sharifi-Rad, M.; Begaa, S., et al. Biological Properties and Polyphenols Content of Algerian Cistus Salviifolius L. Aerial Parts. Eur.Ropean J. Ournal of Biol.Ogical Res.,earch. 2022, 12(2), 163–180.
  • Awuchi, C. G.; Twinomuhwezi, H. The Medical, Pharmaceutical, and Nutritional Biochemistry and Uses of Some Common Medicinal Plants. Int. J. Med. Aromat. 2021, 1–32.
  • Chen, H. J.; Lin, C. M.; Lee, C. Y.; Shih, N. C.; Peng, S. F.; Tsuzuki, M.; Yang, J. S.; HUANG, W. -W.; YANG, J. -S. Kaempferol Suppresses Cell Metastasis via Inhibition of the ERK-p38-JNK and AP-1 Signaling Pathways in U-2 OS Human Osteosarcoma Cells. Oncol. Rep. 2013, 30(2), 925–932. DOI: 10.3892/or.2013.2490.
  • Choi, J. B.; Kim, J. H.; Lee, H.; Pak, J. N.; Shim, B. S.; Kim, S. H. Reactive Oxygen Species and p53 Mediated Activation of p38 and Caspases is Critically Involved in Kaempferol Induced Apoptosis in Colorectal Cancer Cells. J. Agri. Food Chem. 2018, 66(38), 9960–9967. DOI: 10.1021/acs.jafc.8b02656.
  • Lin, C. W.; Chen, P. N.; Chen, M. K.; Yang, W. E.; Tang, C. H.; Yang, S. F.; Hsieh, Y. S.; Guan, X. -Y. Kaempferol Reduces Matrix Metalloproteinase-2 Expression by Down-Regulating ERK1/2 and the Activator Protein-1 Signaling Pathways in Oral Cancer Cells. PLoS One. 2013, 8(11), e80883. DOI: 10.1371/journal.pone.0080883.
  • Ren, J. I. E.; Lu, Y.; Qian, Y.; Chen, B.; Wu, T. A. O.; Ji, G. Recent Progress Regarding Kaempferol for the Treatment of Various Diseases. Exp. Ther. Med. 2019, 18(4), 2759–2776. DOI: 10.3892/etm.2019.7886.
  • Imran, M.; Salehi, B.; Sharifi-Rad, J.; Aslam Gondal, T.; Saeed, F.; Imran, A.; Estevinho, L. M.; Tsouh Fokou, P. V.; Umair Arshad, M.; Khan, H., et al. Kaempferol: A Key Emphasis to Its Anticancer Potential. Mol. 2019, 24(12), 2277. DOI: 10.3390/molecules24122277.
  • Mishra, A. P.; Salehi, B.; Sharifi-Rad, M.; Pezzani, R.; Kobarfard, F.; Sharifi-Rad, J.; Nigam, M. Programmed Cell Death, from a Cancer Perspective: An Overview. Mol. Diagon. Ther. 2018, 22(3), 281–295. DOI: 10.1007/s40291-018-0329-9.
  • Elsharkawy, E. R. Isolation of Phytoconstituents and Evaluation of Anticancer and Antioxidant Potential of Launaea Mucronata (Forssk.) Muschl. Subsp. Pak. J. Pharma. Sci. 2017, 30(2), 411–417.
  • Kim, Y. A.; Tarahovsky, Y. S.; Gaidin, S. G.; Yagolnik, E. A.; Muzafarov, E. N. Flavonoids Determine the Rate of Fibrillogenesis and Structure of Collagen Type I Fibrils in vitro. Int. J. Biol. Macromol. 2017, 104, 631–637. DOI: 10.1016/j.ijbiomac.2017.06.070.
  • Kashafi, E.; Moradzadeh, M.; Mohamadkhani, A.; Erfanian, S. Kaempferol Increases Apoptosis in Human Cervical Cancer HeLa Cells via PI3K/AKT and Telomerase Pathways. Biomed. Pharmacother. 2017, 89, 573–577. DOI: 10.1016/j.biopha.2017.02.061.
  • Chen, Y. C.; Guo, Y. F.; He, H.; Lin, X.; Wang, X. F.; Zhou, R.; Deng, H. W. Integrative Analysis of Genomics and Transcriptome Data to Identify Potential Functional Genes of BMDs in Females. J. Bone Miner. Res. 2016, 31(5), 1041–1049. DOI: 10.1002/jbmr.2781.
  • Qiu, W.; Lin, J.; Zhu, Y.; Zhang, J.; Zeng, L.; Su, M.; Tian, Y. Kaempferol Modulates DNA Methylation and Downregulates DNMT3B in Bladder Cancer. Cell. Physiol. Biochem. 2017, 41(4), 1325–1335. DOI: 10.1159/000464435.
  • Mamouni, K.; Zhang, S.; Li, X.; Chen, Y.; Yang, Y.; Kim, J.; Bartlett, M. G.; Coleman, I. M.; Nelson, P. S.; Kucuk, O., et al. A Novel Flavonoid Composition Targets Androgen Receptor Signaling and Inhibits Prostate Cancer Growth in Preclinical Models. Neoplasia. 2018, 20(8), 789–799. DOI: 10.1016/j.neo.2018.06.003.
  • Yang, L.; Gao, Y.; Bajpai, V. K.; El-Kammar, H. A.; Simal-Gandara, J.; Cao, H.; Xiao, J. Advance Toward Isolation, Extraction, Metabolism and Health Benefits of Kaempferol, a Major Dietary Flavonoid with Future Perspectives. Crit. Rev. Food Sci. Nutr. 2021, 2021, 1–17. DOI:10.1080/10408398.2021.1980762.
  • Sharifi-Rad, J.; Sharifi-Rad, M.; Salehi, B.; Iriti, M.; Roointan, A.; Mnayer, D.; Afshari, A.; Afshari, A. In vitro and in vivo Assessment of Free Radical Scavenging and Antioxidant Activities of Veronica Persica Poir. Cell. Mol. Biol. 2018, 64(8), 57–64. DOI: 10.14715/cmb/2018.64.8.9.
  • Verma, A. R.; Vijayakumar, M.; Mathela, C. S.; Rao, C. V. In vitro and in vivo Antioxidant Properties of Different Fractions of Moringa Oleifera Leaves. Food. Chem. Toxicol. 2009, 47(9), 2196–2201. DOI: 10.1016/j.fct.2009.06.005.
  • Govindaraju, S.; Roshini, A.; Lee, M. H.; Yun, K. Kaempferol Conjugated Gold Nanoclusters Enabled Efficient for Anticancer Therapeutics to A549 Lung Cancer Cells. Int. J. Nanomed. 2019, 14, 5147. DOI: 10.2147/IJN.S209773.
  • Akram, M.; Iqbal, M.; Daniyal, M.; Khan, A. U. Awareness and Current Knowledge of Breast Cancer. Biol. Res. 2017, 50(1), 1–23. DOI: 10.1186/s40659-017-0140-9.
  • Wang, X.; Yang, Y.; An, Y.; Fang, G. The Mechanism of Anticancer Action and Potential Clinical Use of Kaempferol in the Treatment of Breast Cancer. Biomed. Pharmacother. 2019, 117, 109086. DOI: 10.1016/j.biopha.2019.109086.
  • Lee, G. A.; Choi, K. C.; Hwang, K. A. Kaempferol, a Phytoestrogen, Suppressed Triclosan-Induced Epithelial-Mesenchymal Transition and Metastatic-Related Behaviors of MCF-7 Breast Cancer Cells. Environ. Toxicol. Pharmacol. 2017, 49, 48–57. DOI: 10.1016/j.etap.2016.11.016.
  • Zhu, G.; Liu, X.; Li, H.; Yan, Y.; Hong, X.; Lin, Z. Kaempferol Inhibits Proliferation, Migration, and Invasion of Liver Cancer HepG2 Cells by Down-Regulation of MicroRNA-21. Int. J. Immunopathol. Pharmacol. 2018, 32, 20–41. DOI: 10.1177/2058738418814341.
  • Peres, R.; Furuya, H.; Pagano, I.; Shimizu, Y.; Hokutan, K.; Rosser, C. J. Angiogenin Contributes to Bladder Cancer Tumorigenesis by DNMT3b-Mediated MMP2 Activation. Oncotarget. 2016, 7(28), 43109. DOI: 10.18632/oncotarget.10097.
  • Kitchen, M. O.; Bryan, R. T.; Emes, R. D.; Glossop, J. R.; Luscombe, C.; Cheng, K. K.; Farrell, W. E.; James, N. D.; Devall, A. J.; Mein, C. A., et al. Quantitative Genome-Wide Methylation Analysis of High-Grade Non-Muscle Invasive Bladder Cancer. Epigenetics. 2016, 11(3), 237–246. DOI: 10.1080/15592294.2016.1154246.
  • Tarantino, G.; Crocetto, F.; Vito, C. D.; Martino, R.; Pandolfo, S. D.; Creta, M.; Imbimbo, C.; Buonerba, C.; Imbimbo, C. Clinical Factors Affecting Prostate-Specific Antigen Levels in Prostate Cancer Patients Undergoing Radical Prostatectomy: A Retrospective Study. Future Sci. OA. 2020, 7(3). DOI: 10.2144/fsoa-2020-0154.
  • Seo, Y.; Ryu, K.; Park, J.; Jeon, D. K.; Jo, S.; Lee, H. K.; Namkung, W.; Mongin, A. A. Inhibition of ANO1 by Luteolin and Its Cytotoxicity in Human Prostate Cancer PC-3 Cells. PLoS One. 2017, 12(3), e0174935. DOI: 10.1371/journal.pone.0174935.
  • Crocetto, F.; Di Zazzo, E.; Buonerba, C.; Aveta, A.; Pandolfo, S. D.; Barone, B.; Di Lorenzo, G.; Caputo, V. F.; Scafuri, L.; Ferro, M., et al. Kaempferol, Myricetin and Fisetin in Prostate and Bladder Cancer: A Systematic Review of the Literature. Nutr. 2021, 13(11), 3750. DOI: 10.3390/nu13113750.
  • Lenis, A. T.; Lec, P. M.; Chamie, K.; MSHS, M. Bladder Cancer: A Review. Jama. 2020, 324(19), 1980–1991. DOI: 10.1001/jama.2020.17598.
  • Wang, X.; Zhu, J.; Yan, H.; Shi, M.; Zheng, Q.; Wang, Y.; Gao, X.; Miao, L.; Gao, X. Kaempferol Inhibits Benign Prostatic Hyperplasia by Resisting the Action of Androgen. Eur. J. Pharmacol. 2021, 907, 174251. DOI: 10.1016/j.ejphar.2021.174251.
  • Kang, J. W.; Kim, J. H.; Song, K.; Kim, S. H.; Yoon, J. H.; Kim, K. S. Kaempferol and Quercetin, Components of Ginkgo Biloba Extract (EGb 761), Induce Caspase‐3‐dependent Apoptosis in Oral Cavity Cancer Cells. Phytother. Res. 2010, 24(S1), S77–82. DOI: 10.1002/ptr.2913.
  • Jeong, J. C.; Kim, M. S.; Kim, T. H.; Kim, Y. K. Kaempferol Induces Cell Death Through ERK and Akt-Dependent Down-Regulation of XIAP and Survivin in Human Glioma Cells. Neurochem. Res. 2009, 34(5), 991–1001. DOI: 10.1007/s11064-008-9868-5.
  • Colombo, M.; Figueiró, F.; de Fraga Dias, A.; Teixeira, H. F.; Battastini, A. M. O.; Koester, L. S. Kaempferol-Loaded Mucoadhesive Nanoemulsion for Intranasal Administration Reduces Glioma Growth in vitro. Int. J. Pharm. 2018, 543(1–2), 214–223. DOI: 10.1016/j.ijpharm.2018.03.055.
  • Pilleron, S.; Sarfati, D.; Janssen‐heijnen, M.; Vignat, J.; Ferlay, J.; Bray, F.; Soerjomataram, I. Global Cancer Incidence in Older Adults, 2012 and 2035: A Population‐based Study. Int, J, Cancer. 2019, 144(1), 49–58. DOI: 10.1002/ijc.31664.
  • Yang, L.; Li, H.; Yang, M.; Zhang, W.; Li, M.; Xu, Y.; Guo, S.; Kang, J.; Zhang, J.; Guo, S. Exploration in the Mechanism of Kaempferol for the Treatment of Gastric Cancer Based on Network Pharmacology. Biomed Res. Int. 2020, 2020. DOI: 10.1155/2020/5891016.
  • Zhang, F.; Ma, C. Kaempferol Suppresses Human Gastric Cancer SNU-216 Cell Proliferation, Promotes Cell Autophagy, but Has No Influence on Cell Apoptosis. Braz. J. Med. Biol. Res. 2019, 52(2). DOI: 10.1590/1414-431x20187843.
  • Kim, T. W.; Lee, S. Y.; Kim, M.; Cheon, C.; Ko, S. G. Kaempferol Induces Autophagic Cell Death via IRE1-JNK-CHOP Pathway and Inhibition of G9a in Gastric Cancer Cells. Cell Death Dis. 2018, 9(9), 1–14. DOI: 10.1038/s41419-018-0930-1.
  • Seydi, E.; Salimi, A.; Rasekh, H. R.; Mohsenifar, Z.; Pourahmad, J. Selective Cytotoxicity of Luteolin and Kaempferol on Cancerous Hepatocytes Obtained from Rat Model of Hepatocellular Carcinoma: Involvement of ROS-Mediated Mitochondrial Targeting. Nutr. Cancer. 2018, 70(4), 594–604. DOI: 10.1080/01635581.2018.1460679.
  • Wonganan, O.; He, Y. J.; Shen, X. F.; Wongkrajang, K.; Suksamrarn, A.; Zhang, G. L.; Wang, F. 6-Hydroxy-3-O-Methyl-Kaempferol 6-O-Glucopyranoside Potentiates the Anti-Proliferative Effect of Interferon α/β by Promoting Activation of the JAK/STAT Signaling by Inhibiting SOCS3 in Hepatocellular Carcinoma Cells. Toxicol. Appl. Pharmacol. 2017, 336, 31–39. DOI: 10.1016/j.taap.2017.10.004.
  • Huang, W. W.; Tsai, S. C.; Peng, S. F.; Lin, M. W.; Chiang, J. H.; Chiu, Y. J.; Yang, J. S.; TSENG, M. T.; YANG, J. -S. Kaempferol Induces Autophagy Through AMPK and AKT Signaling Molecules and Causes G2/M Arrest via Downregulation of CDK1/Cyclin B in SK-HEP-1 Human Hepatic Cancer Cells. Int. J. Oncol. 2013, 42(6), 2069–2077. DOI: 10.3892/ijo.2013.1909.
  • Lee, J.; Kim, J. H.; Scarpa, A. Kaempferol Inhibits Pancreatic Cancer Cell Growth and Migration Through the Blockade of EGFR-Related Pathway in vitro. PLoS One. 2016, 11(5), e0155264. DOI: 10.1371/journal.pone.0155264.
  • Wu, L. Y.; Lu, H. F.; Chou, Y. C.; Shih, Y. L.; Bau, D. T.; Chen, J. C.; Chung, J. G.; Chung, J. -G. Kaempferol Induces DNA Damage and Inhibits DNA Repair Associated Protein Expressions in Human Promyelocytic Leukemia HL-60 Cells. Am. J. Chinese. Med. 2015, 43(02), 365–382. DOI: 10.1142/S0192415X1550024X.
  • Hung, T. W.; Chen, P. N.; Wu, H. C.; Wu, S. W.; Tsai, P. Y.; Hsieh, Y. S.; Chang, H. R. Kaempferol Inhibits the Invasion and Migration of Renal Cancer Cells Through the Downregulation of AKT and FAK Pathways. Int. J. Med. Sci. 2017, 14(10), 984. DOI: 10.7150/ijms.20336.
  • Devi, K. P.; Malar, D. S.; Nabavi, S. F.; Sureda, A.; Xiao, J.; Nabavi, S. M.; Daglia, M. Kaempferol and Inflammation: From Chemistry to Medicine. Pharmacol. Res. 2015, 99, 1–10. DOI: 10.1016/j.phrs.2015.05.002.
  • Wong, S. K.; Chin, K. Y.; Ima-Nirwana, S. The Osteoprotective Effects of Kaempferol: The Evidence from in vivo and in vitro Studies. Drug Des. Devel. Ther. 2019, 13, 3497. DOI: 10.2147/DDDT.S227738.
  • Afroze, N.; Pramodh, S.; Almutary, A. G.; Rizvi, T. A.; Rais, N.; Raina, R.; Hussain, A.; Alnuqaydan, A. M.; Hussain, A. Kaempferol Regresses Carcinogenesis Through a Molecular Cross Talk Involved in Proliferation, Apoptosis and Inflammation on Human Cervical Cancer Cells, HeLa. Appl. Sci. 2022, 12(6), 3155. DOI: 10.3390/app12063155.
  • Swieca, M.; Herok, A.; Piwowarczyk, K.; Sikora, M.; Ostanek, P.; Gawlik-Dziki, U.; Czyż, J.; Czyż, J. Potentially Bioaccessible Phenolics from Mung Bean and Adzuki Bean Sprouts Enriched with Probiotic—Antioxidant Properties and Effect on the Motility and Survival of AGS Human Gastric Carcinoma Cells. Mol. 2020, 25(13), 2963. DOI: 10.3390/molecules25132963.
  • Gao, Y.; Yin, J.; Rankin, G. O.; Chen, Y. C. Kaempferol Induces G2/M Cell Cycle Arrest via Checkpoint Kinase 2 and Promotes Apoptosis via Death Receptors in Human Ovarian Carcinoma A2780/CP70 Cells. Mol. 2018, 23(5), 1095. DOI: 10.3390/molecules23051095.
  • Yang, S.; Si, L.; Jia, Y.; Jian, W.; Yu, Q.; Wang, M.; Lin, R. Kaempferol Exerts Anti-Proliferative Effects on Human Ovarian Cancer Cells by Inducing Apoptosis, G0/G1 Cell Cycle Arrest and Modulation of MEK/ERK and STAT3 Pathways. J. Buon. 2019, 24(3), 975–981.
  • Riahi-Chebbi, I.; Souid, S.; Othman, H.; Haoues, M.; Karoui, H.; Morel, A.; Srairi-Abid, N.; Essafi, M.; Essafi-Benkhadir, K. The Phenolic Compound Kaempferol Overcomes 5-Fluorouracil Resistance in Human Resistant LS174 Colon Cancer Cells. Sci. Rep. 2019, 9(1), 1–20. DOI: 10.1038/s41598-018-36808-z.
  • Cho, H. J.; Park, J. H. Y. Kaempferol Induces Cell Cycle Arrest in HT-29 Human Colon Cancer Cells. J. Cancer Prev. 2013, 18(3), 257. DOI: 10.15430/JCP.2013.18.3.257.
  • Li, W.; Du, B.; Wang, T.; Wang, S.; Zhang, J. Kaempferol Induces Apoptosis in Human HCT116 Colon Cancer Cells via the Ataxia-Telangiectasia Mutated-p53 Pathway with the Involvement of p53 Upregulated Modulator of Apoptosis. Chemi.-Biol. Interact. 2009, 177(2), 121–127. DOI: 10.1016/j.cbi.2008.10.048.
  • Sonoki, H.; Tanimae, A.; Endo, S.; Matsunaga, T.; Furuta, T.; Ichihara, K.; Ikari, A. Kaempherol and Luteolin Decrease Claudin-2 Expression Mediated by Inhibition of STAT3 in Lung Adenocarcinoma A549 Cells. Nutr. 2017, 9(6), 597. DOI: 10.3390/nu9060597.
  • Boadi, W. Y.; Lo, A. Effects of Quercetin, Kaempferol, and Exogenous Glutathione on Phospho-And Total-AKT in 3T3-L1 Preadipocytes. J. Diet. Suppl. 2018, 15(6), 814–826. DOI: 10.1080/19390211.2017.1401572.
  • Han, X.; Liu, C. F.; Gao, N.; Zhao, J.; Xu, J. Kaempferol Suppresses Proliferation but Increases Apoptosis and Autophagy by Up-Regulating MicroRNA-340 in Human Lung Cancer Cells. Biomed. Pharmacother. 2018, 108, 809–816. DOI: 10.1016/j.biopha.2018.09.087.
  • Kuo, W. T.; Tsai, Y. C.; Wu, H. C.; Ho, Y. J.; Chen, Y. S.; Yao, C. H.; Yao, C. H. Radiosensitization of Non-Small Cell Lung Cancer by Kaempferol. Oncol. Rep. 2015, 34(5), 2351–2356. DOI: 10.3892/or.2015.4204.
  • Song, H.; Bao, J.; Wei, Y.; Chen, Y.; Mao, X.; Li, J.; Yang, Z.; Xue, Y. Kaempferol Inhibits Gastric Cancer Tumor Growth: An in vitro and in vivo Study. Oncol. Rep. 2015, 33(2), 868–874. DOI: 10.3892/or.2014.3662.
  • Oh, S. M.; Kim, Y. P.; Chung, K. H. Biphasic Effects of Kaempferol on the Estrogenicity in Human Breast Cancer Cells. Arch. Pharmacal Res. 2006, 29(5), 354–362. DOI: 10.1007/BF02968584.
  • Yi, X.; Zuo, J.; Tan, C.; Xian, S.; Luo, C.; Chen, S.; Yu, L.; Luo, Y. Kaempferol, a Flavonoid Compound from Gynura Medica Induced Apoptosis and Growth Inhibition in Mcf-7 Breast Cancer Cell. Afr. J. Traditional, Complementary Altern. Med. 2016, 13(4), 210–215. DOI: 10.21010/ajtcam.v13i4.27.
  • Budisan, L.; Gulei, D.; Jurj, A.; Braicu, C.; Zanoaga, O.; Cojocneanu, R.; Berindan-Neagoe, I.; Raduly, L.; Barbat, A.; Moldovan, A., et al. Inhibitory Effect of CAPE and Kaempferol in Colon Cancer Cell Lines—Possible Implications in New Therapeutic Strategies. Int. J. Mol. Sci. 2019, 20(5), 1199. DOI: 10.3390/ijms20051199.
  • Jo, E.; Park, S. J.; Choi, Y. S.; Jeon, W. K.; Kim, B. C. Kaempferol Suppresses Transforming Growth Factor-Β1–induced Epithelial-To-Mesenchymal Transition and Migration of A549 Lung Cancer Cells by Inhibiting Akt1-Mediated Phosphorylation of Smad3 at Threonine-179. Neoplasia. 2015, 17(7), 525–537. DOI: 10.1016/j.neo.2015.06.004.
  • Zhang, Y.; Chen, A. Y.; Li, M.; Chen, C.; Yao, Q. Ginkgo Biloba Extract Kaempferol Inhibits Cell Proliferation and Induces Apoptosis in Pancreatic Cancer Cells. J. Surg. Res. 2008, 148(1), 17–23. DOI: 10.1016/j.jss.2008.02.036.
  • Luo, H.; Daddysman, M. K.; Rankin, G. O.; Jiang, B. H.; Chen, Y. C. Kaempferol Enhances Cisplatin’s Effect on Ovarian Cancer Cells Through Promoting Apoptosis Caused by Down Regulation of cMyc. Cancer. Cell Inter. 2010, 10(1), 1–9. DOI: 10.1186/1475-2867-10-16.