617
Views
1
CrossRef citations to date
0
Altmetric
Original Article

Analysis of impact damage of Fritillaria ussuriensis Maxim using a free drop experimental study

, , , &
Pages 1374-1389 | Received 01 Feb 2023, Accepted 09 May 2023, Published online: 30 May 2023

References

  • Ding, C.; Guo, S.; Sun, H.; Ma, W.; Zhou, B.; Wang, Z. Research Progress of Medicinal Plant Fritillaria ussuriensis Maxim. Guiding J. Traditional Chinese Med. Pharm. 2018, 24, 73–75. DOI: 10.13862/j.cnki.cn43-1446/r.2018.03.024.
  • Li, H.; Jiang, Y.; Li, P. Chemistry, Bioactivity and Geographical Diversity of Steroidal Alkaloids from the Liliaceae Family. Nat Prod. Rep. 2006, 23, 735–736. DOI: 10.1039/B609306J.
  • Jia, M.; Yang, M.; Peng, L.; Zhang, M.; Feng, L. Rapid Discrimination of Fritillary Herbs by a Photochemical Colorimetric Sensor Array. Chinese J. Analytical Chem. 2021, 49, 424–426. DOI: 10.19756/j.issn.0253-3820.201662.
  • Wang, Y.; Mushtaq, S. A. Implications of the Digital Economy on Merger Control in Pakistan and China: Policy Implications for Pakistan. J. Politics Law. 2021, 15(1), 40. DOI: 10.5539/jpl.v15n1p40.
  • Zhao, J.; Zhao, W.; Tian, S.; Zhang, Q.; Song, J.; Li, Y.; Han, X. Simulation Test of Soil Covered Parts of Fritillaria ussuriensis Maxim Based on EDEM. J. Agric. Mechanization Res. 2023, 45(10), 24–31. DOI: 10.13427/j.cnki.njyi.2023.10.026.
  • Wu, L.; Man, D.; Miao, Z.; Li, S.; Wu, H. Design and Finite Element Analysis of 4OPB-1201Fritillaria ussuriensis Maxim Harvester Excavation Device. For. Machinery Woodworking Eouipment. 2020, 48(11), 18–23. DOI: 10.13279/j.cnki.fmwe.2020.0127.
  • Song, J.; Qiu, S.; Wang, X. Design and Test on 4B-1200 Type Bulbus Fritillariae Ussuriensis Medicinal Material Harvester. Trans. CSAE. 2015, 31(8), 34–41. DOI: 10.3969/j.issn.1002-6819.2015.08.006.
  • Song, J.; Liu, L.; Wang, M.; Zhang, J. Improved Design and Test of 4B-1200 Type Bulbus Fritillariae Ussuriensis Medicinal Materials Harvester. Trans. CSAE. 2017, 33(1), 45–51. DOI: 10.11975/j.issn.1002-6819.2017.01.006.
  • Xu, G.; Zhang, Y.; Yang, X.; Chen, G.; Jin, B. Effect of Drum Structure on Particle Mixing Behavior Based on DEM Method. Particuol. 2023, 74, 74–91. DOI: 10.1016/j.partic.2022.05.008.
  • Li, S.; Wu, L.; Wei, X.; Man, D.; Miao, Z. Experimental Study and Finite Element Analysis on Bulb Collision Damage of Fritillaria ussuriensis Maxim. J. Agric. Mechanization Res. 2021, 10(1), 126–130. DOI: 10.13427/j.cnki.njyi.2021.10.024.
  • Vursavus, K.; Ozguven, F. Determining the Effects of Vibration Parameters and Packaging Method on Mechanical Damage in Golden Delicious Apples. Turk. J. Agric. For. 2004, 28, 311–320.
  • Zhao, J.; Liu, J.; Chen, Q.; Saritporn, V. Detecting Subtle Bruises on Fruits with Hyperspectral Imaging. Trans. CSAM. 2008, 39, 106–109.
  • Baranowski, P.; Mazurek, W.; Witkowska-Walczak, B.; Sławiński, C. Detection of Early Apple Bruises Using Pulsed-Phase Thermography. Postharvest Biol. Tec. 2009, 53(3), 91–100. DOI: 10.1016/j.postharvbio.2009.04.006.
  • Babarinsa, F.; Ige, M. Strength Parameters of Packaged Roma Tomatoes at Break Point Under Compressive Loading. Int. J. Sci. Eng. Res. 2012, 3, 1–8.
  • Ahmadi, E.; Ghassemzadeh, H. R.; Sadeghi, M.; Moghaddam, M.; Neshat, S. Z. The Effect of Impact and Fruit Properties on the Bruising of Peach. J. Food Eng. 2010, 97(1), 110–117. DOI: 10.1016/j.jfoodeng.2009.09.024.
  • Maness, N. O.; Brusewitz, G. H.; McCullum, T. G. Impact Bruise Resistance Comparison Among Peach Cultivars. Hort. Sci. 1992, 27(9), 1008–1011. DOI: 10.21273/HORTSCI.27.9.1008.
  • González-Merino, R.; Hidalgo-Fernández, R. E.; Rodero, J.; Sola-Guirado, R. R.; Sánchez-López, E. Postharvest Geometric Characterization of Table Olive Bruising from 3D Digitalization. Agron. 2022, 12, 27–32. DOI: 10.3390/agronomy12112732.
  • Sola-Guirado, R. R.; Bayano-Tejero, S.; Aragon-Rodriguez, F.; Pena, A.; Blanco-Roldan, G. Bruising Pattern of Table Olives (‘Manzanilla’ and ‘Hojiblanca’ Cultivars) Caused by Hand-Held Machine Harvesting Methods. Biosyst. Eng. 2022, 215, 188–202. DOI: 10.1016/j.biosystemseng.2022.01.010.
  • Yuwana, Y.; Duprat, F. Prediction of Apple Bruising Based on the Instantaneous Impact Shear Stress and Energy Absorbed. Int. Agrophys. 1998, 12, 133–140.
  • Van Zeebroeck, M.; Van Linden, V.; Darius, P.; De Ketelaere, B.; Ramon, H.; Tijskens, E. The Effect of Fruit Properties on the Bruise Susceptibility of Tomatoes. Postharvest Biol. Tec. 2007, 45(2), 168–175. DOI: 10.1016/j.postharvbio.2006.12.022.
  • Ahmadi, E. Bruise Susceptibilities of Kiwifruit as Affected by Impact and Fruit Properties. Res. Agric. Eng. 2012, 58(3), 107–113. DOI: 10.17221/57/2011-RAE.
  • Fu, H.; Du, W.; Yang, J.; Wang, W.; Wu, Z.; Yang, Z. Bruise Measurement of Fresh Market Apples Caused by Repeated Impacts Using a Pendulum Method. Postharvest Biol. Tec. 2022, 195, 112–143. DOI: 10.1016/j.postharvbio.2022.112143.
  • Shahbazi, F. Impact Damage to Chickpea Seeds as Affected by Moisture Content and Impact Velocity. Appl. Eng. Agric. 2011, 27, 771–775. DOI: 10.13031/2013.39557.
  • Kursat Celik, H. Determination of Bruise Susceptibility of Pears (Ankara Variety) to Impact Load by Means of FEM-Based Explicit Dynamics Simulation. Postharvest Biol. Tec. 2017, 128, 83–97. DOI: 10.1016/j.postharvbio.2017.01.015.
  • Jiménez-Jiménez, F.; Castro-García, S.; Blanco-Roldán, G. L.; Ferguson, L.; Rosa, U. A.; Gil-Ribes, J. A. Table Olive Cultivar Susceptibility to Impact Bruising. Postharvest Biol. Tec. 2013, 86, 100–106. DOI: 10.1016/j.postharvbio.2013.06.024.
  • Li, B.; Zhang, F.; Liu, Y.; Yin, H.; Zou, J.; Ou-Yang, A. Quantitative Study on Impact Damage of Yellow Peach Based on Hyperspectral Image Information Combined with Spectral Information. J. Mol. Struct. 2023, 1272, 34176. DOI: 10.1016/j.molstruc.2022.134176.
  • Chaiwong, S.; Saengrayap, R.; Rattanakaran, J.; Chaithanarueang, A.; Arwatchananukul, S.; Aunsri, N.; Tontiwattanakul, K.; Jitkokkruad, K.; Kitazawa, H.; Trongsatitkul, T. Natural Rubber Latex Cushioning Packaging to Reduce Vibration Damage in Guava During Simulated Transportation. Postharvest Biol. Tec. 2023, 199, 112273. DOI: 10.1016/j.postharvbio.2023.112273.
  • Zhang, S.; Wang, W.; Wang, Y.; Fu, H.; Yang, Z. Improved Prediction of Litchi Impact Characteristics with an Energy Dissipation Model. Postharvest Biol. Tec. 2021, 176, 111508. DOI: 10.1016/j.postharvbio.2021.111508.
  • Vipasdamrongkul, P.; Chocharat, S.; Srimunwing, P.; Arwatchananukul, S.; Chaiwong, S.; Saengrayap, R.; Aunsri, N. Guava Bruise Area Calculation Using Color and Grayscale Image Segmentation. InCit. 2022, 29–34. DOI: 10.1109/InCIT56086.2022.10067362.
  • Htike, T.; Saengrayap, R.; Kitazawa, H.; Chaiwong, S. Fractal Image Analysis and Bruise Damage Evaluation of Impact Damage in Guava. Information Process. Agric. 2023. DOI: 10.1016/j.inpa.2023.02.004.
  • Satitmunnaithum, J.; Kitazawa, H.; Arofatullah, N. A.; Widiastuti, A.; Kharisma, A. D.; Yamane, K.; Tanabata, S.; Sato, T. Microbial Population Size and Strawberry Fruit Firmness After Drop Shock-Induced Mechanical Damage. Postharvest. Biol. Technol. 2022, 192, 112008. DOI: 10.1016/j.postharvbio.2022.112008.
  • Xie, S.; Deng, W.; Liu, F. Impact Velocity and Bruising Analysis of Potato Tubers Under Pendulum Impact Test. Rev. Bras. Eng. Agr. Amb. 2023, 27(7). DOI: 10.1590/1807-1929/agriambi.v27n7p559-566.
  • Shao, Z.; Wang, H.; Dong, Z.; Yuan, Y.; Li, J.; Zhao, L. Early Bruises Detection Method of Apple Surface Based on Near Infrared Camera Imaging Technology and Image Threshold Segmentation Method. Trans. Chin. Soc. Agric. Mach. 2021, 52(S1), 134–139. DOI: 10.6041/j.issn.1000-1298.2021.S0.017.
  • Lu, F.; Ishikawa, Y.; Kitazawa, H.; Satake, T. Impact Damage to Apple Fruits in Commercial Corrugated Fiberboard Box Packaging Evaluated by the Pressure-Sensitive Film Technique. J. Food Agric Environ. 2010, 8, 218–222.
  • Saracoglu, T.; Ucer, N.; Ozarslan, C. Engineering Properties and Susceptibility to Bruising Damage of Table Olive Fruit. Int. J. Agric. Biol. 2011, 13, 801–805.
  • Wang, W.; Zhang, S.; Fu, H.; Lua, H.; Yang, Z. Evaluation of Litchi Impact Damage Degree and Damage Susceptibility. Comput. Electron. Agr. 2020, 173, 405–409. DOI: 10.1016/j.compag.2020.105409.
  • Caserta, A. J.; Navarro, H. A.; Cabezas-G´omez, L. Damping Coefficient and Contact Duration Relations for Continuous Nonlinear Spring-Dashpot Contact Model in DEM. Powder Technol. 2016, 13, 566–590. DOI: 10.1016/j.powtec.2016.07.032.
  • Deng, W.; Wang, C.; Xie, S. Test Research on the Impact Peak Force and Damage Depth of Potato. INMATEH-Agric. Eng. 2020, 61(2), 105–114. DOI: 10.35633/inmateh-61-12.
  • Xie, S.; Wang, C.; Deng, W. Model for the Prediction of Potato Impact Damage Depth. Int. J. Food. Prop. 2018, 21(1), 2517–2526. DOI: 10.1080/10942912.2018.1534124.
  • Wang, F.; Wei, X.; Han, Y.; Zhao, M. Impact Mechanical Characteristics and Damage Analysis of Watermelon. J. Sichuan Agric. Univ. 2016, 34, 185–189. DOI: 10.16036/j.issn.1000-2650.2016.02.010.
  • Kursat Celik, H.; Hayri Ustun, H.; Erkan, M.; Rennie, A. E. W.; Akinci, I. Effects of Bruising of ‘Pink Lady’ Apple Under Impact Loading in Drop Test on Firmness, Colour and Gas Exchange of Fruit During Long Term Storage. Postharvest Biol. Tec. 2021, 179, 111561. DOI: 10.1016/j.postharvbio.2021.111561.
  • Komarnicki, P.; Stopa, R.; Szyjewicz, D.; Kuta, Ł.; Klimza, T. Influence of Contact Surface Type on the Mechanical Damages of Apples Under Impact Loads. Food Bioprocess Technol. 2017, 10, 1479–1494. DOI: 10.1007/s11947-017-1918-z.
  • Zhou, J.; He, L.; Karkee, M.; Zhang, Q. Effect of Catching Surface and Tilt Angle on Bruise Damage of Sweet Cherry Due to Mechanical Impact. Comput. Electron. Agr. 2016, 121, 282–289. DOI: 10.1016/j.compag.2016.01.004.
  • Öztekn, Y. B.; Güngör, B. Determining Impact Bruising Thresholds of Peaches Using Electronic Fruit. Sci. Hortic-Amsterdam. 2019, 262(3), 109046. DOI: 10.1016/j.scienta.2019.109046.
  • Stopa, R.; Szyjewicz, D.; Komarnicki, P.; Kuta, Ł. Determining the Resistance to Mechanical Damage of Apples Under Impact Loads. Postharvest Biol. Tec. 2018, 146, 79–89. DOI: 10.1016/j.postharvbio.2018.08.016.
  • Zhang, P.; Ji, H.; Wang, H.; Liu, Y.; Zhang, X.; Ren, C. Quantitative Evaluation of Impact Damage to Apples Using NIR Hyperspectral Imaging. Int. J. Food. Prop. 2021, 24(1), 457–470. DOI: 10.1080/10942912.2021.1900240.
  • Wang, W.; Lu, H.; Zhang, S.; Yang, Z. Damage Caused by Multiple Impacts of Litchi Fruits During Vibration Harvesting. Comput. Electron. Agr. 2019, 162, 732–738. DOI: 10.1016/j.compag.2019.04.037.
  • Lu, L.; Wang, Z. Dropping Impact Mechanical Characteristics of Apple. Trans. CSAE. 2007, 23(2), 254–257.