1,949
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Health benefits, importance, and challenges during production of cultured meat: An overview

, , , , , , , ORCID Icon, , , , ORCID Icon, , , , , ORCID Icon & ORCID Icon show all
Pages 1724-1735 | Received 24 Mar 2023, Accepted 23 Jun 2023, Published online: 06 Jul 2023

References

  • Goodwin, J. N.; Shoulders, C. W. J. M. S. The Future of Meat: A Qualitative Analysis of Cultured Meat Media Coverage. Meat Sci. 2013, 95(3), 445–450. DOI: 10.1016/j.meatsci.2013.05.027.
  • Edelman, P.; McFarland, D. C.; Mironov, V. A.; Matheny, J. G. Commentary: In vitro -Cultured Meat Production. Tissue Eng. 2005, 11(5–6), 659–662. DOI: 10.1089/ten.2005.11.659.
  • Edelman, P. D.; McFarland, D. C.; Mironov, V. A.; Matheny, J. G. Commentary: In Vitro-Cultured Meat Production. Tissue Eng. 2005, 11(5–6), 659–662. DOI: 10.1089/ten.2005.11.659.
  • Post, M. J.; Levenberg, S.; Kaplan, D. L.; Genovese, N.; Fu, J.; Bryant, C. J.; Negowetti, N.; Verzijden, K.; Moutsatsou, P. Scientific, Sustainability and Regulatory Challenges of Cultured Meat. Nature Food 2020. Nat. Food. 2020, 1(7), 403–415. DOI: 10.1038/s43016-020-0112-z.
  • Rubio, N. R.; Xiang, N.; Kaplan, D. L. J. N. C. Plant-Based and Cell-Based Approaches to Meat Production. Nat. Commun. 2020, 11(1), 6276. DOI: 10.1038/s41467-020-20061-y.
  • Young, P. J. T. C. The Victorians Caused the Meat Eating Crisis the World Faces Today–But They Might Help Us Solve It. Conversation. 2019, 21.
  • Ejtehadifar, M.; Shamsasenjan, K.; Movassaghpour, A.; Akbarzadehlaleh, P.; Dehdilani, N.; Abbasi, P.; Molaeipour, Z.; Saleh, M. The Effect of Hypoxia on Mesenchymal Stem Cell Biology. Adv. Pharm. Bull. 2015, 5(2), 141. DOI: 10.15171/apb.2015.021.
  • Markoski, M. M. J. S. Advances in the Use of Stem Cells in Veterinary Medicine: From Basic Research to Clinical Practice. Scientifica. 2016, 2016, 1–12. DOI: 10.1155/2016/4516920.
  • Bhat, Z. F.; Hina, B. J. A. J. O. F. T. Animal-Free Meat Biofabrication. Am. J. Food Technol. 2011, 6(6), 441–459. DOI: 10.3923/ajft.2011.441.459.
  • Zandstra, E. H.; de Graaf, C.; Van Trijp, H. C. J. A. Effects of Variety and Repeated In-Home Consumption on Product Acceptance. Appetite. 2000, 35(2), 113–119. DOI: 10.1006/appe.2000.0342.
  • Drysdale, A.; Ewert, M.; Hanford, A. J. A. I. S. R. Life Support Approaches for Mars Missions. Adv. Space Res. 2003, 31(1), 51–61. DOI: 10.1016/S0273-1177(02)00658-0.
  • Benjaminson, M. A.; Gilchriest, J. A.; Lorenz, M. J. A. A. In vitro Edible Muscle Protein Production System (MPPS): Stage 1, Fish. Acta. Astronautica. 2002, 51(12), 879–889. DOI: 10.1016/S0094-5765(02)00033-4.
  • Le Grand, F.; Rudnicki, M. A. J. C. O. I. C. B. Skeletal Muscle Satellite Cells and Adult Myogenesis. Current Opinion in Cell Biology. Curr. Opin. Cell Biol. 2007, 19(6), 628–633. DOI: 10.1016/j.ceb.2007.09.012.
  • Danoviz, M. E.; Yablonka-Reuveni, Z. Skeletal Muscle Satellite Cells: Background and Methods for Isolation and Analysis in a Primary Culture System. Myogenesis. Methods Protoc. 2012, 21–52.
  • Le Grand, F.; Rudnicki, M. A. J. C. O. I. C. B. Skeletal Muscle Satellite Cells and Adult Myogenesis. Curr. Opin. Cell Biol. 2007, 19(6), 628–633. DOI: 10.1016/j.ceb.2007.09.012.
  • Kazama, T.; Fujie, M.; Endo, T.; Kano, K. Mature Adipocyte-Derived Dedifferentiated Fat Cells Can Transdifferentiate into Skeletal Myocytes in vitro. Biochem. Biophys. Res. Commun. 2008, 377(3), 780–785. DOI: 10.1016/j.bbrc.2008.10.046.
  • Telugu, B. P. V.; Ezashi, T.; Roberts, R. M. The Promise of Stem Cell Research in Pigs and Other Ungulate Species. Stem. Cell Rev. Rep. 2010, 6(1), 31–41. DOI: 10.1007/s12015-009-9101-1.
  • Holden, C.; Vogel, G. A Seismic Shift for Stem Cell Research; American Association for the Advancement of Science, 2008. https://www.science.org/doi/full/10.1126/science.319.5863.560.
  • Hocquette, J.-F.; Gondret, F.; Baéza, E.; Médale, F.; Jurie, C.; Pethick, D. W. Intramuscular Fat Content in Meat-Producing Animals: Development, Genetic and Nutritional Control, and Identification of Putative Markers. Animal. 2010, 4(2), 303–319. DOI: 10.1017/S1751731109991091.
  • Hill, M.; Wernig, A.; Goldspink, G. J. J. O. A. Muscle Satellite (Stem) Cell Activation During Local Tissue Injury and Repair. J. Anatomy. 2003, 203(1), 89–99. DOI: 10.1046/j.1469-7580.2003.00195.x.
  • Roelen, B. A.; Chuva de Sousa Lopes, S. M. J. C. M. C. Of Stem Cells and Gametes: Similarities and Differences. Curr. Med. Chem. 2008, 15(13), 1249–1256. DOI: 10.2174/092986708784534992.
  • Williams, L. A.; Davis-Dusenbery, B. N.; Eggan, K. C. J. C. SnapShot: Directed Differentiation of Pluripotent Stem Cells. Cell. 2012, 149(5), 1174–1174. e1. DOI: 10.1016/j.cell.2012.05.015.
  • Díaz, S.; Fargione, J.; Chapin, F. S.; Tilman, D. Biodiversity Loss Threatens Human Well-Being. Plos Biol. 2006, 4(8), e277. DOI: 10.1371/journal.pbio.0040277.
  • Keefe, A. C.; Lawson, J. A.; Flygare, S. D.; Fox, Z. D.; Colasanto, M. P.; Mathew, S. J.; Yandell, M.; Kardon, G. Muscle Stem Cells Contribute to Myofibres in Sedentary Adult Mice. Nat. Commun. 2015, 6(1), 7087. DOI: 10.1038/ncomms8087.
  • Collins, C. A.; Zammit, P. S.; Ruiz, A. P.; Morgan, J. E.; Partridge, T. A. A Population of Myogenic Stem Cells That Survives Skeletal Muscle Aging. Stem Cells. 2007, 25(4), 885–894. DOI: 10.1634/stemcells.2006-0372.
  • Ezashi, T.; Telugu, B. P. V. L.; Alexenko, A. P.; Sachdev, S.; Sinha, S.; Roberts, R. M. Derivation of Induced Pluripotent Stem Cells from Pig Somatic Cells. Proc. Nat. Acad. Sci. 2009, 106(27), 10993–10998. DOI: 10.1073/pnas.0905284106.
  • Takahashi, K.; Yamanaka, S. J. C. Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell. Cell. 2006, 126(4), 663–676. DOI: 10.1016/j.cell.2006.07.024.
  • Mizuno, Y.; Chang, H.; Umeda, K.; Niwa, A.; Iwasa, T.; Awaya, T.; Fukada, S.-I.; Yamamoto, H.; Yamanaka, S.; Nakahata, T., et al. Generation of Skeletal Muscle Stem/Progenitor Cells from Murine Induced Pluripotent Stem Cells. Faseb. J. 2010, 24(7), 2245–2253.
  • Tuomisto, H. L. J. E. R. The Eco‐Friendly Burger: Could Cultured Meat Improve the Environmental Sustainability of Meat Products? EMBO Rep. 2019, 20(1), e47395. DOI: 10.15252/embr.201847395.
  • Frerich, B.; Winter, K.; Scheller, K.; Braumann, U.-D. Comparison of Different Fabrication Techniques for Human Adipose Tissue Engineering in Severe Combined Immunodeficient Mice. Artif. Organs. 2012, 36(3), 227–237. DOI: 10.1111/j.1525-1594.2011.01346.x.
  • Rao, L.; Qian, Y.; Khodabukus, A.; Ribar, T.; Bursac, N. Engineering Human Pluripotent Stem Cells into a Functional Skeletal Muscle Tissue. Nat. Commun. 2018, 9(1), 126. DOI: 10.1038/s41467-017-02636-4.
  • Burrell, K.; Dardari, R.; Goldsmith, T.; Toms, D.; Villagomez, D. A. F.; King, W. A.; Ungrin, M.; West, F. D.; Dobrinski, I. Stirred Suspension Bioreactor Culture of Porcine Induced Pluripotent Stem Cells. Stem Cells Dev. 2019, 28(18), 1264–1275. DOI: 10.1089/scd.2019.0111.
  • Gerber, P. J.; Steinfeld, H.; Henderson, B.; Mottet, A.; Opio, C.; Dijkman, J.; Tempio, G. Tackling Climate Change Through Livestock: A Global Assessment of Emissions and Mitigation Opportunities; Food and Agriculture Organization of the United Nations (FAO), 2013.
  • Seman, D.; Quickert, S. C.; Borger, A. C.; Meyer, J. D. Inhibition of Listeria Monocytogenes Growth in Cured Ready-To-Eat Meat Products by Use of Sodium Benzoate and Sodium Diacetate. J. Food Prot. 2008, 71(7), 1386–1392. DOI: 10.4315/0362-028X-71.7.1386.
  • Alexander, R. J. I. T. S. J. O. S. Technology, and Society, In Vitro Meat: A Vehicle for the Ethical Rescaling of the Factory Farming Industry and in vivo Testing or an Intractable Enterprise?. Stanf. J. Sci. Technol. Soc. 2011, 4, 42–47.
  • Bellarby, J.; Tirado, R.; Leip, A.; Weiss, F.; Lesschen, J. P.; Smith, P. Livestock Greenhouse Gas Emissions and Mitigation Potential in Europe. Glob. Change Biol. 2013, 19(1), 3–18. DOI: 10.1111/j.1365-2486.2012.02786.x.
  • Mattick, C. S.; Landis, A. E.; Allenby, B. R.; Genovese, N. J. Anticipatory Life Cycle Analysis of in vitro Biomass Cultivation for Cultured Meat Production in the United States. Environ. Sci. Technol. 2015, 49(19), 11941–11949. DOI: 10.1021/acs.est.5b01614.
  • Arshad, M. S.; Javed, M.; Sohaib, M.; Saeed, F.; Imran, A.; Amjad, Z. Tissue Engineering Approaches to Develop Cultured Meat from Cells: A Mini Review. a Mini Review. Cogent Food Agric. 2017, 3(1), 1320814.10.1080/23311932.2017.1320814
  • Ramboer, E.; De Craene, B.; De Kock, J.; Vanhaecke, T.; Berx, G.; Rogiers, V.; Vinken, M. Strategies for Immortalization of Primary Hepatocytes. J. Hepatol. 2014, 61(4), 925–943. DOI: 10.1016/j.jhep.2014.05.046.
  • Geraghty, R.; Capes-Davis, A.; Davis, J. M.; Downward, J.; Freshney, R. I.; Knezevic, I.; Lovell-Badge, R.; Masters, J. R. W.; Meredith, J.; Stacey, G. N., et al. Guidelines for the Use of Cell Lines in Biomedical Research. Br. J. Cancer. 2014, 111(6), 1021–1046.
  • Stern-Straeter, J.; BONATERRA, G. A.; JURITZ, S.; BIRK, R.; GOESSLER, U. R.; BIEBACK, K.; BUGERT, P.; SCHULTZ, J.; Hörmann, K.; KINSCHERF, R., et al. Evaluation of the Effects of Different Culture Media on the Myogenic Differentiation Potential of Adipose Tissue-Or Bone Marrow-Derived Human Mesenchymal Stem Cells. Int.J. Mol. Med. 2014, 33(1), 160–170.
  • Cravero, D.; Martignani, E.; Miretti, S.; Accornero, P.; Pauciullo, A.; Sharma, R.; Donadeu, F. X.; Baratta, M. Generation of Induced Pluripotent Stem Cells from Bovine Epithelial Cells and Partial Redirection Toward a Mammary Phenotype in Vitro. Ellular Reprogramming (Formerly“cloning and Stem Cells. Cell. Reprogram. 2015, 17(3), 211–220. DOI: 10.1089/cell.2014.0087.
  • Masters, J. R.; Stacey, G. N. J. N. P. Changing Medium and Passaging Cell Lines. Nat. Protoc. 2007, 2(9), 2276–2284. DOI: 10.1038/nprot.2007.319.
  • Shay, J. W.; Wright, W. E. J. N. R. M. C. B. Hayflick, His Limit, and Cellular Ageing. Nat. Rev. Mol. Cell Biol. 2000, 1(1), 72–76. DOI: 10.1038/35036093.
  • Takahashi, M.; Makino, S.; Kikkawa, T.; Osumi, N. Preparation of Rat Serum Suitable for Mammalian Whole Embryo Culture. JoVE (J. Vis. Exp.). 2014, 2014(90), e51969. DOI: 10.3791/51969.
  • Park, Y. H.; Gong, S. P.; Kim, H. Y.; Kim, G. A.; Choi, J. H.; Ahn, J. Y.; Lim, J. M. Development of a Serum‐Free Defined System Employing Growth Factors for Preantral Follicle Culture. Mol. Reprod. Dev. 2013, 80(9), 725–733. DOI: 10.1002/mrd.22204.
  • Leong, D. S. Z.; Tan, J. G. L.; Chin, C. L.; Mak, S. Y.; Ho, Y. S.; Ng, S. K. Evaluation and Use of Disaccharides as Energy Source in Protein-Free Mammalian Cell Cultures. Sci. Rep. 2017, 7(1), 1–10. DOI: 10.1038/srep45216.
  • Tan, K. Y.; Teo, K. L.; Lim, J. F. Y.; Chen, A. K. L.; Reuveny, S.; Oh, S. K. Serum-Free Media Formulations are Cell Line–Specific and Require Optimization for Microcarrier Culture. Cytotherapy. 2015, 17(8), 1152–1165. DOI: 10.1016/j.jcyt.2015.05.001.
  • Brunner, D.; Jürgen, F.; Helmut, A.; Harald, S.; Walter, P.; Gerhard, G. The Serum-Free Media Interactive Online Database. ALTEX-Alternatives to Animal Experimentation. ALTEX. 2010, 27(1), 53–62.
  • Miki, H.; Takagi, M. J. C. Design of Serum-Free Medium for Suspension Culture of CHO Cells on the Basis of General Commercial Media. Cytotechnol. 2015, 67(4), 689–697. DOI: 10.1007/s10616-014-9778-0.
  • Verbruggen, S.; Luining, D.; van Essen, A.; Post, M. J. Bovine Myoblast Cell Production in a Microcarriers-Based System. Cytotechnol. 2018, 70(2), 503–512. DOI: 10.1007/s10616-017-0101-8.
  • Zhou, T. C.; Zhou, W. W.; Hu, W.; Zhong, J. J. Bioreactors, Cell Culture, Commercial Production. Encyclopedia of Industrial Biotechnology: Bioprocess, Bioseparation, and Cell Technology. 2009, 1–18.