814
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Mediated by tea polypeptides: A green synthesis approach for selenium nanoparticles exhibiting potent antioxidant and antibacterial properties

&
Pages 1797-1814 | Received 09 Mar 2023, Accepted 03 Jul 2023, Published online: 07 Jul 2023

References

  • Zhang, X.; He, H.; Xiang, J.; Yin, H.; Hou, T. Selenium-Containing Proteins/Peptides from Plants: A Review on the Structures and Functions. J. Agric. Food Chem. 2020, 68(51), 15061–15073. DOI: 10.1021/acs.jafc.0c05594.
  • Skalickova, S.; Milosavljevic, V.; Cihalova, K.; Horky, P.; Richtera, L.; Adam, V. Selenium Nanoparticles as a Nutritional Supplement. Nutrition. 2017, 33, 83–90. DOI: 10.1016/j.nut.2016.05.001.
  • Benko, I.; Nagy, G.; Tanczos, B.; Ungvari, E.; Sztrik, A.; Eszenyi, P.; Prokisch, J.; Banfalvi, G. Subacute Toxicity of Nano-Selenium Compared to Other Selenium Species in Mice. Environ. Toxicol. Chem. 2012, 31(12), 2812–2820. DOI: 10.1002/etc.1995.
  • Fardsadegh, B.; Jafarizadeh-Malmiri, H. Aloe Vera Leaf Extract Mediated Green Synthesis of Selenium Nanoparticles and Assessment of Their in vitro Antimicrobial Activity Against Spoilage Fungi and Pathogenic Bacteria Strains. Green Process. Synth. 2019, 8(1), 399–407. DOI: 10.1515/gps-2019-0007.
  • Yilmaz, M. T.; Ispirli, H.; Taylan, O.; Dertli, E. A Green Nano-Biosynthesis of Selenium Nanoparticles with Tarragon Extract: Structural, Thermal, and Antimicrobial Characterization. LWT Food Sci. Technol. 2021, 141, 141. DOI: 10.1016/j.lwt.2021.110969.
  • Klepacka, J.; Tońska, E.; Rafaowski, R.; Czarnowska-Kujawska, M.; Opara, B. Tea as a Source of Biologically Active Compounds in the Human Diet. Molecules. 2021, 26(5), 1487. DOI: 10.3390/molecules26051487.
  • Xie, G.; Yan, J.; Lu, A.; Kun, J.; Wang, B.; Song, C.; Tong, H.; Meng, Q. Characterizing Relationship Between Chemicals and in vitro Bioactivities of Teas Made by Six Typical Processing Methods Using a Single Camellia Sinensis Cultivar, Meizhan. Bioengineered. 2021, 12(1), 1251–1263. DOI: 10.1080/21655979.2021.1903237.
  • Koch, W.; Zagórska, J.; Marzec, Z.; Kukula-Koch, W. Applications of Tea (Camellia Sinensis) and Its Active Constituents in Cosmetics. Molecules. 2019, 24(23), 4277. DOI: 10.3390/molecules24234277.
  • Cui, Q.; NI, X.; ZENG, L.; TU, Z.; LI, J.; SUN, K.; CHEN, X.; LI, X. Optimization of Protein Extraction and Decoloration Conditions for Tea Residues. Hortic. Plant J. 2017, 3(4), 172–176. DOI: 10.1016/j.hpj.2017.06.003.
  • Xu, Y. Q.; Zhong, X. Y.; Chen, S. Q.; Yin, J. F. Hydrolysis of Green Tea Residue Protein Using Proteolytic Enzyme Derived from Aspergillus Oryzae. J. Food Sci. Technol. 2011, 50(1), 171–175. DOI: 10.1007/s13197-011-0239-x.
  • Ye, M. J.; Xu, Q. L.; Tang, H. Y.; Jiang, W. Y.; Su, D.-X.; He, S.; Zeng, Q.-Z.; Yuan, Y. Development and Stability of Novel Selenium Colloidal Particles Complex with Peanut Meal Peptides. LWT- Food Sci. Technol. 2020, 126, 109280. DOI: 10.1016/j.lwt.2020.109280.
  • Sharma, S.; Baboota, S.; Amin, S.; Mir, S. R. Ameliorative Effect of a Standardized Polyherbal Combination in Methotrexate-Induced Nephrotoxicity in the Rat. Pharm. Biol. 2020, 58(1), 184–199. DOI: 10.1080/13880209.2020.1717549.
  • Li, C.; Zhang, B.; Wang, X.; Pi, X.; Wang, X.; Zhou, H.; Mai, K.; He, G. Improved Utilization of Soybean Meal Through Fermentation with Commensal Shewanella sp. MR-7 in Turbot (Scophthalmus Maximus L.). Microb. Cell Fact. 2019, 18(1), 214. DOI: 10.1186/s12934-019-1265-z.
  • Liu, Y.; Huang, W.; Han, W.; Li, C.; Zhang, Z.; Hu, B.; Chen, S.; Cui, P.; Luo, S.; Tang, Z., et al. Structure Characterization of Oudemansiella Radicata Polysaccharide and Preparation of Selenium Nanoparticles to Enhance the Antioxidant Activities - ScienceDirect. LWT. 2021, 146, 111469. DOI: 10.1016/j.lwt.2021.111469.
  • Shard, A. G.; Wright, L.; Minelli, C. Robust and Accurate Measurements of Gold Nanoparticle Concentrations Using UV-Visible Spectrophotometry. Biointerphases. 2018, 13(6), 061002. DOI: 10.1116/1.5054780.
  • Baliyan, S.; Mukherjee, R.; Priyadarshini, A.; Vibhuti, A.; Gupta, A.; Pandey, R. P.; Chang, C.-M. Determination of Antioxidants by DPPH Radical Scavenging Activity and Quantitative Phytochemical Analysis of Ficus Religiosa. Molecules. 2022, 27(4), 1326. DOI: 10.3390/molecules27041326.
  • Wang, M.; Li, C.; Li, H.; Wu, Z.; Chen, B.; Lei, Y.; Shen, Y. In vitro and in silico Antioxidant Activity of Novel Peptides Prepared from Paeonia Ostii ‘Feng Dan’hydrolysate. Antioxidants. 2019, 8(10), 433. DOI: 10.3390/antiox8100433.
  • Wang, R.; Zhao, H.; Pan, X.; Orfila, C.; Lu, W.; Ma, Y. Preparation of Bioactive Peptides with Antidiabetic, Antihypertensive, and Antioxidant Activities and Identification of α-Glucosidase Inhibitory Peptides from Soy Protein. Food Sci. Nutr. 2019, 7(5), 1848–1856. DOI: 10.1002/fsn3.1038.
  • Sun, Y.; Li, S.; Zeng, F.; Qi, J.; Qin, W.; Tan, C.; Luo, Q.; Wu, D.; Zhang, Q.; Lin, D., et al. Functional Components, Antioxidant Activity and Hypoglycemic Ability Following Simulated Gastro-Intestinal Digestion of Pigments from Walnut Brown Shell and Green Husk. Antioxidants (Basel). 2019, 8(12), 573.
  • Gonelimali, F. D.; Lin, J.; Miao, W.; Xuan, J.; Charles, F.; Chen, M.; Hatab, S. R. Antimicrobial Properties and Mechanism of Action of Some Plant Extracts Against Food Pathogens and Spoilage Microorganisms. Front. Microbiol. 2018, 9, 1–9. DOI: 10.3389/fmicb.2018.01639.
  • Ghaffari, H.; Tavakoli, A.; Moradi, A.; Tabarraei, A.; Bokharaei-Salim, F.; Zahmatkeshan, M.; Farahmand, M.; Javanmard, D.; Kiani, S. J.; Esghaei, M., et al. Inhibition of H1N1 Influenza Virus Infection by Zinc Oxide Nanoparticles: Another Emerging Application of Nanomedicine. J. Biomed. Sci. 2019, 26(1), 70.
  • Chew, L. Y.; Toh, G. T.; Ismail, A. Chapter 15 - Application of Proteases for the Production of Bioactive Peptides. In Enzymes in Food Biotechnology; Kuddus, M. Ed.;Academic Press:2019; pp. 247–261. DOI: 10.1016/B978-0-12-813280-7.00015-3
  • Su, K.; Mao, X.; Ai, L.; Zhang, X. In vitro Assessment of Anti-Diabetic Potential of Four Kinds of Dark Tea (Camellia Sinensis L.) Protein Hydrolysates. J. Appl. Botany Food Qual. 2019, 92, 57–63.
  • Cruz-Casas, D. E.; Aguilar, C. N.; Ascacio-Valdés, J. A.; Rodríguez-Herrera, R.; Chávez-González, M. L.; Flores-Gallegos, A. C. Enzymatic Hydrolysis and Microbial Fermentation: The Most Favorable Biotechnological Methods for the Release of Bioactive Peptides. Food Chem. Mole. Sci. 2021, 3, 100047. DOI: 10.1016/j.fochms.2021.100047.
  • da Silva, A. S. A.; Espinheira, R. P.; Teixeira, R. S. S.; de Souza, M. F.; Ferreira-Leitão, V.; Bon, E. P. S. Constraints and Advances in High-Solids Enzymatic Hydrolysis of Lignocellulosic Biomass: A Critical Review. Biotechnol Biofuels. 2020, 13(1), 58. DOI: 10.1186/s13068-020-01697-w.
  • El-Malah, Y.; Nazzal, S.; Khanfar, N. M. D-Optimal Mixture Design: Optimization of Ternary Matrix Blends for Controlled Zero-Order Drug Release from Oral Dosage Forms. Drug Dev. Indus. Pharm. 2008, 32(10), 1207–1218. DOI: 10.1080/03639040600685167.
  • Ye, Q.; Wu, X.; Zhang, X.; Wang, S. Organic Selenium Derived from Chelation of Soybean Peptide-Selenium and Its Functional Properties in vitro and in vivo. Food Funct. 2019, 10(8), 4761–4770. DOI: 10.1039/C9FO00729F.
  • Pillay, N. S.; Daniels, A.; Singh, M. Folate-Targeted Transgenic Activity of Dendrimer Functionalized Selenium Nanoparticles in vitro. Int. J. Mol. Sci. 2020, 21(19), 7177. DOI: 10.3390/ijms21197177.
  • Cui, D.; Yan, C.; Miao, J.; Zhang, X.; Chen, J.; Sun, L.; Meng, L.; Liang, T.; Li, Q. Synthesis, Characterization and Antitumor Properties of Selenium Nanoparticles Coupling with Ferulic Acid. Mater. Sci. Eng. C. 2018, 90, 104–112. DOI: 10.1016/j.msec.2018.04.048.
  • Pyrzynska, K.; Sentkowska, A. Biosynthesis of Selenium Nanoparticles Using Plant Extracts. J. Nanostruct. Chem. 2022, 12(4), 467–480. DOI: 10.1007/s40097-021-00435-4.
  • Dugyala, V. R.; Muthukuru, J. S.; Mani, E.; Basavaraj, M. G. Role of Electrostatic Interactions in the Adsorption Kinetics of Nanoparticles at Fluid–Fluid Interfaces. Phys. Chem. Chem. Phys. 2016, 18(7), 5499–5508. DOI: 10.1039/C5CP05959C.
  • Sahu, D.; Jana, K.; Ganguly, B. The Role of Non-Covalent Interaction for the Adsorption of CO2 and Hydrocarbons with Per-Hydroxylated Pillar[6]arene: A Computational Study. New. J. Chem. 2017, 41(20), 12044–12051. DOI: 10.1039/C7NJ01744H.
  • Wu, Y.; Liu, H.; Li, Z.; Huang, D.; Nong, L.; Ning, Z.; Hu, Z.; Xu, C.; Yan, J.-K. Pectin-Decorated Selenium Nanoparticles as a Nanocarrier of Curcumin to Achieve Enhanced Physicochemical and Biological Properties. IET Nanobiotechnol. 2019, 13(8), 880–886. DOI: 10.1049/iet-nbt.2019.0144.
  • Xiong, Z.; Sun, B.; Zou, H.; Wang, R.; Fang, Q.; Zhang, Z.; Qiu, S. Amorphous-To-Crystalline Transformation: General Synthesis of Hollow Structured Covalent Organic Frameworks with High Crystallinity. J. Am. Chem. Soc. 2022, 144(14), 6583–6593. DOI: 10.1021/jacs.2c02089.
  • Menon, S.; KS, S. D.; Agarwal, H.; Shanmugam, V. K. Efficacy of Biogenic Selenium Nanoparticles from an Extract of Ginger Towards Evaluation on Anti-Microbial and Anti-Oxidant Activities. Colloid Interface Sci. Commun. 2019, 29, 1–8. DOI: 10.1016/j.colcom.2018.12.004.
  • Kokila, K.; Elavarasan, N.; Sujatha, V. Diospyros Montana Leaf Extract-Mediated Synthesis of Selenium Nanoparticles and Their Biological Applications. New. J. Chem. 2017, 41(15), 7481–7490. DOI: 10.1039/C7NJ01124E.
  • Chen, W.; Cheng, H.; Xia, W. Construction of Polygonatum Sibiricum Polysaccharide Functionalized Selenium Nanoparticles for the Enhancement of Stability and Antioxidant Activity. Antioxidants (Basel). 2022, 11(2), 240. DOI: 10.3390/antiox11020240.
  • Apak, R.; Özyürek, M.; Güçlü, K.; Çapanoğlu, E. Antioxidant Activity/Capacity Measurement. 1. Classification, Physicochemical Principles, Mechanisms, and Electron Transfer (ET)-Based Assays. J. Agric. Food Chem. 2016, 64(5), 997–1027. DOI: 10.1021/acs.jafc.5b04739.
  • Bharathi, D.; Diviya Josebin, M.; Vasantharaj, S.; Bhuvaneshwari, V. Biosynthesis of Silver Nanoparticles Using Stem Bark Extracts of Diospyros Montana and Their Antioxidant and Antibacterial Activities. J. Nanostruct. Chem. 2018, 8(1), 83–92. DOI: 10.1007/s40097-018-0256-7.
  • Apak, R.; Gorinstein, S.; Böhm, V.; Schaich, K. M.; Özyürek, M.; Güçlü, K. Methods of Measurement and Evaluation of Natural Antioxidant Capacity/Activity (IUPAC Technical Report). Pure Appl. Chem. 2013, 85(5), 957–998. DOI: 10.1351/PAC-REP-12-07-15.
  • Xiao, F.; Xu, T.; Lu, B.; Liu, R. Guidelines for Antioxidant Assays for Food Components. Food Front. 2020, 1(1), 60–69. DOI: 10.1002/fft2.10.
  • Olszowy-Tomczyk, M. Synergistic, Antagonistic and Additive Antioxidant Effects in the Binary Mixtures. Phytochem Rev. 2020, 19(1), 63–103. DOI: 10.1007/s11101-019-09658-4.
  • Bankier, C.; Matharu, R. K.; Cheong, Y. K.; Ren, G. G.; Cloutman-Green, E.; Ciric, L. Synergistic Antibacterial Effects of Metallic Nanoparticle Combinations. Sci. Rep. 2019, 9(1), 16074. DOI: 10.1038/s41598-019-52473-2.
  • Ranjitha, V. R.; Rai, V. R. Selenium Nanostructure: Progress Towards Green Synthesis and Functionalization for Biomedicine. J. Pharm. Invest. 2021, 51(2), 117–135. DOI: 10.1007/s40005-020-00510-y.
  • Hariharan, H.; Al-Dhabi, N. A.; Karuppiah, P.; Rajaram, S. K. Nanocomposite Using Saccharomyces cerevisiae and Its Antimicrobial Activity Against Pathogens Causing Nosocomial. Chalcogenide Letters. 2012, 9, 509.
  • Huang, T.; Holden, J. A.; Heath, D. E.; O’Brien-Simpson, N. M.; O’Connor, A. J. Engineering Highly Effective Antimicrobial Selenium Nanoparticles Through Control of Particle Size. Nanoscale. 2019, 11(31), 14937–14951. DOI: 10.1039/C9NR04424H.
  • Zhang, H.; Li, Z.; Dai, C.; Wang, P.; Fan, S.; Yu, B.; Qu, Y. Antibacterial Properties and Mechanism of Selenium Nanoparticles Synthesized by Providencia sp. DCX. Environ. Res. 2021, 194, 110630. DOI: 10.1016/j.envres.2020.110630.
  • Chudobova, D.; Cihalova, K.; Dostalova, S.; Ruttkay-Nedecky, B.; Merlos Rodrigo, M. A.; Tmejova, K.; Kopel, P.; Nejdl, L.; Kudr, J.; Gumulec, J., et al. Comparison of the Effects of Silver Phosphate and Selenium Nanoparticles on Staphylococcus Aureus Growth Reveals Potential for Selenium Particles to Prevent Infection. FEMS Microbiol. Lett. 2014, 351(2), 195–201.
  • Huang T.; Holden, J.; Heath, D.; O'Brien-Simpson, N.; O'Connor, A . Engineering Highly Effective Antimicrobial Selenium Nanoparticles Through Control of Particle Size. Nanoscale. 2019, 11(31), 14937–14951.
  • Ghosal, A.; Nielsen, P. E. Potent Antibacterial Antisense Peptide–Peptide Nucleic Acid Conjugates Against Pseudomonas aeruginosa. Nucleic. Acid Ther. 2012, 22(5), 323–334. DOI: 10.1089/nat.2012.0370.
  • Ebadi, M.; Zolfaghari, M. R.; Aghaei, S. S.; Zargar, M.; Shafiei, M.; Zahiri, H. S.; Noghabi, K. A. A Bio-Inspired Strategy for the Synthesis of Zinc Oxide Nanoparticles (ZnO NPs) Using the Cell Extract of Cyanobacterium Nostoc sp. EA03: From Biological Function to Toxicity Evaluation. Rsc. Adv. 2019, 9(41), 23508–23525. DOI: 10.1039/C9RA03962G.
  • Varlamova, E. G.; Goltyaev, M. V.; Mal’tseva, V. N.; Turovsky, E. A.; Sarimov, R. M.; Simakin, A. V.; Gudkov, S. V. Mechanisms of the Cytotoxic Effect of Selenium Nanoparticles in Different Human Cancer Cell Lines. Int. J. Mol. Sci. 2021, 22(15), 7798. DOI: 10.3390/ijms22157798.