773
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Characterization of wheat flour millstreams for friabilin prevalence and nutrient composition

, , , , , , , ORCID Icon, , , , , ORCID Icon & show all
Pages 1711-1723 | Received 13 Feb 2023, Accepted 14 Jun 2023, Published online: 29 Jun 2023

References

  • Iqbal, Z.; Pasha, I.; Abrar, M.; Hanif, M. S.; Arif, A. M.; Masih, S. Protein Concentration, Composition and Distribution in Wheat Flour Mill Streams. Annals. Food Scie. Tech. 2015, 16(1), 104–114.
  • Qin, H.; Ma, D.; Huang, X.; Zhang, J.; Sun, W.; Hou, G.; Wang, C.; Guo, T. Accumulation of Glycolipids in Wheat Grain and Their Role in Hardness During Grain Development. Crop. J. 2019, 7(1), 19–29. DOI: 10.1016/j.cj.2018.08.005.
  • Iqbal, Z.; Pasha, I.; Abrar, M.; Masih, S.; Hanif, M. S. Physico-Chemical, Functional and Rheological Properties of Wheat Varieties. J. Agr. Res. 2015, 53, 253–267.
  • Hourston, J. E.; Ignatz, M.; Reith, M.; Leubner-Metzger, G.; Steinbrecher, T. Biomechanical Properties of Wheat Grains: The Implications on Milling. J. R. Soc. Interface. 2017, 14(126), 20160828. DOI: 10.1098/rsif.2016.0828.
  • Nirmal, R. C.; Furtado, A.; Wringly, C.; Henry, R. J. Influence of Gene Expression on Hardness in Wheat. PLoS. One. 2016, 11(10), e0164746. DOI: 10.1371/journal.pone.0164746.
  • Ma, X.; Sajjad, M.; Wang, J.; Yang, W.; Sun, J.; Li, X.; Zhang, A.; Liu, D. Diversity and Distribution of Puroindoline Genes and Their Effect on Kernel Hardness in Diverse Panel of Chinese Wheat Germplasm. BMC. Plant. Biol. 2017, 17(1), 158. DOI: 10.1186/s12870-017-1101-8.
  • Sharma, R.; Rawat, A.; Misra, B. K.; Nagarajan, S. Distribution of Grain Hardness in Indian Wheat Varieties and Landraces. Wheat Info. Ser. 2012, 114, 1–8.
  • Szabo, B. P.; Veha, A.; Gyimes, E.; Horvath, Z. H. Flour Quality and Kernel Hardness Connection in Winter Wheat. Acta Univ. Sapientiae, Alimentaria. 2016, 9(1), 33–40. DOI: 10.1515/ausal-2016-0003.
  • Pasha, I.; Anjum, F. M.; Morris, C. F. Grain Hardness: A Major Determinant of Wheat Quality. Food Sci. Technol. Int. 2010, 16(6), 511–522. DOI: 10.1177/1082013210379691.
  • Tosi, P.; Heb, J.; Lovegrovec, A.; Gonzáles-Thuillierc, I.; Pensond, S.; Shewry, P. R. Gradients in Compositions in the Starchy Endosperm of Wheat Have Implications for Milling and Processing-A Review. Trends Food Sci. Technol. 2018, 82, 1–7. DOI: 10.1016/j.tifs.2018.09.027.
  • Iqbal, Z.; Pasha, I.; Hanif, M. S.; Randhawa, M. A.; Rashid, A.; Arif, A. M. Effect of Specialty Flours on Physical and Sensorial Attributes of Cookies. Pak. J. Agric. Sci. 2015, 52, 1091–1098.
  • Vukić, M. S.; Janić-Hajnal, E. P.; Mastilović, J. S.; Vujadinović, D. P.; Ivanović, M. M.; Šoronja-Simović, D. M. Application of Solvent Retention Capacity Tests for Prediction of Rheological Parameters of Wheat Flour Mill Streams. Hem. Ind. 2020, 74(1), 37–49. DOI: 10.2298/HEMIND190625001V.
  • Abo‐Dief, M.; Abo‐Bakr, T.; Youssef, M.; Moustafa, A. Physicochemical and Rheological Properties of Australian and Russian Wheat Flour Mill Streams. Cereal. Chem. 2022, 99(2), 421–431. DOI: 10.1002/cche.10508.
  • Pojić, M. M.; Spasojević, N. B.; Atlas, M. Đ. Chemometric Approach to Characterization of Flour Mill Streams: Chemical and Rheological Properties. Food Bioprocess. Technol. 2014, 7(5), 1298–1309. DOI: 10.1007/s11947-013-1133-5.
  • Liu, Y.; Ohm, J. B.; Hareland, G.; Wiersma, J.; Kaiser, D. Sulfur, Protein Size Distribution, and Free Amino Acids in Flour Mill Streams and Their Relationship to Dough Rheology and Breadmaking Traits. Cereal Chem. J. 2011, 88(2), 109–116. DOI: 10.1094/CCHEM-06-10-0086.
  • Ramseyer, D. D.; Bettge, A. D.; Morris, C. F. Distribution of Total, Water‐Unextractable, and Water‐Extractable Arabinoxylans in Wheat Flour Mill Streams. Cereal Chem. J. 2011, 88(2), 209–216. DOI: 10.1094/CCHEM-10-10-0148.
  • Pojić, M. M.; Mastilović, J. S. Near Infrared Spectroscopy—Advanced Analytical Tool in Wheat Breeding, Trade, and Processing. Food Bioproc. Tech. 2013, 6(2), 330–352. DOI: 10.1007/s11947-012-0917-3.
  • Miralbes, C. Analytical, Nutritional and Clinical Methods: Quality Control in the Milling Industry Using Near Infrared Transmittance Spectroscopy. Food Chem. 2004, 88(4), 621–628. DOI: 10.1016/j.foodchem.2004.05.004.
  • Bramble, T.; Dowell, F. E.; Herrman, T. J. Single-Kernel Near-Infrared Protein Prediction and the Role of Kernel Weight in Hard Red Winter Wheat. Appl. Eng. Agric. 2006, 22(6), 945–949. DOI: 10.13031/2013.22241.
  • Dowell, F. E.; Maghirang, E. B.; Xie, F.; Lookhart, G. L.; Pierce, R. O.; Seabourn, B. W.; Bean, S. R.; Wilson, J. D.; Chung, O. K. Predicting Wheat Quality Characteristics and Functionality Using Near-Infrared Spectroscopy. Cereal Chem. J. 2006, 83(5), 529–536. DOI: 10.1094/CC-83-0529.
  • Pojić, M.; Mastilović, J.; Palić, D.; Pestorić, M. The Development of Near Infrared Spectroscopy (NIRS) Calibration for Prediction of Ash Content in Legumes on the Basis of Two Different Reference Methods. Food Chem. 2010, 123(3), 800–805. DOI: 10.1016/j.foodchem.2010.05.013.
  • Fistes, A.; Rakic, D.; Takaci, A. The Function for Estimating the Separation Efficiency of the Wheat Flour Milling Process. J. Food Sci. Technol. 2013, 50(3), 609–614. DOI: 10.1007/s13197-012-0717-9.
  • Cozzolino, D. Authentication of Cereals and Cereal Products. Vil. I, Pp. 441-457. In Advances in Food Authenticity Testing; Gerard, D., Ed.; Woodhead publishing: Cambridge, MA, USA, 2016; pp. 441–457. DOI:10.1016/B978-0-08-100220-9.00016-3.
  • AACC. Approved Methods of the AACC, 11th; American Association of Cereal Chemists: St. Paul, MN, USA, 2010. Methods 26-95.01, 39-11.01, 39-20.01, 55-31.01, 56-81.03
  • Pasikatan, M. C.; Haque, E.; Spillman, C. K.; Steele, J. L.; Milliken, G. A. Granulation Sensing of First-Break Ground Wheat Using a Near-Infrared Reflectance Spectrometer: Studies with Soft Red Winter Wheats. J. Sci. Food Agri. 2003, 83(3), 151–157. DOI: 10.1002/jsfa.1290.
  • Pasha, I.; Anjum, F. M.; Butt, M. S. Biochemical Characterization of Spring Wheats in Relation to Grain Hardness. Int. J. Food Prop. 2009, 12(4), 910–928. DOI: 10.1080/10942910802123281.
  • Montgomery, D. C. Design and Analysis of Experiments, 8th ed.; John Willy and Sons Inc: Tempe, Arizona, 2017.
  • Yahata, E.; Maruyama-Funatsuki, W.; Nishio, Z.; Yamamoto, Y.; Hanaoka, A.; Sugiyama, H.; Tanida, M.; Saruyama, H. Relationship Between the Dough Quality and Content of Specific Glutenin Proteins in Wheat Mill Streams and Its Application to Making Flour Suitable for Instant Chinese Noodles. Biosci. Biotechnol. Biochem. 2006, 70(4), 788–797. DOI: 10.1271/bbb.70.788.
  • Dornez, E.; Gebruers, K.; Wiame, S.; Delcour, J.; Courtin, C. M. Insight into the Distribution of Arabinoxylans, Endoxylanases, and Endoxylanase inhibitors in Industrial wheat roller mill streams. J. Agric. Food Chem. 2006, 54(22), 8521–8529. DOI: 10.1021/jf061728n.
  • Gomez, M.; Ruiz-Paris, E.; Banu, O.; Liete, B. Influence of Flour Mill Streams on Cake Quality. Int. J. Food Sci. Tech. 2010, 45(9), 1794–1800. DOI: 10.1111/j.1365-2621.2010.02338.x.
  • Sakhare, S. D.; Inamdar, A. A.; Indrani, D.; Madhu Kiran, M. H.; Rao, G. V. Physicochemical and Microstructure Analysis of Flour Mill Streams and Milled Products. J. Food Sci. Technol. 2015, 52(1), 407–414. DOI: 10.1007/s13197-013-1029-4.
  • El-Porai, E. S.; Salama, A. E.; Sharaf, A. M.; Hegazy, A. I.; Gadallah, M. G. E. Effect of Different Milling Processes on Egyptian Wheat Flour Properties and Pan Bread Quality. Ann. Agric. Sci. 2013, 58(1), 51–59. DOI: 10.1016/j.aoas.2013.01.008.
  • Banu, I. S.; Georgeta, S.; Violeta, I.; Iuliana, A. Physicochemical and Rheological Analysis of Flour Mill Streams. Cereal. Chem. 2010, 87(2), 112–117. DOI: 10.1094/CCHEM-87-2-0112.
  • Konopka, I.; Fornal, L.; Abramczyk, D.; Rothkaehl, J.; Rotkiewicz, D. Statistical Evaluation of Different Technological and Rheological Tests of Polish Wheat Varieties for Bread Volume Prediction. J. Food Sci. Technol. 2004, 39(1), 11–20. DOI: 10.1111/j.1365-2621.2004.00741.x.
  • Prabhasankar, P.; Sudha, M. L.; Haridas Rao, P. Quality Characteristics of Wheat Flour Milled Streams. Food Res. Int. 2000, 33(5), 381–386. DOI: 10.1016/S0963-9969(00)00059-4.
  • Brütsch, L.; Huggler, I.; Kuster, S.; Windhab, E. J. Industrial Roller Milling Process Characterisation for Targeted Bread Quality Optimization. Food Bioprocess. Technol. 2017, 10(4), 710–719. DOI: 10.1007/s11947-016-1856-1.
  • Geneix, N.; Dalgalarrondo, M.; Tassy, C.; Nadaud, I.; Barret, P.; Bakan, B.; Elmorjani, K.; Marion, D.; Kumar, A. Relationships Between Puroindoline A-Prolamin Interactions and Wheat Grain Hardness. PLoS. One. 2020, 15(9), e0225293. DOI: 10.1371/journal.pone.0225293.
  • Giroux, M. J.; Morris, C. F. Glycine to Serine Change in Puroindoline B is Associated with Wheat Grain Hardness and Low Levels of Starch-Surface Friabilin. Theor. Appl. Genet. 1997, 95(5–6), 857–864. DOI: 10.1007/s001220050636.
  • Pasha, I. Biochemical characterization of Pakistani wheats in relation to grain hardness, PhD thesis, University of Agriculture Faisalabad, Pakistan (2006).