2,335
Views
3
CrossRef citations to date
0
Altmetric
Review

Asiatic acid: a review on its polypharmacological properties and therapeutic potential against various Maladies

, , ORCID Icon, , , , , , , , & ORCID Icon show all
Pages 1244-1263 | Received 07 Nov 2022, Accepted 27 Apr 2023, Published online: 10 May 2023

References

  • Alfarra, H. Y.; Omar, M. N. Centella asiatica: From Folk Remedy to the Medicinal Biotechnology - a State Revision. Int. J. Biosci. 2013, 3(6), 49–67.
  • Nalinratana, N.; Meksuriyen, D.; Ongpipattanakul, B. Differences in Neuritogenic Activity and Signaling Activation of Madecassoside, Asiaticoside, and Their Aglycones in Neuro-2a Cells. Planta. med. 2018, 84(16), 1165–1173. DOI: 10.1055/a-0619-5710.
  • Tang, L.; Yang, G.; Tan, J. Inhibitory Effect of Asiatic Acid on Expression of Collagen I Protein in HSC-T6 Cells. J. Fourth Mil. Med. Univ. 2007, 28, 1178–1180.
  • He, Z.; Hu, Y.; Niu, Z.; Zhong, K.; Liu, T.; Yang, M.; Hu, W. A Review of Pharmacokinetic and Pharmacological Properties of Asiaticoside, a Major Active Constituent of Centella Asiatica (L.) Urb. J. Ethnopharmacol. 2022, 302, 115865. DOI: 10.1016/j.jep.2022.115865.
  • Dong, S. H.; Liu, Y. W.; Wei, F.; Tan, H. Z.; Han, Z. D. Asiatic Acid Ameliorates Pulmonary Fibrosis Induced by Bleomycin (BLM) via Suppressing Pro-Fibrotic and Inflammatory Signaling Pathways. Biomed. Pharmacother. 2017, 89, 1297–1309. DOI: 10.1016/j.biopha.2017.03.005.
  • Mavondo, G.; Tagumirwa, M. Asiatic Acid-Pectin Hydrogel Matrix Patch Transdermal Delivery System Influences Parasitaemia Suppression and Inflammation Reduction in P. Berghei Murine Malaria Infected Sprague–Dawley Rats. Asian. Pac. J. Trop. Med. 2016, 9(12), 1172–1180. DOI: 10.1016/j.apjtm.2016.10.008.
  • Lee, J.; Park, H.; Kwon, O.; Jang, Y. G.; Kim, J. Y.; Choi, B. K.; Lee, H. J.; Lee, S.; Paik, J. H.; Oh, S. R., et al. Asiatic Acid Inhibits Pulmonary Inflammation Induced by Cigarette Smoke. Int. Immunopharmacol. 2016, 39, 208–217. DOI: 10.1016/j.intimp.2016.07.010.
  • Qi, Z.; Ci, X.; Huang, J.; Liu, Q.; Yu, Q.; Zhou, J.; Deng, X. Asiatic Acid Enhances Nrf2 Signaling to Protect HepG2 Cells from Oxidative Damage Through Akt and ERK Activation. Biomed. Pharmacother. 2017, 88, 252–259. DOI: 10.1016/j.biopha.2017.01.067.
  • Lu, Y.; Kan, H.; Wang, Y.; Wang, D.; Wang, X.; Gao, J.; Zhu, L. Asiatic Acid Ameliorates Hepatic Ischemia/Reperfusion Injury in Rats via Mitochondria-Targeted Protective Mechanism. Toxicol. Appl. Pharmacol. 2018, 338, 214–223. DOI: 10.1016/j.taap.2017.11.023.
  • Gao, Z.; Gao, R.; Dong, X.; Zou, Z. M.; Wang, Q.; Zhou, D. M.; Sun, D. A. Selective Oxidation-Reduction and Esterification of Asiatic Acid by Pestalotiopsis Microspora and Anti-HCV Activity. Phytochem. 2017, 19, 108–113. DOI: 10.1016/j.phytol.2016.12.014.
  • Ternchoocheep, K.; Surangkul, D. The Recovery and Protective Effects of Asiatic Acid on Differentiated Human Neuroblastoma SH-SY5Y Cells Cytotoxic-Induced by Cholesterol. Asian Pac. J. 2017, 7(5), 416–420. DOI: 10.1016/j.apjtb.2017.01.012.
  • Nagoor Meeran, M. F.; Goyal, S. N.; Suchal, K.; Sharma, C.; Patil, C. R.; Ojha, S. K. Pharmacological Properties, Molecular Mechanisms, and Pharmaceutical Development of AA: A Pentacyclic Triterpenoid of Therapeutic Promise. Front Pharmacol. 2018, 9, 892. DOI: 10.3389/fphar.2018.00892.
  • Lv, J.; Sharma, A.; Zhang, T.; Wu, Y.; Ding, X. Pharmacological Review on AA and Its Derivatives: A Potential Compound. SLAS Technol. 2018, 23(2), 111–127. DOI: 10.1177/2472630317751840.
  • González-Coloma, A.; López-Balboa, C.; Santana, O.; Reina, M.; Fraga, B. Triterpene-Based Plant Defenses. Phytochem Rev. 2011, 10(2), 245–260. DOI: 10.1007/s11101-010-9187-8.
  • Bylka, W.; Znajdek-Awizeń, P.; Studzińska-Sroka, E.; Dańczak-Pazdrowska, A.; Brzezińska, M. Centella Asiatica in Dermatology: An Overview. Phytother. Res. 2014, 28(8), 1117–1124. DOI: 10.1002/ptr.5110.
  • Chandrika, U. G.; Prasad Kumarab, P. A. Gotu Kola (Centella asiatica): Nutritional Properties and Plausible Health Benefits. Adv. Food Nutr. Res. 2015, 76, 125–157.
  • Sabaragamuwa, R.; Perera, C. O.; Fedrizzi, B. Ultrasound Assisted Extraction and Quantification of Targeted Bioactive Compounds of Centella Asiatica (Gotu Kola) by UHPLC-MS/MS MRM Tandem Mass Spectroscopy. Food Chem. 2022, 371, 131187. DOI: 10.1016/j.foodchem.2021.131187.
  • Mony, T. J.; Elahi, F.; Choi, J. W.; Park, S. J. Neuropharmacological Effects of Terpenoids on Preclinical Animal Models of Psychiatric Disorders: A Review. Antioxid. 2022, 11(9), 1834. DOI: 10.3390/antiox11091834.
  • Rutz, A.; Sorokina, M.; Galgonek, J.; Mietchen, D.; Willighagen, E.; Gaudry, A.; Allard, P. M. The LOTUS Initiative for Open Knowledge Management in Natural Products Research. Elife. 2022, 11, e70780. DOI: 10.7554/eLife.70780.
  • Abbas, G.; Al Harrasi, A.; Hussain, H.; Hamaed, A.; Supuran, C. T. The Management of Diabetes Mellitus-Imperative Role of Natural Products Against Dipeptidyl Peptidase-4, α-Glucosidase and Sodium-Dependent Glucose Co-Transporter 2 (SGLT2). Bioorg. Chem. 2019, 86, 305–315. DOI: 10.1016/j.bioorg.2019.02.009.
  • Lv, H.; Qi, Z.; Wang, S.; Feng, H.; Deng, X.; Ci, X. Asiatic Acid Exhibits Anti-Inflammatory and Antioxidant Activities Against Lipopolysaccharide and D-Galactosamine-Induced Fulminant Hepatic Failure. Front. Immunol. 2017, 8, 785. DOI: 10.3389/fimmu.2017.00785.
  • Loganathan, C.; Thayumanavan, P. AA Prevents the Quinolinic Acid-Induced Oxidative Stress and Cognitive Impairment. Metab. Brain Dis. 2018, 33(1), 151–159. DOI: 10.1007/s11011-017-0143-9.
  • Zhao, Y.; Shu, P.; Zhang, Y.; Lin, L.; Zhou, H.; Xu, Z.; Suo, D.; Xie, A.; Jin, X. Effect of Centella Asiatica on Oxidative Stress and Lipid Metabolism in Hyperlipidemic Animal Models. OXID. MED. CELL LONGEV. 2014, 2014, 1–7. DOI: 10.1155/2014/154295.
  • Tsao, S. M.; Yin, M. C. Antioxidative and Antiinflammatory Activities of AA, Glycyrrhizic Acid, and Oleanolic Acid in Human Bronchial Epithelial Cells. J. Agric. Food. Chem. 2015, 63(12), 3196–3204. DOI: 10.1021/acs.jafc.5b00102.
  • Mohapatra, P.; Ray, A.; Jena, S.; Nayak, S.; Mohanty, S. Influence of Various Drying Methods on Physicochemical Characteristics, Antioxidant Activity and Bioactive Compounds in Centella Asiatica L. Leaves: A Comparative Study. BioTechnologia. J. Biotechnol. Comput. Biol. Bionanotechnol. 2022, 103(3), 235–247. DOI: 10.5114/bta.2022.118666.
  • Thakor, F. K.; Wan, K.; Welsby, P. J.; Welsby, G. Pharmacological Effects of Asiatic Acid in Glioblastoma Cells Under Hypoxia. Mol. Cell. Biochem. 2017, 430(1–2), 179–190. DOI: 10.1007/s11010-017-2965-5.
  • Kavitha, C. V.; Jain, A. K.; Agarwal, C.; Pierce, A.; Keating, A.; Huber, K. M.; Wempe, M. F.; Agarwal, R.; Deep, G. Asiatic Acid Induces Endoplasmic Reticulum Stress and Apoptotic Death in Glioblastoma Multiforme Cells Both in vitro and in vivo. Mol. Carcinog. 2015, 54(11), 1417–1429. DOI: 10.1002/mc.22220.
  • Lian, G. Y.; Wang, Q. M.; Tang, P. M. K.; Zhou, S.; Huang, X. R.; Lan, H. Y. Combination of Asiatic Acid and Naringenin Modulates NK Cell Anti-Cancer Immunity by Rebalancing Smad3/Smad7 Signaling. Mol. Ther. 2018, 26(9), 2255–2266. DOI: 10.1016/j.ymthe.2018.06.016.
  • Gou, X. J.; Bai, H. H.; Liu, L. W.; Chen, H. Y.; Shi, Q.; Chang, L. S. … Zhang, L. M. Asiatic Acid Interferes with Invasion and Proliferation of Breast Cancer Cells by Inhibiting WAVE3 Activation Through PI3K/AKT Signaling Pathway. Biomed Res. Int. 2020, 2020, 1–12. DOI: 10.1155/2020/1874387.
  • Liu, Y. T.; Chuang, Y. C.; Lo, Y. S.; Lin, C. C.; Hsi, Y. T.; Hsieh, M. J.; Chen, M. K. Asiatic Acid, Extracted from Centella Asiatica and Induces Apoptosis Pathway Through the Phosphorylation p38 Mitogen-Activated Protein Kinase in Cisplatin-Resistant Nasopharyngeal Carcinoma Cells. Biomol. 2020, 10(2), 184. DOI: 10.3390/biom10020184.
  • Hsu, Y. L.; Kuo, P. L.; Lin, L. T.; Lin, C. C. Asiatic Acid, a Triterpene, Induces Apoptosis and Cell Cycle Arrest Through Activation of Extracellular Signal-Regulated Kinase and p38 Mitogen-Activated Protein Kinase Pathways in Human Breast Cancer Cells. J. Pharmacol. Experiment. Ther. 2005, 313(1), 333–344. DOI: 10.1124/jpet.104.078808.
  • Cui, Q.; Ren, J.; Zhou, Q.; Yang, Q.; Li, B. Effect of Asiatic Acid on Epithelial-Mesenchymal Transition of Human Alveolar Epithelium A549 Cells Induced by TGF-Beta1. Oncol. Lett. 2019, 17, 4285–4292. DOI: 10.3892/ol.2019.10140.
  • Zhang, Q.; Lenardo, M. J.; Baltimore, D. 30 Years of NF-κB: A Blossoming of Relevance to Human Pathobiology. Cell. 2017, 168(1–2), 37–57. DOI: 10.1016/j.cell.2016.12.012.
  • Liu, B.; Sun, L.; Liu, Q.; Gong, C.; Yao, Y.; Lv, X.; Lin, L.; Yao, H.; Su, F.; Li, D., et al. A Cytoplasmic NF-Κb Interacting Long Noncoding RNA Blocks Iκb Phosphorylation and Suppresses Breast Cancer Metastasis. Cancer Cell. 2015, 27(3), 370–381. DOI: 10.1016/j.ccell.2015.02.004.
  • Buettner, R.; Mora, L. B.; Jove, R. Activated STAT Signaling in Human Tumors Provides Novel Molecular Targets for Therapeutic Intervention. Clin. Cancer Res. 2002, 8(4), 945–954.
  • Huang, R. Z.; Liang, G. B.; Li, M. S.; Fang, Y. L.; Zhao, S. F.; Zhou, M. M.; Wang, H. S. Synthesis and Discovery of Asiatic Acid Based 1, 2, 3-Triazole Derivatives as Antitumor Agents Blocking NF-Κb Activation and Cell Migration. MedChemcomm. 2019, 10(4), 584–597. DOI: 10.1039/C8MD00620B.
  • Ren, Z.; Schaefer, T. S. ErbB-2 Activates Stat3 Alpha in a Src- and JAK2-Dependent Manner. J. Biol. Chem. 2002, 277(41), 38486–38493. DOI: 10.1074/jbc.M112438200.
  • Abdulghani, J.; Gu, L.; Dagvadorj, A.; Lutz J., Leiby B.; Bonuccelli G.; Lisanti M. P.; Zellweger T., Alanen K.; Mirtti T., et al. Stat3 Promotes Metastatic Progression of Prostate Cancer. Am. J. Pathol. 2008, 172(6), 1717–1728.
  • Leeman-Neill, R. J.; Wheeler, S. E.; Singh, S. V.; Thomas S. M.; Seethala R. R.; Neill D. B.; Panahandeh M. C.; Hahm E. R.; Joyce S. C.; Sen M., et al. Guggulsterone Enhances Head and Neck Cancer Therapies via Inhibition of Signal Transducer and Activator of Transcription-3. Carcinogen. 2009, 30(11), 1848–1856.
  • Yang, C.; Hornicek, F. J.; Wood, K. B.; Schwab, J. H.; Choy, E.; Mankin, H.; Duan, Z. Blockage of Stat3 with CDDO-Me Inhibits Tumor Cell Growth in Chordoma. Spine (Phila Pa 1976. 2010, 35(18), 1668–1675. DOI: 10.1097/BRS.0b013e3181c2d2b4.
  • Fletcher, S.; Turkson, J.; Gunning, P. T. Molecular Approaches Towards the Inhibition of the Signal Transducer and Activator of Transcription 3 (Stat3) Protein. ChemMedchem. 2008, 3(8), 1159–1168. DOI: 10.1002/cmdc.200800123.
  • Yu, H.; Jove, R. The STATs of Cancer – New Molecular Targets Come of Age. Nat. Rev. Cancer. 2004, 4(2), 97–105. DOI: 10.1038/nrc1275.
  • Jing, Y.; Wang, G.; Ge, Y.; Xu, M.; Tang, S.; Gong, Z. AA-PMe, a Novel Asiatic Acid Derivative, Induces Apoptosis and Suppresses Proliferation, Migration, and Invasion of Gastric Cancer Cells. Oncol. Targets. Ther. 2016, 9, 1605–1621. DOI: 10.2147/OTT.S98849.
  • Wang, G.; Jing, Y.; Cao, L.; Gong, C.; Gong, Z.; Cao, X. A Novel Synthetic Asiatic Acid Derivative Induces Apoptosis and Inhibits Proliferation and Mobility of Gastric Cancer Cells by Suppressing STAT3 Signaling Pathway. OncoTargets Therap. 2017, 10, 55. DOI: 10.2147/OTT.S121619.
  • Wu, K.; Hu, M.; Chen, Z.; Xiang, F.; Chen, G.; Yan, W.; Peng, Q.; Chen, X. Asiatic Acid Enhances Survival of Human AC16 Cardiomyocytes Under Hypoxia by Upregulating MiR-1290. IUBMB Life. 2017, 69(9), 660–667. DOI: 10.1002/iub.1648.
  • Sun, W.; Xu, G.; Guo, X.; Luo, G.; Wu, L.; Hou, Y.; Guo, X.; Zhou, J.; Xu, T.; Qin, L. Protective Effects of Asiatic Acid in a Spontaneous Type 2 Diabetic Mouse Model. Mol. Med. Rep. 2017, 16(2), 1333–1339. DOI: 10.3892/mmr.2017.6684.
  • Ramachandran, V.; Saravanan, R.; Senthilraja, P. Antidiabetic and Antihyperlipidemic Activity of Asiatic Acid in Diabetic Rats, Role of HMG CoA: In vivo and in silico Approaches. Phytomed. 2014, 21(3), 225–232. DOI: 10.1016/j.phymed.2013.08.027.
  • Ramachandran, V.; Saravanan, R. Efficacy of Asiatic Acid, a Pentacyclic Triterpene on Attenuating the Key Enzymes Activities of Carbohydrate Metabolism in Streptozotocin-Induced Diabetic Rats. Phytomed. 2013, 20(3–4), 230–236. DOI: 10.1016/j.phymed.2012.09.023.
  • Ramachandran, V.; Saravanan, R. AA Prevents Lipid Peroxidation and Improves Antioxidant Status in Rats with Streptozotocin-Induced Diabetes. J. Funct. Foods. 2013, 5(3), 1077–1087. DOI: 10.1016/j.jff.2013.03.003.
  • Lee, C. H.; Olson, P.; Evans, R. M. Minireview: Lipid Metabolism, Metabolicdiseases, and Peroxisome Proliferatoractivated Receptors. Endocrinol. 2003, 144(6), 2201–2207. DOI: 10.1210/en.2003-0288.
  • Azevedo, M. F.; Camsari, C.; Sa, C. M.; Lima, C. F.; Fernandes-Ferreira, M.; Pereira-Wilson, C. Ursolic Acid and Luteolin-7-Glucoside Improve Lipid Profilesand Increase Liver Glycogen Content Through Glycogen Synthase Kinase-3. Phy-Totherapy Res. 2010, 24(S2), S220–224. DOI: 10.1002/ptr.3118.
  • Ramachandran, V.; Saravanan, R. Glucose Uptake Through Translocation and Activation of GLUT4 in PI3K/Akt Signaling Pathway by Asiatic Acid in Diabetic Rats. Hum. Exp. Toxicol. 2015, 34(9), 884–893. DOI: 10.1177/0960327114561663.
  • Hung, Y. C.; Yang, H. T.; Yin, M. C. Asiatic Acid and Maslinic Acid Protected Heart via Anti-Glycative and Anti-Coagulatory Activities in Diabetic Mice. Food Funct. 2015, 6(9), 2967–2974. DOI: 10.1039/C5FO00549C.
  • Wen, X.; Sun, H.; Liu, J.; Cheng, K.; Zhang, P.; Zhang, L.; Ni, P. Naturally Occurring Pentacyclic Triterpenes as Inhibitors of Glycogen Phosphorylase: Synthesis, Structure−activity Relationships, and X-Ray Crystallographic Studies. J. Med. Chem. 2008, 51(12), 3540–3554.
  • Zhang, L.; Chen, J.; Gong, Y.; Liu, J.; Zhang, L.; Hua, W.; Sun, H. Synthesis and Biological Evaluation of AA Derivatives as Inhibitors of Glycogen Phosphorylases. Chem. Biodivers. 2009, 6(6), 864–874. DOI: 10.1002/cbdv.200800092.
  • Liu, J.; He, T.; Lu, Q.; Shang, J.; Sun, H.; Zhang, L. Asiatic Acid Preserves Beta Cell Mass and Mitigates Hyperglycemia in Streptozocin‐induced Diabetic Rats. Diabetes/metab. res. rev. 2010, 26(6), 448–454. DOI: 10.1002/dmrr.1101.
  • Dai, Y.; Wang, Z.; Quan, M.; Lv, Y.; Li, Y.; Xin, H. B.; Qian, Y. Asiatic Acid Protests Against Myocardial Ischemia/Reperfusion Injury via Modulation of Glycometabolism in Rat Cardiomyocyte. Drug Des. Devel. Ther. 2018, 12, 3573. DOI: 10.2147/DDDT.S175116.
  • Ma, Z. G.; Dai, J.; Wei, W. Y.; Zhang, W. B.; Xu, S. C.; Liao, H. H.; Tang, Q. Z. Asiatic Acid Protects Against Cardiac Hypertrophy Through Activating AMPKα Signalling Pathway. Int. J. Bio. Sci. 2016, 12(7), 861. DOI: 10.7150/ijbs.14213.
  • Chen, Z.; Peng, I. C.; Sun, W.; Su, M. I.; Hsu, P. H.; Fu, Y.; Zhu Y.; DeFea K.; Pan S.; Tsai M. D., et al. AMP-Activated Protein Kinase Functionally Phosphorylates Endothelial Nitric Oxide Synthase Ser633. Circ. Res. 2009, 104(4), 496–505.
  • Si, L.; Xu, J.; Yi, C.; Xu, X.; Wang, F.; Gu, W., Zhang Y., Wang X. Asiatic Acid Attenuates Cardiac Hypertrophy by Blocking Transforming Growth Factor-β1-Mediated Hypertrophic Signaling in vitro and in vivo. Int. J. Mol. Med. 2014, 34(2), 499–506.
  • Chan, C. Y.; Mong, M. C.; Liu, W. H.; Huang, C. Y.; Yin, M. C. Three Pentacyclic Triterpenes Protect H9c2 Cardiomyoblast Cells Against High-Glucose-Induced Injury. Free Radic. Res. 2014, 48(4), 402–411. DOI: 10.3109/10715762.2014.880113.
  • Thakur, S.; Viswanadhapalli, S.; Kopp, J. B.; Shi, Q.; Barnes, J. L.; Block, K.; Gorin, Y.; Abboud, H. E. Activation of AMP-Activated Protein Kinase Prevents TGF-Β1–induced Epithelial-Mesenchymal Transition and Myofibroblast Activation. Am. J. Pathol. 2015, 185(8), 2168–2180. DOI: 10.1016/j.ajpath.2015.04.014.
  • Sciarretta, S.; Volpe, M.; Sadoshima, J. Mammalian Target of Rapamycin Signaling in Cardiac Physiology and Disease. Circ. Res. 2014, 114(3), 549–564. DOI: 10.1161/CIRCRESAHA.114.302022.
  • Kuwabara, Y.; Horie, T.; Baba, O.; Watanabe, S.; Nishiga, M.; Usami, S.; Izuhara M.; Nakao T.; Nishino T.; Otsu K.; et al. MicroRNA-451 Exacerbates Lipotoxicity in Cardiac Myocytes and High-Fat Diet-Induced Cardiac Hypertrophy in Mice Through Suppression of the LKB1/AMPK Pathway. Circ. Res. 2015, 116(2), 279–288.
  • Huang, X.; Zuo, L.; Lv, Y.; Chen, C.; Yang, Y.; Xin, H.; Qian, Y. Asiatic Acid Attenuates Myocardial Ischemia/Reperfusion Injury via Akt/GSK-3β/HIF-1α Signaling in Rat H9c2 Cardiomyocytes. Molecules. 2016, 21(9), 1248. DOI: 10.3390/molecules21091248.
  • Huo, L.; Shi, W.; Chong, L.; Wang, J.; Zhang, K.; Li, Y. Asiatic Acid Inhibits Left Ventricular Remodeling and Improves Cardiac Function in a Rat Model of Myocardial Infarction. Exp. Ther. Med. 2016, 11(1), 57–64. DOI: 10.3892/etm.2015.2871.
  • Lee, K. Y.; Bae, O. N.; Serfozo, K.; Hejabian, S.; Moussa, A.; Reeves, M.; Rumbeiha, W.; Fitzgerald, S. D.; Stein, G.; Baek, S. H., et al. Asiatic Acid Attenuates Infarct Volume, Mitochondrial Dysfunction, and Matrix Metalloproteinase-9 Induction After Focal Cerebral Ischemia. Stroke. 2012, 43(6), 1632–1638.
  • Krishnamurthy, R. G.; Senut, M. C.; Zemke, D.; Min, J.; Frenkel, M. B.; Greenberg, E. J.; Yu, S. W.; Ahn, N.; Goudreau, J.; Kassab, M., et al. Asiatic Acid, a Pentacyclic Triterpene from Centella Asiatica, is Neuroprotective in a Mouse Model of Focal Cerebral Ischemia. J. Neurosci. Res. 2009, 87(11), 2541–2550.
  • Xu, X.; Si, L.; Xu, J.; Yi, C.; Wang, F.; Gu, W.; Zhang, Y.; Wang, X. Asiatic Acid Inhibits Cardiac Hypertrophy by Blocking Interleukin-1β-Activated Nuclear Factor-Κb Signaling in vitro and in vivo. J. Thorac. Dis. 2015, 7(10), 1787–1797. DOI: 10.3978/j.issn.2072-1439.2015.10.41.
  • Hu, X.; Li, B.; Li, L.; Li, B.; Luo, J.; Shen, B. Asiatic Acid Protects Against Doxorubicin-Induced Cardiotoxicity in Mice. Oxid. Med. Cell. Longev. 2020, 2020, 1–12. DOI: 10.1155/2020/5347204.
  • Park, J.; Seo, Y. H.; Jang, J.; Jeong, C.; Lee, S.; Park, B. Asiatic Acid Attenuates Methamphetamine-Induced Neuroinflammation and Neurotoxicity Through Blocking of NF-Kb/STAT3/ERK/STAT3/ERK and Mitochondria-Mediated Apoptosis Pathway. J. Neuroinflammation. 2017, 14(1), 240. DOI: 10.1186/s12974-017-1009-0.
  • Xu, M. F.; Xiong, Y. Y.; Liu, J. K.; Qian, J. J.; Zhu, L.; Gao, J. Asiatic Acid, a Pentacyclic Triterpene in C. asiatica, Attenuates Glutamate-Induced Cognitive Deficits in Mice and Apoptosis in SH-SY5Y Cells. Acta. Pharmacol. Sin. 2012, 33(5), 578–587. DOI: 10.1038/aps.2012.3.
  • Sirichoat, A.; Chaijaroonkhanarak, W.; Prachaney, P.; Pannangrong, W.; Leksomboon, R.; Chaichun, A.; Wigmore, P.; Welbat, J. U. Effects of Asiatic Acid on Spatial Working Memory and Cell Proliferation in the Adult Rat Hippocampus. Nutrients. 2015, 7(10), 8413–8423. DOI: 10.3390/nu7105401.
  • Umka Welbat, J.; Sirichoat, A.; Chaijaroonkhanarak, W.; Prachaney, P.; Pannangrong, W.; Pakdeechote, P.; Sripanidkulchai, B.; Wigmore, P. Asiatic Acid Prevents the Deleterious Effects of Valproic Acid on Cognition and Hippocampal Cell Proliferation and Survival. Nutrients. 2016, 8(5), 303. DOI: 10.3390/nu8050303.
  • Chen, H.; Hua, X. M.; Ze, B. C.; Wang, B.; Wei, L. The Anti-Inflammatory Effects of Asiatic Acid in Lipopolysaccharide-Stimulated Human Corneal Epithelial Cells. Int. J. Ophthalmol. 2017, 10(2), 179–185. DOI: 10.18240/ijo.2017.02.01.
  • Gradison, M. Pelvic Inflammatory Disease. Am. Fam. Physician. 2012, 85(8), 791–796.
  • Ross, J. D. Pelvic Inflammatory Disease. BMJ Clin Evid. 2013, 2013, 1606.
  • Bu, X.; Liu, Y.; Lu, Q.; Jin, Z. Effects of “Danzhi Decoction” on Chronic Pelvic Pain, Hemodynamics, and Proinflammatory Factors in the Murine Model of Sequelae of Pelvic Inflammatory Disease. Evid. Based Complement. Alternat. Med. 2015, 2015, 547251. DOI: 10.1155/2015/547251.
  • Kong, D.; Fu, P.; Zhang, Q.; Ma, X.; Jiang, P. Protective Effects of Asiatic Acid Against Pelvic Inflammatory Disease in Rats. Exp. Ther. Med. 2019, 17(6), 4687–4692. DOI: 10.3892/etm.2019.7498.
  • Wu, F.; Bian, D.; Xia, Y.; Gong, Z.; Tan, Q.; Chen, J.; Dai, Y. Identification of Major Active Ingredients Responsible for Burn Wound Healing of Centella Asiatica Herbs. Evid. Based Complement. Alternat. Med. 2012, 2012, 1–13. DOI: 10.1155/2012/848093.
  • Kimura, Y.; Sumiyoshi, M.; Samukawa, K.; Satake N.; Sakanaka M. Facilitating Action of Asiaticoside at Low Doses on Burn Wound Repair and Its Mechanism. Eur. J. Pharmacol. 2008, 584(2–3), 415–423.
  • Somboonwong, J.; Kankaisre, M. Wound Healing Activities of Different Extracts of Centella Asiatica in Incision and Burn Wound Models: An Experimental Animal Study. BMC Complement. Altern. Med. 2012, 12(1), 103. DOI: 10.1186/1472-6882-12-103.
  • Soumyanath, A.; Zhong, Y.; Yu, X. Centella Asiatica Accelerates Nerve Regeneration Upon Oral Administration and Contains Multiple Active Fractions Increasing Neurite Elongation in-Vitro. J. Pharm. Pharmacol. 2005, 57(9), 122–129. DOI: 10.1211/jpp.57.9.0018.
  • Bylka, W.; Znajdek-Awiżeń, P.; Studzińska-Sroka, E.; Brzezińska, M. Centella Asiatica in Cosmetology. Postep. Dermatol. Alergol. 2013, 1, 46–49. DOI: 10.5114/pdia.2013.33378.
  • Bian, D.; Zhang, J.; Wu, X.; Dou, Y.; Yang, Y.; Tan, Q.; Xia, Y.; Gong, Z.; Dai, Y. Asiatic Acid Isolated from Centella Asiatica Inhibits TGF-β1-Induced Collagen Expression in Human Keloid Fibroblasts via PPAR-γ Activation. Int. J. Biol. Sci. 2013, 9(10), 1032–1042. DOI: 10.7150/ijbs.7273.
  • Wang, Z. Anti-Glycative Effects of Asiatic Acid in Human Keratinocyte Cells. Biomed. 2014, 4(3), 19. DOI: 10.7603/s40681-014-0019-9.
  • Gray, N. E.; Zweig, J. A.; Murchison, C.; Caruso, M.; Matthews, D. G.; Kawamoto, C.; Soumyanath, A. Centella Asiatica Attenuates Aβ-Induced Neurodegenerative Spine Loss and Dendritic Simplification. Neurosci. Lett. 2017, 646, 24–29. DOI: 10.1016/j.neulet.2017.02.072.
  • Welbat, J. U.; Chaisawang, P.; Pannangrong, W.; Wigmore, P. Neuroprotective Properties of Asiatic Acid Against 5-Fluorouracil Chemotherapy in the Hippocampus in an Adult Rat Model. Nutrients. 2018, 10(8), 1053. DOI: 10.3390/nu10081053.
  • Patil, S. P.; Maki, S.; Khedkar, S. A.; Rigby, A. C.; Chan, C. Withanolide a and Asiatic Acid Modulate Multiple Targets Associated with Amyloid-β Precursor Protein Processing and Amyloid-β Protein Clearance. J. Nat. Prod. 2010, 73(7), 1196–1202. DOI: 10.1021/np900633j.
  • Zhang, X.; Wu, J.; Dou, Y.; Xia, B.; Rong, W.; Rimbach, G.; Lou, Y. Asiatic Acid Protects Primary Neurons Against C2-Ceramide-Induced Apoptosis. Eur. J. Pharmacol. 2012, 679(1–3), 51–59. DOI: 10.1016/j.ejphar.2012.01.006.
  • Arboleda, G.; Morales, L. C.; Benítez, B.; Arboleda, H. Regulation of Ceramide-Induced Neuronal Death: Cell Metabolism Meets Neurodegeneration. Brain Res. Rev. 2009, 59(2), 333–346. DOI: 10.1016/j.brainresrev.2008.10.001.
  • Friedman, S. L. Mechanisms of Hepatic Fibrogenesis. Gastroenterol. 2008, 134(6), 1655–1669. DOI: 10.1053/j.gastro.2008.03.003.
  • Tang, L. X.; He, R. H.; Yang, G.; Tan, J. J.; Zhou, L., Meng X. M.; Huang X. R.; Lan H. Y. Asiatic Acid Inhibits Liver Fibrosis by Blocking TGF-Beta/Smad Signaling in vivo and in vitro. PLoS One. 2012, 7(2), e31350.
  • Dong, M. S.; Jung, S. H.; Kim, H. J.; Kim, J. R.; Zhao, L. X., Lee E. S.; Lee E. J.; Yi J. B.; Lee N.; Cho Y. B., et al. Structure-Related Cytotoxicity and Anti-Hepatofibric Effect of Asiatic Acid Derivatives in Rat Hepatic Stellate Cell-Line, HSC-T6. Arch. Pharm. Res. 2004, 27(5), 512–517.
  • Inagaki, Y.; Okazaki, I. Emerging Insights into Transforming Growth Factor Smad Signal in Hepatic Fibrogenesis. Gut. 2007, 56(2), 284–292. DOI: 10.1136/gut.2005.088690.
  • Meindl-Beinker, N. M.; Dooley, S. Transforming Growth Factor-β and Hepatocyte Transdifferentiation in Liver Fibrogenesis. J. Gastroenterol. Hepatol. 2008, 23(s1), S122–127. DOI: 10.1111/j.1440-1746.2007.05297.x.
  • Xu, J.; Wu, H. F.; Ang, E. S.; Yip, K.; Woloszyn, M.; Zheng, M. H.; Tan, R. X. NF-Κb Modulators in Osteolytic Bone Diseases. Cytokine Growth Factor Rev. 2009, 20(1), 7–17. DOI: 10.1016/j.cytogfr.2008.11.007.
  • Brown, K. D.; Claudio, E.; Siebenlist, U. The Roles of the Classical and Alternative Nuclear Factor-kappaB Pathways: Potential Implications for Autoimmunity and Rheumatoid Arthritis. Arthritis Res. Ther. 2008, 10(4), 212. DOI: 10.1186/ar2457.
  • Soysa, N. S.; Alles, N. NF-kappaB Functions in Osteoclasts. Biochem. Biophys. Res. Commun. 2009, 378(1), 1–5. DOI: 10.1016/j.bbrc.2008.10.146.
  • Hirotani, H.; Tuohy, N. A.; Woo, J. T.; Stern, P. H.; Clipstone, N. A. The Calcineurin/Nuclear Factor of Activated T Cells Signaling Pathway Regulates Osteoclastogenesis in RAW264.7 Cells. J. Biol. Chem. 2004, 279(14), 13984–13992. DOI: 10.1074/jbc.M213067200.
  • Kular, J.; Tickner, J.; Chim, S. M.; Xu, J. An Overview of the Regulation of Bone Remodelling at the Cellular Level. Clin. Biochem. 2012, 45(12), 863–873. DOI: 10.1016/j.clinbiochem.2012.03.021.
  • Kajiya, H. Calcium Signaling in Osteoclast Differentiation and Bone Resorption. Adv. Exp. Med. Biol. 2012, 740, 917–932. DOI: 10.1007/978-94-007-2888-2_41.
  • Takatsuna, H.; Asagiri, M.; Kubota, T.; Oka, K.; Osada, T.; Sugiyama, C.; Saito H.; Aoki K.; Ohya K.; Takayanagi H., et al. Inhibition of RANKL-Induced Osteoclastogenesis by (-)-DHMEQ, a Novel NF-kappaB Inhibitor, Through Downregulation of NFATc1. J. Bone Miner. Res. 2005, 20(4), 653–662.
  • Hong, G.; Zhou, L.; Han, X.; Sun, P.; Chen, Z.; He, W.; Xu, J. Asiatic Acid Inhibits OVX-Induced Osteoporosis and Osteoclastogenesis via Regulating RANKL-Mediated NF-Κb and NFATC1 Signaling Pathways. Front. Pharmacol. 2020, 11, 331. DOI: 10.3389/fphar.2020.00331.
  • Jiang, W.; Li, M.; He, F.; Yao, W.; Bian, Z.; Wang, X.; Zhu, L. Protective Effects of Asiatic Acid Against Spinal Cord Injury-Induced Acute Lung Injury in Rats. Inflammation. 2016, 39(6), 1853–1861. DOI: 10.1007/s10753-016-0414-3.
  • Li, Z.; Xiao, X.; Yang, M. Asiatic Acid Inhibits Lipopolysaccharide-Induced Acute Lung Injury in Mice. Inflammation. 2016, 39(5), 1642–1648. DOI: 10.1007/s10753-016-0398-z.
  • Siddique, A. I.; Mani, V.; Arivalagan, S.; Thomas, N. S.; Namasivayam, N. Asiatic Acid Attenuates Pre-Neoplastic Lesions, Oxidative Stress, Biotransforming Enzymes and Histopathological Alterations in 1,2-Dimethylhydrazine-Induced Experimental Rat Colon Carcinogenesis. Toxicol. Mech. Methods. 2017, 27(2), 136–150. DOI: 10.1080/15376516.2016.1273422.
  • Siddique, A. I.; Mani, V.; Renganathan, S.; Ayyanar, R.; Nagappan, A.; Namasivayam, N. Asiatic Acid Abridges Pre-Neoplastic Lesions, Inflammation, Cell Proliferation and Induces Apoptosis in a Rat Model of Colon Carcinogenesis. Chem. Biol. Interact. 2017, 278, 197–211. DOI: 10.1016/j.cbi.2017.10.024.
  • Hao, Y.; Huang, J.; Ma, Y.; Chen, W.; Fan, Q.; Sun, X.; Shao, M.; Cai, H. Asiatic Acid Inhibits Proliferation, Migration and Induces Apoptosis by Regulating Pdcd4 via the PI3K/Akt/mTOR/p70S6K Signaling Pathway in Human Colon Carcinoma Cells. Oncol. Lett. 2018, 15, 8223–8230. DOI: 10.3892/ol.2018.8417.
  • Ren, L.; Cao, Q.; Zhai, F.; Yang, S.; Zhang, H. Asiatic Acid Exerts Anticancer Potential in Human Ovarian Cancer Cells via Suppression of PI3K/Akt/mTOR Signalling. Pharm. Biol. 2016, 54(11), 2377–2382. DOI: 10.3109/13880209.2016.1156709.
  • Wu, T.; Geng, J.; Guo, W.; Gao, J.; Zhu, X. Asiatic Acid Inhibits Lung Cancer Cell Growth in vitro and in vivo by Destroying Mitochondria. Acta. Pharmaceutica Sinica B. 2017, 7(1), 65–72. DOI: 10.1016/j.apsb.2016.04.003.
  • Xue, W.; Qian, L.; Dong-Sheng, Y.; Yu-Peng, C.; Shang, J.; Zhang, L.; Hong-Bin, S.; Jun, L. Asiatic Acid Mitigates Hyperglycemia and Reduces Islet Fibrosis in Goto-Kakizaki Rat, a Spontaneous Type 2 Diabetic Animal Model. Chin. J. Nat. Med. 2015, 13(7), 529–534. DOI: 10.1016/S1875-5364(15)30047-9.
  • Chen, Y. N.; Wu, C. G.; Shi, B. M.; Qian, K.; Ding, Y. The Protective Effect of Asiatic Acid on Podocytes in the Kidney of Diabetic Rats. Am. J. Transl. Res. 2018, 10(11), 3733–3741.
  • Liu, J.; Chen, L.; Lu, H. Research Article Asiatic Acid Enhances Antioxidant and Anti-Inflammatory Activity to Suppress Isoproterenol Induced Cardiotoxicity. 2018, 14(7), 1038–1045. DOI: 10.3923/ijp.2018.1038.1045.
  • Gao, C.; Wang, F.; Wang, Z.; Zhang, J.; Yang, X. Asiatic Acid Inhibits Lactate-Induced Cardiomyocyte Apoptosis Through the Regulation of the Lactate Signaling Cascade. Int. J. Mol. Med. 2016, 38(6), 1823–1830. DOI: 10.3892/ijmm.2016.2783.
  • Si, L.; Xu, J.; Yi, C.; Xu, X.; Ma, C.; Yang, J.; Wang, X. Asiatic Acid Attenuates the Progression of Left Ventricular Hypertrophy and Heart Failure Induced by Pressure Overload by Inhibiting Myocardial Remodeling in Mice. J. Cardiovasc. Pharmacol. 2015, 66(6), 558–568. DOI: 10.1097/FJC.0000000000000304.
  • Bunbupha, S.; Prachaney, P.; Kukongviriyapan, U.; Kukongviriyapan, V.; Welbat, J. U.; Pakdeechote, P. Asiatic Acid Alleviates Cardiovascular Remodelling in Rats with L-NAME-Induced Hypertension. Clin. Exp. Pharmacol. Physiol. 2015, 42(11), 1189–1197. DOI: 10.1111/1440-1681.12472.
  • Maneesai, P.; Bunbupha, S.; Kukongviriyapan, U.; Prachaney, P.; Tangsucharit, P.; Kukongviriyapan, V.; Pakdeechote, P. Asiatic Acid Attenuates Renin-Angiotensin System Activation and Improves Vascular Function in High-Carbohydrate, High-Fat Diet Fed Rats.
  • Fong, L. Y.; Ng, C. T.; Cheok, Z. L.; Moklas, M. A. M.; Hakim, M. N.; Ahmad, Z. Barrier Protective Effect of Asiatic Acid in TNF-α-Induced Activation of Human Aortic Endothelial Cells. Phytomed. 2016, 23(2), 191–199. DOI: 10.1016/j.phymed.2015.11.019.
  • Fong, L. Y.; Ng, C. T.; Yong, Y. K.; Hakim, M. N.; Ahmad, Z. Asiatic Acid Stabilizes Cytoskeletal Proteins and Prevents TNF--induced disorganization of cell-cell junctions in human aortic endothelial cells. Vasc. Pharmacol. 2019, 117, 15–26.
  • Rather, M. A.; Thenmozhi, A. J.; Manivasagam, T.; Bharathi, M. D.; Essa, M. M.; Guillemin, G. J. Neuroprotective Role of Asiatic Acid in Aluminium Chloride Induced Rat Model of Alzheimer’s Disease. Front. Biosci (Schol. Ed.). 2018, 10(1), 262–275. DOI: 10.2741/s514.
  • Rather, M. A.; Justin-Thenmozhi, A.; Manivasagam, T.; Saravanababu, C.; Guillemin, G. J.; Essa, M. M. Asiatic Acid Attenuated Aluminum Chloride-Induced Tau Pathology, Oxidative Stress and Apoptosis via AKT/GSK-3β Signaling Pathway in Wistar Rats. Neurotox. Res. 2019, 35(4), 955–968. DOI: 10.1007/s12640-019-9999-2.
  • Cheng, W.; Chen, W.; Wang, P.; Chu, J. Asiatic Acid Protects Differentiated PC12 Cells from a 25–35-Induced Apoptosis and Tauhyperphosphorylation via Regulating PI3K/Akt/GSK-3 Signaling. Life. sci. 2018, 208, 96–101. DOI: 10.1016/j.lfs.2018.07.016.
  • Nataraj, J.; Manivasagam, T.; Justin Thenmozhi, A.; Essa, M. M. Neuroprotective Effect of Asiatic Acid on Rotenone-Induced Mitochondrial Dysfunction and Oxidative Stress-Mediated Apoptosis in Differentiated SH-SYS5Y Cells. Nutr. Neurosci. 2017, 20(6), 351–359. DOI: 10.1080/1028415X.2015.1135559.
  • Ding, H.; Xiong, Y.; Sun, J.; Chen, C.; Gao, J.; Xu, H. Asiatic Acid Prevents Oxidative Stress and Apoptosis by Inhibiting the Translocation of Synuclein into Mitochondria. Front. Neurosci. 2018, 12, 431. DOI: 10.3389/fnins.2018.00431.
  • Nataraj, J.; Manivasagam, T.; Thenmozhi, A. J.; Essa, M. M. Neurotrophic Effect of Asiatic Acid, a Triterpene of Centella Asiatica Against Chronic 1-Methyl 4-Phenyl 1, 2, 3, 6-Tetrahydropyridine Hydrochloride/Probenecid Mouse Model of Parkinson’s Disease: The Role of MAPK, Pi3K-Akt-GSK3β and mTOR Signalling Pathways. Neurochem. Res. 2017, 42(5), 1354–1365. DOI: 10.1007/s11064-017-2183-2.
  • Gopi, M.; Janardhanam, V. A. Asiaticoside: Attenuation of Rotenone Induced Oxidative Burden in a Rat Model of Hemiparkinsonism by Maintaining the Phosphoinositide-Mediated Synaptic Integrity. Pharmacol. Biochem. Behav. 2017, 155, 1–15. DOI: 10.1016/j.pbb.2017.02.005.
  • Park, J. H.; Seo, Y. H.; Jang, J. H.; Jeong, C. H.; Lee, S.; Park, B. Asiatic Acid Attenuates Methamphetamine-Induced Neuroinflammation and Neurotoxicity Through Blocking of NF-Kb/STAT3/ERK/STAT3/ERK and Mitochondria-Mediated Apoptosis Pathway. J. Neuroinflammation. 2017, 14(1), 1–15. DOI: 10.1186/s12974-017-1009-0.
  • Ceremuga, T. E.; Valdivieso, D.; Kenner, C.; Lucia, A.; Lathrop, K.; Stailey, O.; Bailey, H.; Criss, J.; Linton, J.; Fried, J. Evaluation of the Anxiolytic and Antidepressant Effects of Asiatic Acid, a Compound from Gotu Kola or Centella Asiatica, in the Male Sprague Dawley Rat. Aana J. 2015, 83(2), 91–98.
  • Wang, Z.; Mong, M.; Yang, Y.; Yin, M. Asiatic Acid and Maslinic Acid Attenuated Kainic Acid-Induced Seizure Through Decreasing Hippocampal Inflammatory and Oxidative Stress. Epilepsy Res. 2018, 139, 28–34. DOI: 10.1016/j.eplepsyres.2017.11.003.
  • Wei, L.; Chen, Q.; Guo, A.; Fan, J.; Wang, R.; Zhang, H. Asiatic Acid Attenuates CCl4-Induced Liver Fibrosis in Rats by Regulating the PI3K/AKT/mTOR and Bcl-2/bax Signaling Pathways. Int. Immunopharmacol. 2018, 60, 1–8. DOI: 10.1016/j.intimp.2018.04.016.
  • Fan, J.; Chen, Q.; Wei, L.; Zhou, X.; Wang, R.; Zhang, H. Asiatic Acid Ameliorates CCl4-Induced Liver Fibrosis in Rats: Involvement of Nrf2/ARE, NF-kappaB/ikappabalpha, and JAK1/STAT3 Signaling Pathways. Drug Des. Dev. Ther. 2018, 12, 3595–3605. DOI: 10.2147/DDDT.S179876.
  • Lu, Y.; Liu, S.; Wang, Y.; Wang, D.; Gao, J.; Zhu, L. Asiatic Acid Uncouples Respiration in Isolated Mouse Liver Mitochondria and Induces HepG2 Cells Death. Eur. J. Pharmacol. 2016, 786, 212–223. DOI: 10.1016/j.ejphar.2016.06.010.
  • Xu, Y.; Yao, J.; Zou, C.; Zhang, H.; Zhang, S.; Liu, J.; Ma, G.; Jiang, P.; Zhang, W. Asiatic Acid Protects Against Hepatic Ischemia/Reperfusion Injury by Inactivation of Kupffer Cells via PPARγ/NLRP3 Inflammasome Signaling Pathway. Oncotarget. 2017, 8(49), 86339–86355. DOI: 10.18632/oncotarget.21151.
  • Kamble, S. M.; Patil, C. R. Asiatic Acid Ameliorates Doxorubicin-Induced Cardiac and Hepato-Renal Toxicities with Nrf2 Transcriptional Factor Activation in Rats. Cardiovasc. Toxicol. 2018, 18(2), 131–141. DOI: 10.1007/s12012-017-9424-0.