730
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Physicochemical properties, microstructure and protein characteristic of frozen chicken feet as affected by different thawing methods

ORCID Icon, , , &
Pages 1506-1521 | Received 27 Sep 2022, Accepted 10 Dec 2022, Published online: 14 Jun 2023

References

  • U.S. Department of Agriculture. (2022). Livestock and Poultry. Market and trade. Retrieved from http://gffiy3bee2aa6444d4f70sqcooxcxpc5ko6kv5.fffb.suse.cwkeji.cn:999/psdonline/app/index.html#/app/downloads
  • General Administration of Customs P.R. China. (2022). Customs Statistics. Interactive tables. Retrieved from http://43.248.49.97/indexEn
  • Backi, C. J. Methods for (Industrial) Thawing of Fish Blocks: A Review. J. Food Process Eng. 2018, 41(1), e12598. DOI: 10.1111/jfpe.12598.
  • Çabas, B. M.; Azazi, I.; Döner, D.; Bayana, D.; Çokgezme, Ö. F.; İ̇çier, F. Comparative Performance Analysis of Ohmic Thawing and Conventional Thawing of Spinach Puree. J. Food Process Eng. 2022, 45(7). DOI: 10.1111/jfpe.14015.
  • Chandirase, V.; Thulasi, G. Effect of Different Thawing Methods on Physico-Chemical Characteristics of Frozen Buffalo Meat. J. Food Technol. 2010, 8(6), 239–242. DOI: 10.3923/jftech.2010.239.242.
  • Ersoy, B.; Aksan, E.; Ozeren, A. The Effect of Thawing Methods on the Quality of Eels (Anguilla Anguilla). Food. Chem. 2008, 111(2), 377–380. DOI: 10.1016/j.foodchem.2008.03.081.
  • Gambuteanu, C.; Alexe, P. Comparison of Thawing Assisted by Low-Intensity Ultrasound on Technological Properties of Pork Longissimus Dorsi Muscle. J. Food Sci. Technol. 2015, 52(4), 2130–2138. DOI: 10.1007/s13197-013-1204-7.
  • Wang, Y. Y.; Yan, J. K.; Ding, Y.; Ma, H. Effects of Ultrasound on the Thawing of Quick-Frozen Small Yellow Croaker (Larimichthys Polyactis) Based on TMT-Labeled Quantitative Proteomic. Food. Chem. 2022, 366, 130600. DOI: 10.1016/j.foodchem.2021.130600.
  • Li, D.; Zhao, H.; Muhammad, A. I.; Song, L.; Guo, M.; Liu, D. The Comparison of Ultrasound-Assisted Thawing, Air Thawing and Water Immersion Thawing on the Quality of Slow/Fast Freezing Bighead Carp (Aristichthys Nobilis) Fillets. Food. Chem. 2020, 320, 126614. DOI: 10.1016/j.foodchem.2020.126614.
  • Li, B.; Sun, D.-W. Novel Methods for Rapid Freezing and Thawing of Foods – a Review. J. Food Eng. 2002, 54(3), 175–182. DOI: 10.1016/S0260-8774(01)00209-6.
  • Peng, Z.; Zhu, M.; Zhang, J.; Zhao, S.; He, H.; Kang, Z.; Ma, H.; Xu, B. Physicochemical and Structural Changes in Myofibrillar Proteins from Porcine Longissimus Dorsi Subjected to Microwave Combined with Air Convection Thawing Treatment. Food. Chem. 2021, 343, 128412. DOI: 10.1016/j.foodchem.2020.128412.
  • Chizoba Ekezie, F.-G.; Sun, D.-W.; Han, Z.; Cheng, J.-H. Microwave-Assisted Food Processing Technologies for Enhancing Product Quality and Process Efficiency: A Review of Recent Developments. Trends Food Sci. Tech. 2017, 67, 58–69. DOI: 10.1016/j.tifs.2017.05.014.
  • Jia, W.; Shi, Q.; Shi, L. Effect of Irradiation Treatment on the Lipid Composition and Nutritional Quality of Goat Meat. Food. Chem. 2021, 351, 351. DOI: 10.1016/j.foodchem.2021.129295.
  • Xu, Y.; Xu, X. Modification of Myofibrillar Protein Functional Properties Prepared by Various Strategies: A Comprehensive Review. Compr. Rev. Food Sci. Food Saf. 2021, 20(1), 458–500. DOI: 10.1111/1541-4337.12665.
  • Du, X.; Zhao, M.; Pan, N.; Wang, S.; Xia, X.; Zhang, D. Tracking Aggregation Behaviour and Gel Properties Induced by Structural Alterations in Myofibrillar Protein in Mirror Carp (Cyprinus Carpio) Under the Synergistic Effects of pH and Heating. Food .Chem. 2021, 362, 130222. DOI: 10.1016/j.foodchem.2021.130222.
  • Pan, N.; Hu, Y.; Li, Y.; Ren, Y.; Kong, B.; Xia, X. Changes in the Thermal Stability and Structure of Myofibrillar Protein from Quick-Frozen Pork Patties with Different Fat Addition Under Freeze-Thaw Cycles. Meat. Sci. 2021, 175, 108420. DOI: 10.1016/j.meatsci.2020.108420.
  • Gan, S.; Zhang, M.; Mujumdar, A. S.; Jiang, Q. Effects of Different Thawing Methods on Quality of Unfrozen Meats. Int. J. Refrig. 2022, 134, 168–175. DOI: 10.1016/j.ijrefrig.2021.11.030.
  • Zhang, W.; Cao, A.; Shi, P.; Cai, L. Rapid Evaluation of Freshness of Largemouth Bass Under Different Thawing Methods Using Hyperspectral Imaging. Food. Control. 2021, 125, 125. DOI: 10.1016/j.foodcont.2021.108023.
  • Cai, L.; Wan, J.; Li, X.; Li, J. Effects of Different Thawing Methods on Conformation and Oxidation of Myofibrillar Protein from Largemouth Bass (Micropterus Salmoides). J. Food Sci. 2020, 85(8), 2470–2480. DOI: 10.1111/1750-3841.15336.
  • Bowker, B.; Zhuang, H. Freezing-Thawing and Sub-Sampling Influence the Marination Performance of Chicken Breast Meat. Poult. Sci. 2017, 96(9), 3482–3488. DOI: 10.3382/ps/pex117.
  • Kim, H. W.; Lee, S. H.; Choi, J. H.; Choi, Y. S.; Kim, H. Y.; Hwang, K. E.; Park, J. H.; Song, D. H.; Kim, C. J. Effects of Rigor State, Thawing Temperature, and Processing on the Physicochemical Properties of Frozen Duck Breast Muscle. Poult. Sci. 2012, 91(10), 2662–2667. DOI: 10.3382/ps.2012-02154.
  • Wu, X.; Song, X.; Qiu, Z.; He, Y. Mapping of TBARS Distribution in Frozen-Thawed Pork Using NIR Hyperspectral Imaging. Meat. Sci. 2016, 113, 92–96. DOI: 10.1016/j.meatsci.2015.11.008.
  • Liu, R.; Zhao, S.-M.; Xie, B.-J.; Xiong, S.-B. Contribution of Protein Conformation and Intermolecular Bonds to Fish and Pork Gelation Properties. Food. Hydrocolloid. 2011, 25(5), 898–906. DOI: 10.1016/j.foodhyd.2010.08.016.
  • Zhao, B.; Zhang, S.; Li, S.; Zhou, H.; Ren, S.; Li, J.; Chen, W.; Zhao, Y.; Wang, S. Effect of Lipid Oxidation on Myofibrillar Protein Oxidation, structure and Functional Characteristics. Food. Sci. 2018, 39(5), 40–46. DOI: 10.7506/spkx1002-6630-201805007.
  • Jia, G.; Nirasawa, S.; Ji, X.; Luo, Y.; Liu, H. Physicochemical Changes in Myofibrillar Proteins Extracted from Pork Tenderloin Thawed by a High-Voltage Electrostatic Field. Food. Chem. 2018, 240, 910–916. DOI: 10.1016/j.foodchem.2017.07.138.
  • Cao, R.; Chen, Y.; Zhao, Y.; Liu, Q.; Huang, X. Effect of Thawing Methods on Processing Quality of Antarctic Krill. Trans. Chin. Soc. Agric. Eng. 2015, 31(17), 289–294. DOI: 10.11975/j.issn.1002-6819.2015.17.038.
  • Kissam, A. D.; Nelson, R. W.; Ngao, J.; Hunter, P. Water-Thawing of Fish Using Low Frequency Acoustics. J. Food Sci. 1982, 47(1), 71–75. DOI: 10.1111/j.1365-2621.1982.tb11029.x.
  • Cheng, L.; Sun, D. W.; Zhu, Z.; Zhang, Z. Emerging Techniques for Assisting and Accelerating Food Freezing Processes: A Review of Recent Research Progresses. Crit. Rev. Food Sci. Nutr. 2017, 57(4), 769–781. DOI: 10.1080/10408398.2015.1004569.
  • Tuell, J. R.; Seo, J. K.; Kim, Y. H. B. Combined Impacts of Initial Freezing Rate of Pork Leg Muscles (M. Biceps Femoris and M. Semitendinosus) and Subsequent Freezing on Quality Characteristics of Pork Patties. Meat. Sci. 2020, 170, 108248. DOI: 10.1016/j.meatsci.2020.108248.
  • Wan, H.; Ying, X.; Zhao, B.; Zhang, M.; Gong, C.; Xu, K.; Wang, Y.; Yang, Z.; Chen, G.; Wu, T., et al. Effects of Different Thawing Methods on the Thawing Quality of Sashimi Fillets. Food. Sci. 2021. DOI: 10.7506/spkx1002-6630-20210524-290.
  • Xia, X.; Kong, B.; Xiong, Y.; Ren, Y. Decreased Gelling and Emulsifying Properties of Myofibrillar Protein from Repeatedly Frozen-Thawed Porcine Longissimus Muscle are Due to Protein Denaturation and Susceptibility to Aggregation. Meat. Sci. 2010, 85(3), 481–486. DOI: 10.1016/j.meatsci.2010.02.019.
  • Ji, X.; Luo, X.; Zhu, L.; Mao, Y.; Lu, X.; Chen, X.; Hopkins, D. L.; Zhang, Y. Effect of Medium Voltage Electrical Stimulation and Prior Ageing on Beef Shear Force During Superchilled Storage. Meat. Sci. 2021, 172, 108320. DOI: 10.1016/j.meatsci.2020.108320.
  • Li, X.; Wang, Y.; Sun, Y. Y.; Pan, D. D.; Cao, J. X. The Effect of Ultrasound Treatments on the Tenderizing Pathway of Goose Meat During Conditioning. Poult. Sci. 2018, 97(8), 2957–2965. DOI: 10.3382/ps/pey143.
  • Zhang, X.; Gao, T.; Song, L.; Zhang, L.; Jiang, Y.; Li, J.; Gao, F.; Zhou, G. Effects of Different Thawing Methods on the Quality of Chicken Breast. Int J. Food Sci. Tech. 2017, 52(9), 2097–2105. DOI: 10.1111/ijfs.13488.
  • Taşkıran, M.; Olum, E.; Candoğan, K. Changes in Chicken Meat Proteins During Microwave and Electric Oven Cooking. J. Food Process. Pres. 2019, 44(2). DOI: 10.1111/jfpp.14324.
  • Vieira, C.; Diaz, M. T.; Martinez, B.; Garcia-Cachan, M. D. Effect of Frozen Storage Conditions (Temperature and Length of Storage) on Microbiological and Sensory Quality of Rustic Crossbred Beef at Different States of Ageing. Meat. Sci. 2009, 83(3), 398–404. DOI: 10.1016/j.meatsci.2009.06.013.
  • Rawls, H. R.; Santen, P. J. V. Singlet Oxygen: A Possible Source of Original Hyperoxides in Fatty Acids. Ann. Ny. Acad. Sci. 1970, 171(1 International), 135–137. DOI: 10.1111/j.1749-6632.1970.tb39316.x.
  • Wang, A.; Kang, D.; Zhang, W.; Zhang, C.; Zou, Y.; Zhou, G. Changes in Calpain Activity, Protein Degradation and Microstructure of Beef M. Semitendinosus by the Application of Ultrasound. Food. Chem. 2018, 245, 724–730. DOI: 10.1016/j.foodchem.2017.12.003.
  • Li, Z.; Li, M.; Du, M.; Shen, Q. W.; Zhang, D. Dephosphorylation Enhances Postmortem Degradation of Myofibrillar Proteins. Food. Chem. 2018, 245, 233–239. DOI: 10.1016/j.foodchem.2017.09.108.
  • Setyabrata, D.; Kim, Y. H. B. Impacts of Aging/Freezing Sequence on Microstructure, Protein Degradation and Physico-Chemical Properties of Beef Muscles. Meat. Sci. 2019, 151, 64–74. DOI: 10.1016/j.meatsci.2019.01.007.
  • Boonsumrej, S.; Chaiwanichsiri, S.; Tantratian, S.; Suzuki, T.; Takai, R. Effects of Freezing and Thawing on the Quality Changes of Tiger Shrimp (Penaeus Monodon) Frozen by Air-Blast and Cryogenic Freezing. J. Food Eng. 2007, 80(1), 292–299. DOI: 10.1016/j.jfoodeng.2006.04.059.
  • Wang, X.; Muhoza, B.; Wang, X.; Feng, T.; Xia, S.; Zhang, X. Comparison Between Microwave and Traditional Water Bath Cooking on Saltiness Perception, Water Distribution and Microstructure of Grass Crap Meat. Food. Res. Int. 2019, 125, 108521. DOI: 10.1016/j.foodres.2019.108521.
  • Du, X.; Li, H.; Nuerjiang, M.; Shi, S.; Kong, B.; Liu, Q.; Xia, X. Application of Ultrasound Treatment in Chicken Gizzards Tenderization: Effects on Muscle Fiber and Connective Tissue. Ultrason. Sonochem. 2021, 79, 105786. DOI: 10.1016/j.ultsonch.2021.105786.
  • Chen, L.; Feng, X. C.; Zhang, Y. Y.; Liu, X. B.; Zhang, W. G.; Li, C. B.; Ullah, N.; Xu, X. L.; Zhou, G. H. Effects of Ultrasonic Processing on Caspase-3, Calpain Expression and Myofibrillar Structure of Chicken During Post-Mortem Ageing. Food. Chem. 2015, 177, 280–287. DOI: 10.1016/j.foodchem.2014.11.064.
  • Giroud, A.; Leblond, C. P. The Keratinization of Epidermis and Its Derivatives, Especially the Hair, as Shown by X-Ray Diffraction and Histochemical Studies. Ann. Ny. Acad. Sci. 1951, 53(3), 613–626. DOI: 10.1111/j.1749-6632.1951.tb31963.x.
  • Rudall, K. M.; Kenchington, W. Arthropod Silks: The Problem of Fibrous Proteins in Animal Tissues. Annu. Rev. Entomol. 1971, 16(1), 73–96. DOI: 10.1146/annurev.en.16.010171.000445.
  • Alix, A. J. P.; Pedanou, G.; Berjot, M. Fast Determination of the Quantitative Secondary Structure of Proteins by Using Some Parameters of the Raman Amide I Band. J. Mol. Struct. 1988, 174, 159–164. DOI: 10.1016/0022-2860(88)80151-0.
  • Herrero, A. M.; Cambero, M. I.; Ordonez, J. A.; De La Hoz, L.; Carmona, P. Raman Spectroscopy Study of the Structural Effect of Microbial Transglutaminase on Meat Systems and Its Relationship with Textural Characteristics. Food. Chem. 2008, 109(1), 25–32. DOI: 10.1016/j.foodchem.2007.12.003.
  • Wang, B.; Kong, B.; Li, F.; Liu, Q.; Zhang, H.; Xia, X. Changes in the Thermal Stability and Structure of Protein from Porcine Longissimus Dorsi Induced by Different Thawing Methods. Food. Chem. 2020, 316, 126375. DOI: 10.1016/j.foodchem.2020.126375.
  • Xu, B.; Zhang, M.; Bhandari, B.; Sun, J.; Gao, Z. Infusion of CO2 in a Solid Food: A Novel Method to Enhance the Low-Frequency Ultrasound Effect on Immersion Freezing Process. Innov. Food Sci. Emerg. 2016, 35, 194–203. DOI: 10.1016/j.ifset.2016.04.011.
  • Cai, L.; Zhang, W.; Cao, A.; Cao, M.; Li, J. Effects of Ultrasonics Combined with Far Infrared or Microwave Thawing on Protein Denaturation and Moisture Migration of Sciaenops Ocellatus (Red Drum). Vol. 55. [J]. Ultrason Sonochem. 2019, pp. 96–104. doi:10.1016/j.ultsonch.2019.03.017
  • Lan, W.; Zhao, Y.; Gong, T.; Mei, J.; Xie, J. Effects of Different Thawing Methods on the Physicochemical Changes, Water Migration and Protein Characteristic of Frozen Pompano (Trachinotus Ovatus). J. Food Biochem. 2021, 45(8), e13826. DOI: 10.1111/jfbc.13826.
  • Sun, F.; Huang, Q.; Hu, T.; Xiong, S.; Zhao, S. Effects and Mechanism of Modified Starches on the Gel Properties of Myofibrillar Protein from Grass Carp. Int. J. Biol. Macromol. 2014, 64, 17–24. DOI: 10.1016/j.ijbiomac.2013.11.019.
  • Xia, X.; Kong, B.; Liu, J.; Diao, X.; Liu, Q. Influence of Different Thawing Methods on Physicochemical Changes and Protein Oxidation of Porcine Longissimus Muscle. LWT - Food Sci. Technol. 2012, 46(1), 280–286. DOI: 10.1016/j.lwt.2011.09.018.
  • Kelly, S. M.; Jess, T. J.; Price, N. C. How to Study Proteins by Circular Dichroism. Acta. Bioch Bioph Sin. 2005, 1751(2), 119–139. DOI: 10.1016/j.bbapap.2005.06.005.
  • Li, F.; Wang, B.; Liu, Q.; Chen, Q.; Zhang, H.; Xia, X.; Kong, B. Changes in Myofibrillar Protein Gel Quality of Porcine Longissimus Muscle Induced by Its Structural Modification Under Different Thawing Methods. Meat. Sci. 2019, 147, 108–115. DOI: 10.1016/j.meatsci.2018.09.003.