860
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Physicochemical properties of waxy rice varieties with contrasting hardening rates

, , , &
Pages 1775-1786 | Received 20 Mar 2023, Accepted 19 Jun 2023, Published online: 05 Jul 2023

References

  • Wang, W.; Wei, X.; Jiao, G.; Chen, W.; Wu, Y.; Sheng, Z.; Hu, S.; Xie, L.; Wang, J.; Tang, S. GBSS-BINDING PROTEIN , Encoding a CBM48 Domain-Containing Protein, Affects Rice Quality and Yield. J. Integr. Plant Biol. 2020, 62(7), 948–966. DOI: 10.1111/jipb.12866.
  • Lian, X.; Wang, C.; Zhang, K.; Li, L. The Retrogradation Properties of Glutinous Rice and Buckwheat Starches as Observed with FT-IR, 13C NMR and DSC. Int. J. Biol. Macromol. 2014, 64, 288–293. DOI: 10.1016/j.ijbiomac.2013.12.014.
  • Zhang, S.; Li, Z.; Lin, L.; Zhang, L.; Wei, C. Starch Components, Starch Properties and Appearance Quality of Opaque Kernels from Rice Mutants. Molecul. 2019, 24(24), 4580. DOI: 10.3390/molecules24244580.
  • Bao, J.; Corke, H.; Sun, M. Genetic Diversity in the Physicochemical Properties of Waxy Rice (Oryza Sativa L) Starch. J. Sci. Food Agr. 2004, 84(11), 1299–1306. DOI: 10.1002/jsfa.1750.
  • Tian, Z.; Qian, Q.; Liu, Q.; Yan, M.; Liu, X.; Yan, C.; Liu, G.; Gao, Z.; Tang, S.; Zeng, D. Allelic Diversities in Rice Starch Biosynthesis Lead to a Diverse Array of Rice Eating and Cooking Qualities. P. Natl. Acad. Sci. 2009, 106(51), 21760–21765. DOI: 10.1073/pnas.0912396106.
  • Zeng, X.; Zheng, B.; Xiao, G.; Chen, L. Synergistic Effect of Extrusion and Polyphenol Molecular Interaction on the Short/long-Term Retrogradation Properties of Chestnut Starch. Carbohyd. Polym. 2022, 276, 118731. DOI: 10.1016/j.carbpol.2021.118731.
  • Ding, L.; Zhang, B.; Tan, C. P.; Fu, X.; Huang, Q. Effects of Limited Moisture Content and Storing Temperature on Retrogradation of Rice Starch. Int. J. Biol. Macromol. 2019, 137, 1068–1075. DOI: 10.1016/j.ijbiomac.2019.06.226.
  • Liu, Y.; Chen, J.; Wu, J.; Luo, S.; Chen, R.; Liu, C.; Gilbert, R. G. Modification of Retrogradation Property of Rice Starch by Improved Extrusion Cooking Technology. Carbohyd. Polym. 2019, 213, 192–198. DOI: 10.1016/j.carbpol.2019.02.089.
  • Chang, Q.; Zheng, B.; Zhang, Y.; Zeng, H. A Comprehensive Review of the Factors Influencing the Formation of Retrograded Starch. Int. J. Biol. Macromol. 2021, 186, 163–173. DOI: 10.1016/j.ijbiomac.2021.07.050.
  • Sung, S.; Kim, H. R.; Park, C. S.; Choi, S. J.; Moon, T. W. Structure and in vitro Digestion of Amylosucrase-Modified Waxy Corn Starch as Affected by Iterative Retrogradation. Int. J. Food. Prop. 2020, 23(1), 1176–1186. DOI: 10.1080/10942912.2020.1788580.
  • Zeng, X.; Zheng, B.; Li, T.; Chen, L. How to Synchronously Slow Down Starch Digestion and Retrogradation: A Structural Analysis Study. Int. J. Biol. Macromol. 2022, 212, 43–53. DOI: 10.1016/j.ijbiomac.2022.05.099.
  • Li, C.; Hu, Y.; Li, E. Effects of Amylose and Amylopectin Chain-Length Distribution on the Kinetics of Long-Term Rice Starch Retrogradation. Food Hydrocoll. 2021, 111, 106239. DOI: 10.1016/j.foodhyd.2020.106239.
  • Yu, S.; Xu, J.; Zhang, Y.; Kopparapu, N. K. Relationship Between Intrinsic Viscosity, Thermal and Retrogradation Properties of Amylose and Amylopectin. Czech J. Food Sci. 2014, 32(5), 514–520. DOI: 10.17221/394/2013-CJFS.
  • Li, C.; Luo, J. X.; Zhang, C. Q.; Yu, W. W. Causal Relations Among Starch Chain-Length Distributions, Short-Term Retrogradation and Cooked Rice Texture. Food Hydrocoll. 2020, 108, 106064. DOI: 10.1016/j.foodhyd.2020.106064.
  • Li, C.; Hu, Y. Antagonistic Effects of Amylopectin and Amylose Molecules on the Starch Inter-And Intramolecular Interactions During Retrogradation. LWT-Food Sci. Technol. 2021, 148, 111942. DOI: 10.1016/j.lwt.2021.111942.
  • Varavinit, S.; Shobsngob, S.; Varanyanond, W.; Chinachoti, P.; Naivikul, O. Effect of Amylose Content on Gelatinization, Retrogradation and Pasting Properties of Flours from Different Cultivars of Thai Rice. Starch/Stärke. 2003, 55(9), 410–415. DOI: 10.1002/star.200300185.
  • Wang, Y. J.; Wang, L. Structures of Four Waxy Rice Starches in Relation to Thermal, Pasting, and Textural Properties. Cereal Chem. 2002, 79(2), 252–256. DOI: 10.1094/CCHEM.2002.79.2.252.
  • Zhang, C.; Narayanamoorthy, S.; Ming, S.; Li, K.; Cantre, D.; Sui, Z.; Corke, H. Rheological Properties, Structure and Digestibility of Starches Isolated from Common Bean (Phaseolus Vulgaris L.) Varieties from Europe and Asia. LWT-Food Sci. Technol. 2022, 161, 113352. DOI: 10.1016/j.lwt.2022.113352.
  • Han, H.; Yang, C.; Zhu, J.; Zhang, L.; Bai, Y.; Li, E.; Gilbert, R. G. Competition Between Granule Bound Starch Synthase and Starch Branching Enzyme in Starch Biosynthesis. Rice. 2019, 12(1), 96. DOI: 10.1186/s12284-019-0353-3.
  • Wu, A. C.; Li, E.; Gilbert, R. G. Exploring Extraction/Dissolution Procedures for Analysis of Starch Chain-Length Distributions. Carbohyd. Polym. 2014, 114, 36–42. DOI: 10.1016/j.carbpol.2014.08.001.
  • Yang, H.; Tang, M.; Wu, W.; Ding, W.; Ding, B.; Wang, X. Study on Inhibition Effects and Mechanism of Wheat Starch Retrogradation by Polyols. Food Hydrocoll. 2021, 121, 106996. DOI: 10.1016/j.foodhyd.2021.106996.
  • Abdel‐Aal, E. S.; Hucl, P.; Chibbar, R.; Han, H.; Demeke, T. Physicochemical and Structural Characteristics of Flours and Starches from Waxy and Nonwaxy Wheats. Cereal Chem. 2002, 79(3), 458–464. DOI: 10.1094/CCHEM.2002.79.3.458.
  • Cuevas, R. P. O.; Domingo, C. J.; Sreenivasulu, N. Multivariate-Based Classification of Predicting Cooking Quality Ideotypes in Rice (Oryza Sativa L.) Indica Germplasm. Rice. 2018, 11(1), 56. DOI: 10.1186/s12284-018-0245-y.
  • Zhang, C.; Yang, Y.; Chen, Z.; Chen, F.; Pan, L.; Lu, Y.; Li, Q.; Fan, X.; Sun, Z.; Liu, Q. Characteristics of Grain Physicochemical Properties and the Starch Structure in Rice Carrying a Mutated ALK/SSIIa Gene. J. Agric. Food. Chem. 2020, 68(47), 13950–13959. DOI: 10.1021/acs.jafc.0c01471.
  • Du, C.; Jiang, F.; Jiang, W.; Ge, W.; Du, S. K. Physicochemical and Structural Properties of Sago Starch. Int. J. Biol. Macromol. 2020, 164, 1785–1793. DOI: 10.1016/j.ijbiomac.2020.07.310.
  • Zhu, S.; Hu, F.; Ramaswamy, H.; Yu, Y.; Yu, L.; Zhang, Q. Effect of High Pressure Treatment and Degree of Milling on Gelatinization and Structural Properties of Brown Rice. Food Bioprocess. Tech. 2016, 9(11), 1844–1853. DOI: 10.1007/s11947-016-1770-6.
  • Zhang, C.; Xu, Z.; Liu, X.; Ma, M.; Khalid, S.; Bordiga, M.; Sui, Z.; Corke, H. Removing Starch Granule-Associated Surface Lipids Affects Structure of Heat-Moisture Treated Hull-Less Barley Starch. Carbohyd. Polym. 2023, 303, 120477. DOI: 10.1016/j.carbpol.2022.120477.
  • Singh, S.; Singh, N.; Isono, N.; Noda, T. Relationship of Granule Size Distribution and Amylopectin Structure with Pasting, Thermal, and Retrogradation Properties in Wheat Starch. J. Agric. Food. Chem. 2010, 58(2), 1180–1188. DOI: 10.1021/jf902753f.
  • Xu, L.; Xie, J.; Kong, X.; Bao, J. Analysis of Genotypic and Environmental Effects on Rice Starch. 2. Thermal and Retrogradation Properties. J. Agric. Food. Chem. 2004, 52(19), 6017–6022. DOI: 10.1021/jf049235a.
  • Madruga, M. S.; de Albuquerque, F. S. M.; Silva, I. R. A.; Do Amaral, D. S.; Magnani, M.; Neto, V. Q. Chemical, Morphological and Functional Properties of Brazilian Jackfruit (Artocarpus Heterophyllus L.) Seeds Starch. Food Chem. 2014, 143, 440–445. DOI: 10.1016/j.foodchem.2013.08.003.
  • Zhang, C.; Ma, M.; Xu, Y.; Xu, Z.; Sui, Z.; Corke, H. Octenyl Succinic Anhydride Modification Alters Blending Effects of Waxy Potato and Waxy Rice Starches. Int. J. Biol. Macromol. 2021, 190, 1–10. DOI: 10.1016/j.ijbiomac.2021.08.113.
  • Fang, S.; Chen, C.; Yao, Y.; Nsor-Atindana, J.; Liu, F.; Chen, M.; Zhong, F. Study on the Pasting Properties of Indica and Japonica Waxy Rice. Foods. 2022, 11(8), 1132. DOI: 10.3390/foods11081132.
  • Mao, H.; Li, J.; Chen, Z.; Yan, S.; Li, H.; Wen, Y.; Wang, J. Molecular Structure of Different Prepared Pyrodextrins and the Inhibitory Effects on Starch Retrogradation. Food. Res. Int. 2021, 143, 110305. DOI: 10.1016/j.foodres.2021.110305.
  • Ma, M.; He, M.; Xu, Y.; Li, P.; Li, Z.; Sui, Z.; Corke, H. Thermal Processing of Rice Grains Affects the Physical Properties of Their Pregelatinised Rice Flours. Int J. Food Sci. Tech. 2020, 55(3), 1375–1385. DOI: 10.1111/ijfs.14417.
  • Navaf, M.; Sunooj, K. V.; Aaliya, B.; Sudheesh, C.; Akhila, P. P.; Sabu, S.; Sasidharan, A.; George, J. Talipot Palm (Corypha Umbraculifera L.) a Nonconventional Source of Starch: Effect of Citric Acid on Structural, Rheological, Thermal Properties and in vitro Digestibility. Int. J. Biol. Macromol. 2021, 182, 554–563. DOI: 10.1016/j.ijbiomac.2021.04.035.
  • Srichuwong, S.; Sunarti, T. C.; Mishima, T.; Isono, N.; Hisamatsu, M. Starches from Different Botanical Sources I: Contribution of Amylopectin Fine Structure to Thermal Properties and Enzyme Digestibility. Carbohyd. Polym. 2005, 60(4), 529–538. DOI: 10.1016/j.carbpol.2005.03.004.
  • Li, H.; Liu, Y. Effects of Variety and Growth Location on the Chain-Length Distribution of Rice Starches. J. Cereal Sci. 2019, 85, 77–83. DOI: 10.1016/j.jcs.2018.11.009.
  • Wang, K.; Wambugu, P. W.; Zhang, B.; Wu, A. C.; Henry, R. J.; Gilbert, R. G. The Biosynthesis, Structure and Gelatinization Properties of Starches from Wild and Cultivated African Rice Species (Oryza Barthii and Oryza glaberrima). Carbohyd. Polym. 2015, 129, 92–100. DOI: 10.1016/j.carbpol.2015.04.035.
  • Obadi, M.; Li, C.; Li, Q.; Li, X.; Qi, Y.; Xu, B. Relationship Between Starch Fine Molecular Structures and Cooked Wheat Starch Digestibility. J. Cereal Sci. 2020, 95, 103047. DOI: 10.1016/j.jcs.2020.103047.
  • Hanashiro, I.; Abe, J. I.; Hizukuri, S. A Periodic Distribution of the Chain Length of Amylopectin as Revealed by High-Performance Anion-Exchange Chromatography. Carbohyd. Res. 1996, 283, 151–159. DOI: 10.1016/0008-6215(95)00408-4.
  • Chen, J.; Watanabe, M.; Nakamori, T.; Hisamatsu, M. Relationship Between Physical Properties and Amylopectin Structure of Waxy Rice Starch. J. Appl. Glyosci. 2003, 50(2), 133–137. DOI: 10.5458/jag.50.133.
  • Sasaki, T.; Kawamata, K.; Okamoto, K. Comparison of Starch Physicochemical Properties of Waxy Rice Cultivars with Different Hardening Rates. Cereal Chem. 2017, 94(4), 699–704. DOI: 10.1094/CCHEM-08-16-0220-R.
  • Robin, F.; Mérinat, S.; Simon, A.; Lehmann, U. Influence of Chain Length on α-1,4-D-Glucan Recrystallization and Slowly Digestible Starch Formation. Starch - Stärke. 2008, 60(10), 551–558. DOI: 10.1002/star.200800220.
  • Park, I. M.; Ibáñez, A. M.; Zhong, F.; Shoemaker, C. F. Gelatinization and Pasting Properties of Waxy and Non‐Waxy Rice Starches. Starch - Stärke. 2007, 59(8), 388–396. DOI: 10.1002/star.200600570.
  • Vamadevan, V.; Bertoft, E. Impact of Different Structural Types of Amylopectin on Retrogradation. Food Hydrocoll. 2018, 80, 88–96. DOI: 10.1016/j.foodhyd.2018.01.029.
  • Würsch, P.; Gumy, D. Inhibition of Amylopectin Retrogradation by Partial Beta-Amylolysis. Carbohyd. Res. 1994, 256(1), 129–137. DOI: 10.1016/0008-6215(94)84232-9.