3,859
Views
1
CrossRef citations to date
0
Altmetric
Review

A review on selected herbal plants as alternative anti-diabetes drugs: chemical compositions, mechanisms of action, and clinical study

, , , , &
Pages 1414-1425 | Received 09 Dec 2022, Accepted 14 May 2023, Published online: 16 Jun 2023

References

  • Safavi, M.; Foroumadi, A.; Abdollahi, M. The Importance of Synthetic Drugs for Type 2 Diabetes Drug Discovery. Exp. Opin. Drug Discov. 2013, 8(11), 1339–1363. DOI: 10.1517/17460441.2013.837883.
  • Osadebe, P. O.; Odoh, E. U.; Uzor, P. F. Natural Products as Potential Sources of Antidiabetic Drugs. Br. J. Pharm. Res. 2014, 4(17), 2075–2095. DOI: 10.9734/BJPR/2014/8382.
  • Rasouli, H.; Farzaei, M. H.; Khodarahmi, R. Polyphenols and Their Benefits: A Review. Int. J. Food. Prop. 2017, 1–42. DOI: 10.1080/10942912.2017.1354017.
  • Covington, M. B. Traditional Chinese Medicine in the Treatment of Diabetes. Diabetes Spectr. 2001, 14(3), 154–159. DOI: 10.2337/diaspect.14.3.154.
  • Xie, W.; Zhao, Y.; Zhang, Y. Traditional Chinese Medicines in Treatment of Patients with Type 2 Diabetes Mellitus. Evid. Based Complement. Altern. Med. 2011, 2011, 1–13. DOI: 10.1155/2011/726723.
  • Zhao, H. L.; Tong, P. C. Y.; Chan, J. C. N. Traditional Chinese Medicine in the Treatment of Diabetes. Nutr. Manag. Diabetes Mellitus Dysmetabol. Syndr. 2006, 11, 15–29. DOI: 10.1159/000094399.
  • Lian, F.; Ni, Q.; Shen, Y.; Yang, S.; Piao, C.; Wang, J.; Wei, J.; Duan, J.; Fang, Z.; Lu, H., Yang, G., Zhao, L., Song, J., Li, Q., Zheng, Y., Lyu, Y., Tong, X., et al. International Traditional Chinese Medicine Guideline for Diagnostic and Treatment Principles of Diabetes. Annal. Palliat. Med. 2021, 9(4), 19–19. DOI: 10.21037/apm-19-271.
  • Wu, J. Y.; Wang, T. Y.; Ding, H. Y.; Zhang, Y. R.; Lin, S. Y.; Chang, T. S. Enzymatic Synthesis of Novel Vitexin Glucosides. Molecules. 2021, 26(20), 1–10. DOI: 10.3390/molecules26206274.
  • Tran, N.; Pham, B.; Le, L. Bioactive Compounds in Anti-Diabetic Plants: From Herbal Medicine to Modern Drug Discovery. Biol. 2020, 9(9), 1–31. DOI: 10.3390/biology9090252.
  • Chigurupati, S.; Al-Murikhy, A.; Almahmoud, S. A.; Almoshari, Y.; Saber Ahmed, A.; Vijayabalan, S.; Ghazi Felemban, S.; Raj Palanimuthu, V.; ; , et al. Molecular docking of phenolic compounds and screening of antioxidant and antidiabetic potential of Moringa oleifera ethanolic leaves extract from Qassim region, Saudi Arabia. Saudi J Biol Sci. 2022, 29(2), 854–859 DOI:10.1016/j.sjbs.2021.10.021.
  • Tanaka, M.; Misawa, E.; Ito, Y.; Habara, N.; Nomaguchi, K.; Yamada, M.; Oida, T., Hayasawa, H., Takase, M., Inagaki, M., HIguchi, R, Identification of Five Phytosterols from Aloe Vera Gel as Anti-Diabetic Compounds. Biol. Pharm. Bull. 2006, 29(7), 1418–1422.
  • Nugroho, A. E.; Rais, I. R.; Setiawan, I.; Pratiwi, P. Y.; Hadibarata, T.; Tegar, M., Pramono, S. Pancreatic Effect of Andrograpolide Isolated from Andrographis Paniculata (Bunn F.). Pak. J. Bio. Sci. 2014, 7(1), 22–31.
  • Dwitiyanti, D.; Harahap, Y.; Elya, B.; Bahtiar, A. Study of Molecular Docking of Vitexin in Binahong (Anredera cordifolia (Ten.) Steenis) Leaves Extract on Glibenclamide-CYP3A4 Interaction. Pharmacognosy Journal 11 6S . 2019, 1471–1476. DOI: 10.5530/pj.2019.11.227.
  • Djamil,; Winarti, W.; Zaidan, S.; Pratiw, S.; Antidiabetic Activity of Flavonoid from Binahong Leaves (Anredera cordifolia) Extract in Alloxan Induced Mice. Journal of Pharmacognosy & Natural Products. 2017, 03 , 1–4. DOI: 10.4172/2472-0992.1000139.
  • Tiong, S.; Looi, C.; Hazni, H.; Arya, A., Paydar, M., Wong, W. F., Cheah, S., Mustafa, M. R., Awang, K. Antidiabetic and Antioxidant Properties of Alkaloids from Catharanthus roseus (L.) G. Don. Molecules. 2013, 18(8), 29770–9784. DOI: 10.3390/molecules18089770.
  • Macalalad, M. A. B.; Gonzales, P. R.; In-silico screening and identification of phytochemicals from Centella asiatica as potential inhibitors of sodium-glucose co-transporter 2 for treating diabetes. Journal of Biomolecular Structure and Dinamics. 2021, 40 22 , 12221–12238. DOI: 10.1080/07391102.2021.1969282.
  • Fitrianda, E.; Sukandar, E. Y.; Elfahmi, E.; Adnyana, I. K.; ; ; Antidiabetic Activity of Extract, Fractions, and Asiaticosida Compound Isolated from Centela Asiatica Linn. Leaves in Alloxan-Induced Diabetic Mice. Asian J. Pharm. Clin. Res. 2017, 10 10 , 268–272. DOI: 10.22159/ajpcr.2017.v10i10.20419.
  • Verma, P. R.; Itankar, P. R., Arora, S. K. Evaluation of Antidiabetic Antihyperlipidemic and Pancreatic Regeneration, Potential of Aerial Parts of Clitoria Ternatea. Rev. Bras. Farmacogn 23 . 2013, 819–829. DOI: 10.1590/s0102-695x2013000500015.
  • Javadi, N.; Abas, F.; Mediani, A.; Hamid, A. A.; Khatib, A.; Simon, S.; Shaari, K.; Effect of Storage Time on Metabolite Profile and Alpha-Glucosidase Inhibitory Activity of Cosmos Caudatus Leaves-GCMS Based Metabolomics Approach. Saudi J. BJFDA. 2015, 23(), 433–441. DOI: 10.1016/j.jfda.2015.01.005.
  • Zainab, B; Ayaz, Z.; Alwahibi, M. S.; Khan, S.; Rizwana, H.; Wafik Soliman, D; Alawaad, A.; Abbasi, A. M> A.; Naz, S.; Waraich, R. S., et al. in-Silico Elucidation of Moringa Oleifera Phytochemicals Against Diabetes Mellitus. Saudi J. Biol. Sci. 2020, 27(9), 2299–2307. DOI: 10.1016/j.sjbs.2020.04.002.
  • Hafizur, R. M.; Maryam, K.; Hameed, A., Zaheer, L., Bano, S., Sumbul, S., Sana, A., Saleem, R., Naz, S., Waraich, R. S, Ul-Haq, Z., Faizi, S. nsulin Releasing Effect of Some Pure Compounds from Moringa Oleifera on Mice Islets. Med. Chem. Res. 2018, 27(5), 1408–1418. DOI: 10.1007/s00044-018-2157-1.
  • Sunhre, L.; Kar, MA>; Panda, S.; Agnucastoside C, Isolated from Moringa Oleifera Ameliorates Thyrotoxicosis and Liver Abnormalities in Female Mice. lin Phytosci. 2020, 6(1), 1–8. DOI: 10.1186/s40816-020-00165-0.
  • Damsud, T.; Grace, M. H.; Adisakwattana, S.; Phuwapraisirisan, P. Orthosiphol a from the Aerial Parts of Orthosiphon Aristatus is Putatively Responsible for Hypoglycemic Effect via α-Glucosidase Inhibition. Nat. prod. communicat. 2014, 9 5 , 1–3 doi:10.1177/1934578x1400900512.
  • Bagri, P.; Ali, M.; Aeri, V.; Bhowmik, M.; IIsolation and Antidiabetic Activity of New Lanostenoids from the Leaves of Psidium Guajava L. Int. J. Pharm. Pharm. Sci. 2016, 8, 14–18.
  • Alagesan, K.; Thennarasu, P.; Kumar, P.; Sankarnarayanan, S.; Balsamy, T. Identification of α-Glucosidase Inhibitors from Psidium Guajava Leaves and Syzygium Cumini Linn. Seeds. Internat. J. Pharma Sci. Res (IJPSR). 2012, 3, 316–322. DO I:
  • King, K.; Lin, N. P; Cheng, Y. H.; Che, G. H; Chein, R. J Modulator of Glucagon-Like Peptide-1 Signaling fromTrigonella Foenum-graecum(Fenugreek) Seed. J. Biol. Chem. 2015, 290(), 26235–26248. DOI: 10.1074/jbc.m115.672097.
  • Proença, C.; Freitas, M.; Ribeiro, D.; Oliveira, E. F. T.; Sousa, J. L. C.; Tomé, S. M.; Ramos, M. J.; Silva, A. M. S.; Fernandes, F. A.; Fernandes, E. α-Glucosidase Inhibition by Flavonoids: An in vitro and in silico Structure–Activity Relationship Study. J. Enzyme Inhib. Med. Chem. 2017, 32(1), 1216–1228. DOI: 10.1080/14756366.2017.1368503.
  • Dubey, S.; Ganeshpurkar, A.; Ganeshpurkar, A.; Bansal, D.; Dubey, N. Glycolytic Enzyme Inhibitory and Antiglycation Potential of Rutin. Future J. Pharmac. Sci. 2017, S2314724515300480, 1–5. DOI: 10.1016/j.fjps.2017.05.005.
  • Indu, S.; Vijayalakshmi, P.; Selvaraj, J.; Rajalakshmi, M. Novel Triterpenoids from Cassia Fistula Stem Bark Depreciates STZ-Induced Detrimental Changes in IRS-1/akt-Mediated Insulin Signaling Mechanisms in Type-1 Diabetic Rats. Molecules. 2021, 26, 6812. DOI: 10.3390/molecules26226812.
  • Sun, C.; Zhao, C.; Guven, E. C.; Paoli, P.; Simal-Gandara, J.; Ramkumar, K. M.; Wang, S.; Buleu, F.; Pah, A.; Turi, V., et al. Dietary Polyphenols as Antidiabetic Agents: Advances and Opportunities. Food Front. 2020, 1–27. DOI: 10.1002/fft2.15.
  • Ali, M.; Khan, T.; Fatima, K.; Ali Qu, A.; Ovais, M.; Khalil, A. T.; Ullah, I.; Raza, A.; Shinwari, Z. K.; Idrees, M. Selected Hepatoprotective Herbal Medicines: Evidence from Ethnomedicinal Applications, Animal Models, and Possible Mechanism of Actions. Phytotherapy Res. 2017, 32, 199–215. DOI: 10.1002/ptr.5957.
  • Zhang, W.; Huai, Y.; Miao, Z.; Qian, A.; Wang, Y. Systems Pharmacology for Investigation of the Mechanisms of Action of Traditional Chinese Medicine in Drug Discovery. Front Pharmacol. 2019, 10, 1–22. DOI: 10.3389/fphar.2019.00743.
  • Abo-Youssef, A. M. H.; Messiha, B. A. S. Beneficial Effects of Aloe Vera in Treatment of Diabetes: Comparative in vivo and in vitro Studies. Bullet. Faculty Pharmacy, Cairo Univ. 2013, 51, 7–11. DOI: 10.1016/j.bfopcu.2012.03.002.
  • Tarigan, T. J. E.; Purwaningsih, E. H.; Yusra Abdullah, M.; Nafrialdi Prihartono, J.; Saraswati, M. R.; Subekti, I. Effect of Sambiloto (Andrographis paniculata) on GLP-1 and DPP-4 Concentration Between Normal and Prediabetic Subject: A Crossover Study. Evid. Based Complement. Altern. Med. 2022, 2022, 1–7. DOI: 10.1155/2022/1535703.
  • Neelakantan, N.; Narayanan, M.; de Souza, R. J.; van Dam, R. M. Effect of Fenugreek (Trigonella Foenum-graecumL.) Intake on Glycemia: A Meta-Analysis of Clinical Trials. Nutr. J. 2014, 13, 1–11. DOI: 10.1186/1475-2891-13-7.
  • Geberemeskel, G. A.; Debebe, Y. G.; Nguse, N. A. Antidiabetic Effect of Fenugreek Seed Powder Solution (Trigonella Foenum-Graecum L.) on Hyperlipidemia in Diabetic Patients. J. Diabet. Res. 2019, 1–8.
  • Lokman, E. F.; Saparuddin, F.; Muhammad, H.; Omar, M. H.; Zulkapli, A. Orthosiphon Stamineus as a Potential Antidiabetic Drug in Maternal Hyperglycemia in Streptozotocin-Induced Diabetic Rats. Integ. Med. Res. 2019, 8, 173–179. DOI: 10.1016/j.imr.2019.05.006.
  • Koteswara Rao, N.; Bethala, K.; Sisinthy, S. P.; Rajeswari, K. S. Antidiabetic Activity of Orthosiphon Staminieus Benth Roots in Streptozotocin Induced Type 2 Diabetic Rats. Asian J. Pharm. Clin. Res. 2014, 7, 149–153.
  • Ngo, Y. L.; Chua, L. S. Anti-Diabetic Activity of Rosmarinic Acid Rich Fractions from Orthosiphon Stamineus. Curr. Enzyme Inhib. 2018, 14, 97–103. DOI: 10.2174/1573408014666180101144331.
  • Yongchaiyudha S., Rungpitarangsi V., Bunyapraphatsara N., and Chokechaijaroenporn O. 1996. Antidiabetic activity of Aloe vera L. juice. I. Clinical trial in new cases of diabetes mellitus. Phytomedicine, (1996). 3: 241–243. DOI: 10.1016/s0944-7113(96)80060-2
  • Agarwal, S.; Sulaiman, S. A.; Muhamed, M. Open Label Clinical Trial to Study Adverse Effects and Tolerance to Dry Powder of the Aerial Part of Andrographis Paniculata in Patients Type 2 with Diabetes Mellitus. Malays J. Med. Sci. 2005, 12, 13–19.
  • Lou, J. S.; Dimitrova, D. M.; Murchison, C.; Arnold, G. C.; Belding, H.; Seifer, N.; Le, N.; Andrea, L. B.; Gray, N. E.; Wright, K. M., et al. Centella Asiatica Triterpenes for Diabetic Neuropathy: A Randomized, Double-Blind, Placebo-Controlled, Pilot Clinical Study. Esperienze Dermatol. 2018, 20, 12–22. DOI: 10.23736/S1128-9155.18.00455-7.
  • Chusak, C.; Thilavech, T.; Henry, C. J.; Adisakwattana, S. Acute Effect of Clitoria Ternatea Flower Beverage on Glycemic Response and Antioxidant Capacity in Healthy Subjects: A Randomized Crossover Trial. BMC Complementary Altern. Med. 2018, 18, 1–11. DOI: 10.1186/s12906-017-2075-7.
  • Cheng, S. H.; Ismail, A.; Anthony, J.; Ng, O. C.; Hamid, A. A.; Barakatun-Nisak, M. Y. Eight Weeks of Cosmos Caudatus (Ulam Raja) Supplementation Improves Glycemic Status in Patients with Type 2 Diabetes: A Randomized Controlled Trial. Evid. Based Complement. Alternat. Med. 2015, 1–7. DOI: 10.1155/2015/405615.
  • Gutiérrez, R. M. P.; Mitchell, S.; Solis, R. V. Psidium guajava: A Review of Its Traditional Uses, Phytochemistry and Pharmacology. J. Ethnopharmacol. 2008, 117, 1–27. DOI: 10.1016/j.jep.2008.01.025.
  • Sharwan, G.; Jain, P.; Pandey, R.; Shukla, S. S. Toxicity Profile of Traditional Herbal Medicine. Int. J. Ayurvedic Herb. Med. 2015, 1(3), 81–90. AHDA ET AL.