1,276
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Wild bilberry, blackcurrant, and blackberry by-products as a source of nutritional and bioactive compounds

, , &
Pages 1579-1595 | Received 03 Apr 2023, Accepted 08 Jun 2023, Published online: 15 Jun 2023

References

  • Dawkins, E.; André, K.; Axelsson, K.; Benoist, L.; Swartling, Å. G.; Persson, Å. Advancing Sustainable Consumption at the Local Government Level: A Literature Review. J. Clean. Prod. 2019, 231, 1450–1462. DOI: 10.1016/j.jclepro.2019.05.176.
  • Azapagic, A.; Stamford, L.; Youds, L.; Barteczko-Hibbert, C. Towards Sustainable Production and Consumption: A Novel DEcision-Support Framework IntegRating Economic, Environmental and Social Sustainability (DESIRES). Comput. Chem. Eng. 2016, 91, 93–103. DOI: 10.1016/j.compchemeng.2016.03.017.
  • George, T. E.; Karatu, K.; Edward, A. An Evaluation of the Environmental Impact Assessment Practice in Uganda: Challenges and Opportunities for Achieving Sustainable Development. Heliyon. 2020, 6(9), e04758. DOI: 10.1016/j.heliyon.2020.e04758.
  • Arruda, H. S.; Silva, E. K.; Peixoto Araujo, N. M.; Pereira, G. A.; Pastore, G. M.; Marostica Junior, M. R. Anthocyanins Recovered from Agri-Food By-Products Using Innovative Processes: Trends, Challenges, and Perspectives for Their Application in Food Systems. Molecules. 2021, 26(9), 2632. DOI: 10.3390/molecules26092632.
  • Marcillo-Parra, V.; Tupuna–Yerovi, D. S.; González, Z.; Ruales, J. Encapsulation of Bioactive Compounds from Fruit and Vegetable By–Products for Food Application—A Review. Trends Food Sci. Technol. 2021, 116, 11–23. DOI: 10.1016/j.tifs.2021.07.009.
  • Patra, A.; Abdullah, S.; Pradhan, R. C. Review on the Extraction of Bioactive Compounds and Characterization of Fruit Industry By-Products. Bioresour. Bioprocess. 2022, 9(1), 14. DOI: 10.1186/s40643-022-00498-3.
  • Pathania, S.; Kaur, N. Utilization of Fruits and Vegetable By-Products for Isolation of Dietary Fibers and Its Potential Application as Functional Ingredients. Bioact. Carbohydr. Diet. Fibre. 2022, 27, 100295. DOI: 10.1016/j.bcdf.2021.100295.
  • Campos, D. A.; Gómez-García, R.; Vilas-Boas, A. A.; Madureira, A. R.; Pintado, M. M. Management of Fruit Industrial By-Products—a Case Study on Circular Economy Approach. Molecules. 2020, 25(2), 320. DOI: 10.3390/molecules25020320.
  • Mohd Basri, M. S.; Abdul Karim Shah, N. N.; Sulaiman, A.; Mohamed Amin Tawakkal, I. S.; Mohd nor, M. Z.; Ariffin, S. H.; Abdul Ghani, N. H.; Mohd Salleh, F. S. Progress in the Valorization of Fruit and Vegetable Wastes: Active Packaging, Biocomposites, By-Products, and Innovative Technologies Used for Bioactive Compound Extraction. Polymers. 2021, 13(20), 3503. DOI: 10.3390/polym13203503.
  • Ben-Othman, S.; Joudu, I.; Bhat, R. Bioactives from Agri-Food Wastes: Present Insights and Future Challenges. Molecules. 2020, 25(3), 510. DOI: 10.3390/molecules25030510.
  • Majerska, J.; Michalska, A.; Figiel, A. A Review of New Directions in Managing Fruit and Vegetable Processing By-Products. Trends Food Sci. Technol. 2019, 88, 207–219. DOI: 10.1016/j.tifs.2019.03.021.
  • Fierascu, R. C.; Sieniawska, E.; Ortan, A.; Fierascu, I.; Xiao, J. Fruits By-Products–a Source of Valuable Active Principles. A Short Review. Front. Bioeng. Biotechnol. 2020, 8. DOI: 10.3389/fbioe.2020.00319.
  • Lianza, M.; Marincich, L.; Antognoni, F. The Greening of Anthocyanins: Eco-Friendly Techniques for Their Recovery from Agri-Food By-Products. Antioxidants. 2022, 11(11), 2169. DOI: 10.3390/antiox11112169.
  • Adami, R.; Salvo, G.; Meneses, M.; Järvenpää, E.; Huopalahti, R.; Sesti Osséo, L.; Reverchon, E. Innovative Treatment of Bilberry By-Products for a Selective Recovery of Anthocyanin Compounds. In Proceedings of the 10th Conference on Supercritical Fluids and Their Applications, Naples, Italy, 29 April–6 May 2013.
  • Aura, A. M.; Holopainen-Mantila, U.; Sibakov, J.; Kössö, T.; Mokkila, M.; Kaisa, P. Bilberry and Bilberry Press Cake as Sources of Dietary Fibre. Food Nutr. Res. 2015, 59(1), 28367. DOI: 10.3402/fnr.v59.28367.
  • Dabbou, S.; Ferrocino, I.; Kovitvadhi, A.; Dabbou, S.; Bergagna, S.; Dezzuto, D.; Schiavone, A.; Cocolin, L.; Gai, F.; Santoro, V., et al. Bilberry Pomace in Rabbit Nutrition: Effects on Growth Performance, Apparent Digestibility, Caecal Traits, Bacterial Community and Antioxidant Status. Animal. 2019, 13(1), 53–63.
  • Zhang, G.; Dai, X. Antiaging Effect of Anthocyanin Extracts from Bilberry on Natural or UV-Treated Male Drosophila Melanogaster. Curr. Res. Food Sci. 2022, 5, 1640–1648. DOI: 10.1016/j.crfs.2022.09.015.
  • Alnajjar, M.; Barik, S. K.; Bestwick, C.; Campbell, F.; Cruickshank, M.; Farquharson, F.; Holtrop, G.; Horgan, G.; Louis, P.; Moar, K.-M.; et al. Anthocyanin-Enriched Bilberry Extract Attenuates Glycaemic Response in Overweight Volunteers without Changes in Insulin. J. Funct. Foods. 2020, 64, 103597. DOI: 10.1016/j.jff.2019.103597.
  • Milenkovic, D.; Krga, I.; Dinel, A.; Morand, C.; Laye, S.; Castanon, N. Nutrigenomic Modification Induced by Anthocyanin-Rich Bilberry Extract in the Hippocampus of ApoE-/- Mice. J. Funct. Foods. 2021, 85, 104609. DOI: 10.1016/j.jff.2021.104609.
  • Lavecchia, R.; Medici, F.; Piga, L.; Zuorro, A. Factorial Design Analysis of the Recovery of Flavonoids from Bilberry Fruit By-Products. Int. J. Appl. Eng. Res. 2015, 23, 43555–43559.
  • Svanberg, L.; Malmberg, K.; Gustinelli, G.; Öhgren, C.; Persson, I.; Brive, L.; Wassén, S. Effect of Anthocyanins on Lipid Oxidation and Microbial Spoilage in Value-Added Emulsions with Bilberry Seed Oil, Anthocyanins and Cold Set Whey Protein Hydrogels. Food Chem. 2019, 272, 273–278. DOI: 10.1016/j.foodchem.2018.06.064.
  • Syrpas, M.; Valanciene, E.; Augustiniene, E.; Malys, N. Valorization of Bilberry (Vaccinium Myrtillus L.) Pomace by Enzyme-Assisted Extraction: Process Optimization and Comparison with Conventional Solid-Liquid Extraction. Antioxidants. 2021, 10(5), 773. DOI: 10.3390/antiox10050773.
  • Zhou, L.; Lie, Y.; Briers, H.; Fan, J.; Remón, J.; Nyström, J.; Budarin, V.; Macquarrie, D.; McElroy, C. R. Natural Product Recovery from Bilberry (Vaccinium Myrtillus L.) Presscake via Microwave Hydrolysis. ACS Sustain. Chem. Eng. 2018, 6(3), 3676–3685. DOI: 10.1021/acssuschemeng.7b03999.
  • Zannou, O.; Koca, I. Greener Extraction of Anthocyanins and Antioxidant Activity from Blackberry (Rubus Spp) Using Natural Deep Eutectic Solvents. LWT. 2022, 158, 113184. DOI: 10.1016/j.lwt.2022.113184.
  • Schulz, M.; Seraglio, S. K. T.; Della Betta, F.; Nehring, P.; Valese, A. C.; Daguer, H.; Gonzaga, L. V.; Costa, A. C. O.; Fett, R. Blackberry (Rubus Ulmifolius Schott): Chemical Composition, Phenolic Compounds and Antioxidant Capacity in Two Edible Stages. Food. Res. Int. 2019, 122, 627–634. DOI: 10.1016/j.foodres.2019.01.034.
  • Kaume, L.; Howard, L. R.; Devareddy, L. The Blackberry Fruit: A Review on Its Composition and Chemistry, Metabolism and Bioavailability, and Health Benefits. J. Agric. Food. Chem. 2012, 60(23), 5716–5727. DOI: 10.1021/jf203318p.
  • Rasheed, H. U.; Nawaz, H.; Rehman, R.; Mushtaq, A.; Rashid, U. The Blackberry: A Review on Its Composition and Chemistry, Uses and Bioavailability and Potential Health Benefits. Int. J. Chem. Biochem. Sci. 2017, 11, 120–128. DOI: 10.1021/jf203318p.
  • Moraes, D. P.; Chim, J. F.; Barin, J. S.; Vizzotto, M.; Farias, C. A. A.; Ballus, C. A.; Barcia, M. T. Influence of the Cultivar on the Composition of Blackberry (Rubus Spp.) Minerals. J. Food Compos. Anal. 2021, 100, 103913. DOI: 10.1016/j.jfca.2021.103913.
  • Kalušević, A.; Salević, A.; Djordjević, R.; Veljović, M.; Nedović, V. Raspberry and Blackberry Pomaces as Potential Sources of Bioactive Compounds. Ukr. Food J. 2016, 5(3), 485–491. DOI: 10.24263/2304-974X-2016-5-3-7.
  • Metzner Ungureanu, C.-R.; Lupitu, A. I.; Moisa, C.; Rivis, A.; Copolovici, L. O.; Poiana, M.-A. Investigation on High-Value Bioactive Compounds and Antioxidant Properties of Blackberries and Their Fractions Obtained by Home-Scale Juice Processing. Sustainability. 2020, 12(14), 5681. DOI: 10.3390/su12145681.
  • Isopencu, G. O.; Stoica-Guzun, A.; Busuioc, C.; Stroescu, M.; Deleanu, I. M. Development of Antioxidant and Antimicrobial Edible Coatings Incorporating Bacterial Cellulose, Pectin, and Blackberry Pomace. Carbohydr. Polym. Technol Appl. 2021, 2, 100057. DOI: 10.1016/j.carpta.2021.100057.
  • Tarasevičienė, Ž.; Čechovičiene, I.; Paulauskienė, A.; Gumbytė, M.; Blinstrubienė, A.; Burbulis, N. The Effect of Berry Pomace on Quality Changes of Beef Patties During Refrigerated Storage. Foods. 2022, 11(15), 2180. DOI: 10.3390/foods11152180.
  • Yang, W.; Kortesniemi, M.; Ma, X.; Zheng, J.; Yang, B. Enzymatic Acylation of Blackcurrant (Ribes nigrum) Anthocyanins and Evaluation of Lipophilic Properties and Antioxidant Capacity of Derivatives. Food Chem. 2019, 281, 189–196. DOI: 10.1016/j.foodchem.2018.12.111.
  • Jurčaga, L.; Bobko, M.; Kolesárová, A.; Bobková, A.; Demianová, A.; Haščík, P.; Belej, Ľ.; Mendelová, A.; Bučko, O.; Kročko, M., et al. Blackcurrant (Ribes Nigrum L.) and Kamchatka Honeysuckle (Lonicera Caerulea Var. Kamtschatica) Extract Effects on Technological Properties, Sensory Quality, and Lipid Oxidation of Raw-Cooked Meat Product (Frankfurters). Foods. 2021, 10(12), 2957.
  • Gagneten, M.; Archaina, D. A.; Salas, M. P.; Leiva, G. E.; Salvatori, D. M.; Schebor, C. Gluten-Free Cookies Added with Fibre and Bioactive Compounds from Blackcurrant Residue. Int. J. Food Sci. Technol. 2021, 56(4), 1734–1740. DOI: 10.1111/ijfs.14798.
  • Basegmez, H. I. O.; Povilaitis, D.; Kitrytė, V.; Kraujalienė, V.; Šulniūtė, V.; Alasalvar, C.; Venskutonis, P. R. Biorefining of Blackcurrant Pomace into High-Value Functional Ingredients Using Supercritical CO2, Pressurized Liquid and Enzyme Assisted Extractions. J. Supercrit Fluids. 2017, 124, 10–19. DOI: 10.1016/j.supflu.2017.01.003.
  • Xue, B.; Hui, X.; Chen, X.; Luo, S.; Dilrukshi, H. N. N.; Wu, G.; Chen, C. Application, Emerging Health Benefits, and Dosage Effects of Blackcurrant Food Formats. J. Funct. Foods. 2022, 95, 105147. DOI: 10.1016/j.jff.2022.105147.
  • Mäkilä, L.; Laaksonen, O.; Diaz, J. M. R.; Vahvaselkä, M.; Myllymäki, O.; Lehtomäki, I.; Laakso, S.; Jahreis, G.; Jouppila, K.; Larmo, P. Exploiting Blackcurrant Juice Press Residue in Extruded Snacks. LWT-Food Sci. Technol. 2014, 57(2), 618–627. DOI: 10.1016/j.lwt.2014.02.005.
  • Michalska, A.; Wojdyło, A.; Lech, K.; Łysiak, G.; Figiel, A. Effect of Different Drying Techniques on Physical Properties, Total Polyphenols and Antioxidant Capacity of Blackcurrant Pomace Powders. LWT. 2017, 78, 114–121. DOI: 10.1016/j.lwt.2016.12.008.
  • Lorenzo, J. M.; Pateiro, M.; Domínguez, R.; Barba, F. J.; Putnik, P.; Bursać Kovačević, D.; Shpigelman, A.; Granato, D.; Franco, D. Berries Extracts as Natural Antioxidants in Meat Products: A Review. Food. Res. Int. 2018, 106, 1095–1104. DOI: 10.1016/j.foodres.2017.12.005.
  • Kurek, M.; Benbettaieb, N.; Ščetar, M.; Chaudy, E.; Repajić, M.; Klepac, D.; Valić, S.; Debeaufort, F.; Galić, K. Characterization of Food Packaging Films with Blackcurrant Fruit Waste as a Source of Antioxidant and Color Sensing Intelligent Material. Molecules. 2021, 26(9), 2569. DOI: 10.3390/molecules26092569.
  • Alchera, F.; Ginepro, M.; Giacalone, G. Microwave-Assisted Extraction of Polyphenols from Blackcurrant By-Products and Possible Uses of the Extracts in Active Packaging. Foods. 2022, 11(18), 2727. DOI: 10.3390/foods11182727.
  • Singleton, V. L.; Orthofer, R.; Lamuela-Raventos, R. M. Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants Using Folin-Ciocalteau Reagent. Methods Enzymol. 1999, 299, 152–178. DOI: 10.1016/S0076-6879(99)99017-1.
  • Giusti, M. M.; Wrolstad, R. E. Characterization and Measurement of Anthocyanins by UV-Visible Spectroscopy. In Current Protocols in Food Analytical Chemistry, Wrolstad, R.E., Acree, T.E., An, H., Decker, E.A., Penner, M.H., Reid, D.S., Schwartz, S.J., Shoemaker, C.F., Sporns, P., Eds. John Wiley & Sons, Inc.: New York, USA, 2001; F1.2.1–F1.2.13.
  • Mohammadzadeh, S.; Sharriatpanahi, M.; Hamedi, M.; Amanzadeh, Y.; Sadat Ebrahimi, S. E.; Ostad, S. N. Antioxidant Power of Iranian Propolis Extract. Food Chem. 2007, 103(3), 729–733. DOI: 10.1016/j.foodchem.2006.09.014.
  • Oliveira, I.; Sousa, A.; Ferreira, I. C. F. R.; Bento, A.; Estevinho, L.; Pereira, J. A. Total Phenols, Antioxidant Potential and Antimicrobial Activity of Walnut (Juglans Regia L.) Green Husks. Food. Chem. Toxicol. 2008, 46(7), 2326–2331. DOI: 10.1016/j.fct.2008.03.017.
  • Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic Biol Med. 1999, 26(9–10), 1231–1237. DOI: 10.1016//S0891-5849(98)00315-3.
  • Vlad, C. C.; Păcularu-Burada, B.; Vasile, A. M.; Milea, Ș. A.; Bahrim, G. E.; Râpeanu, G.; Stănciuc, N. Upgrading the Functional Potential of Apple Pomace in Value-Added Ingredients with Probiotics. Antioxidants 2022, 11(10), 2028. DOI: 10.3390/antiox11102028
  • Liao, X.; Greenspan, P.; Pegg, R. B. Examining the Performance of Two Extraction Solvent Systems on Phenolic Constituents from U.S. Southeastern Blackberries. Molecules. 2021, 26(13), 4001. DOI: 10.3390/molecules26134001.
  • Nemetz, N. J.; Schieber, A.; Weber, F. Application of Crude Pomace Powder of Chokeberry, Bilberry, and Elderberry as a Coloring Foodstuff. Molecules. 2021, 26(9), 2689. DOI: 10.3390/molecules26092689.
  • Górnás, P.; Juhņevića-Radenkova, K.; Radenkovs, V.; Mišina, I.; Pugajeva, I.; Soliven, A.; Segliņa, D. The Impact of Different Baking Conditions on the Stability of the Extractable Polyphenols in Muffins Enriched by Strawberry, Sour Cherry, Raspberry or Black Currant Pomace. LWT. Food Sci. Technol. 2016, 65, 946–953. DOI: 10.1016/j.lwt.2015.09.029.
  • Pires, T. C. S. P.; Inês Dias, M.; Calhelha, R. C.; José Alves, M.; Santos-Buelga, C.; Ferreira, I. C. F. R.; Barros, L. Development of New Bilberry (Vaccinium Myrtillus L.) Based Snacks: Nutritional, Chemical and Bioactive Features. Food Chem. 2021, 334, 127511. DOI: 10.1016/j.foodchem.2020.127511.
  • Pasquel-Reátegui, J. L.; Da Fonseca Machado, A. P.; Barbero, G. F.; Rezende, C. A.; Martinez, J. Extraction of Antioxidant Compounds from Blackberry (Rubus Sp.) Bagasse Using Supercritical CO2 Assisted by Ultrasound. J. Supercrit Fluids. 2014, 94, 223–233. DOI: 10.1016/j.supflu.2014.07.019.
  • Alba, K.; Macnaughtan, W.; Laws, A.; Foster, T. J.; Campbell, G.; Kontogiorgos, V. Fractionation and Characterisation of Dietary Fibre from Blackcurrant Pomace. Food Hydrocoll. 2018, 81, 398–408. DOI: 10.1016/j.foodhyd.2018.03.023.
  • Piasecka, I.; Wiktor, A.; Górska, A. Alternative Methods of Bioactive Compounds and Oils Extraction from Berry Fruit By-Products—a Review. Appl. Sci. 2022, 12(3), 1734. DOI: 10.3390/app12031734.
  • Reißner, A.-M.; Alhamimi, S.; Quiles, A.; Schmidt, C.; Struck, S.; Hernando, I.; Turner, C.; Rohm, H. Composition and Physicochemical Properties of Dried Berry Pomace. J. Sci. Food Agric. 2019, 99(3), 1284–1293. DOI: 10.1002/jsfa.9302.
  • Zafra-Rojas, Q.; Cruz-Cansino, N.; Delgadillo-Ramírez, A.; Alanis, E.; Añorve-Morga, J.; Quintero-Lira, A.; Castañeda, A.; Ramírez-Moreno, E. Organic Acids, Antioxidants, and Dietary Fiber of Mexican Blackberry (Rubus fruticosus) Residues Cv. Tupy. J. Food Qual. 2018, 1, 5950761. DOI: 10.1155/2018/5950761.
  • Van Hoed, V.; De Clercq, N.; Echim, C.; Andjelkovic, M.; Leber, E.; Dewettinck, K.; Verhe, R. Berry Seeds: A Source of Specialty Oils with High Content of Bioactives and Nutritional Value. J. Food Lipids. 2009, 16(1), 33–49. DOI: 10.1111/j.1745-4522.2009.01130.x.
  • Piasecka, I.; Górska, A.; Ostrowska-Ligeza, E.; Kalisz, S. The Study of Thermal Properties of Blackberry, Chokeberry and Raspberry Seeds and Oils. Appl. Sci. 2021, 11(16), 7704. DOI: 10.3390/app11167704.
  • Bada, J.; León-Camacho, M.; Copovi, P.; Alonso, L. Characterization of Berry and Currant Seed Oils from Asturias, Spain. Int. J. Food. Prop. 2014, 17(1), 77–85. DOI: 10.1080/10942912.2011.614369.
  • Dobson, G.; Shrestha, M.; Hilz, H.; Karjalainen, R.; McDougall, G.; Stewart, D. Lipophilic Components in Black Currant Seed and Pomace Extracts. Eur. J. Lipid Sci. Technol. 2012, 114(5), 575–582. DOI: 10.1002/ejlt.201100313.
  • Radočaj, O.; Vujasinović, V.; Dimić, E.; Basić, Z. Blackberry (Rubus Fruticosus L.) and Raspberry (Rubus idaeus L.) Seed Oils Extracted from Dried Press Pomace After Longterm Frozen Storage of Berries Can Be Used as Functional Food Ingredients. Eur. J. Lipid Sci. Technol. 2014, 116(8), 1015–1024. DOI: 10.1002/ejlt.201400014.
  • Wajs-Bonikowska, A.; Stobiecka, A.; Bonikowski, R.; Krajewska, A.; Sikora, M.; Kula, J. A Comparative Study on Composition and Antioxidant Activities of Supercritical Carbon Dioxide, Hexane and Ethanol Extracts from Blackberry (Rubus fruticosus) Growing in Poland. J. Sci. Food Agric. 2017, 97(11), 3576–3583. DOI: 10.1002/jsfa.8216.
  • Dulf, F. V.; Andrei, S.; Bunea, A.; Socaciu, C. Fatty Acid and Phytosterol Contents of Some Romanian Wild and Cultivated Berry Pomaces. Chem. Pap. 2012, 66(10), 925–934. DOI: 10.2478/s11696-012-0156-0.
  • Helbig, D.; Böhm, V.; Wagner, A.; Schubert, R.; Jahreis, G. Berry Seed Press Residues and Their Valuable Ingredients with Special Regard to Black Currant Seed Press Residues. Food Chem. 2008, 111(4), 1043–1049. DOI: 10.1016/j.foodchem.2008.05.017.
  • Yang, B.; Ahotupa, M.; Määttä, P.; Kallio, H. Composition and Antioxidative Activities of Supercritical CO2-Extracted Oils from Seeds and Soft Parts of Northern Berries. Food. Res. Int. 2011, 44(7), 2009–2017. DOI: 10.1016/j.foodres.2011.02.025.
  • Gođevac, D.; Tešević, V.; Vajs, V.; Milosavljević, S.; Stanković, M. Blackberry Seed Extracts and Isolated Polyphenolic Compounds Showing Protective Effect on Human Lymphocytes DNA. J. Food Sci. 2011, 76(7), C1039–C1043. DOI: 10.1111/j.1750-3841.2011.02305.x.
  • Zhao, M.; Chiriboga, D.; Olendzki, B.; Xie, B.; Li, Y.; McGonigal, L. J.; Maldonado-Contreras, A.; Ma, Y. Substantial Increase in Compliance with Saturated Fatty Acid Intake Recommendations After One Year Following the American Heart Association Diet. Nutrients 2018, 10, 1486. DOI: 10.3390/nu10101486
  • Lenighan, Y. M.; McNulty, B. A.; Roche, H. M. Dietary Fat Composition: Replacement of Saturated Fatty Acids with PUFA as a Public Health Strategy, with an Emphasis on Alpha-Linolenic Acid. Proc. Nutr. Soc. 2019, 78(2), 234–245. DOI: 10.1017/S0029665118002793.
  • Mariamenatu, A. H.; Abdu, E. M.; Kostner, G. M. Overconsumption of Omega-6 Polyunsaturated Fatty Acids (PUFAs) versus Deficiency of Omega-3 PUFAs in Modern-Day Diets: The Disturbing Factor for Their “Balanced Antagonistic Metabolic Functions” in the Human Body. J. Lipids. 2021, 2021, 1–15. DOI: 10.1155/2021/8848161.
  • Bobinaitė, R.; Pataro, G.; Lamanauskas, N.; Šatkauskas, S.; Viškelis, P.; Ferrari, G. Application of Pulsed Electric Field in the Production of Juice and Extraction of Bioactive Compounds from Blueberry Fruits and Their By-Products. J. Food Sci. Technol. 2015, 52(9), 5898–5905. DOI: 10.1007/s13197-014-1668-0.
  • Zorenč, Z.; Veberic, R.; Stampar, F.; Koron, D.; Mikulic-Petkovsek, M. Changes in Berry Quality of Northern Highbush Blueberry (Vaccinium Corymbosum L.) During the Harvest Season. Turk. J. Agric. For. 2016, 40, 855–864. DOI: 10.3906/tar-1607-57.
  • Sójka, M.; Król, B. Composition of Industrial Seedless Black Currant Pomace. Eur. Food Res. Technol. 2009, 228(4), 597–605. DOI: 10.1007/s00217-008-0968-x.
  • Jara-Palacios, M. J.; Santisteban, A.; Gordillo, B.; Hernanz, D.; Heredia, F. J.; Escudero-Gilete, M. L. Comparative Study of Red Berry Pomaces (Blueberry, Red Raspberry, Red Currant and Blackberry) as Source of Antioxidants and Pigments. Eur. Food Res. Technol. 2019, 245(1), 1–9. DOI: 10.1007/s00217-018-3135-z.
  • Jazić, M.; Kukrić, Z.; Vulić, J.; Četojević-Simin, D. Polyphenolic Composition, Antioxidant and Antiproliferative Effects of Wild and Cultivated Blackberries (Rubus Fruticosus L.) Pomace. Int. J. Food Sci. Technol. 2019, 54(1), 194–201. DOI: 10.1111/ijfs.13923.
  • Varo, M. A.; Jacotet-Navarro, M.; Serratosa, M. P.; Mérida, J.; Fabiano-Tixier, A. S.; Bily, A.; Chemat, F. Green Ultrasound-Assisted Extraction of Antioxidant Phenolic Compounds Determined by High Performance Liquid Chromatography from Bilberry (Vaccinium Myrtillus L.) Juice By-Products. Waste Biomass Valoriz. 2019, 10(7), 1945–1955. DOI: 10.1007/s12649-018-0207-z.
  • He, B.; Zhang, L.-L.; Yue, X.-Y.; Liang, J.; Jiang, J.; Gao, X.-L.; Yue, P.-X. Optimization of Ultrasound-Assisted Extraction of Phenolic Compounds and Anthocyanins from Blueberry (Vaccinium ashei) Wine Pomace. Food Chem. 2016, 204, 70–76. DOI: 10.1016/j.foodchem.2016.02.094.
  • Machado, A. P. D. F.; Pasquel-Reátegui, J. L.; Barbero, G. F.; Martínez, J. Pressurized Liquid Extraction of Bioactive Compounds from Blackberry (Rubus Fruticosus L.) Residues: A Comparison with Conventional Methods. Food. Res. Int. 2015, 77, 675–683. DOI: 10.1016/j.foodres.2014.12.042.
  • Ayoub, M.; de Camargo, A. C.; Shahidi, F. Antioxidants and Bioactivities of Free, Esterified and Insoluble-Bound Phenolics from Berry Seed Meals. Food Chem. 2016, 197, 221–232. DOI: 10.1016/j.foodchem.2015.10.107.