1,164
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Effects of heating method, temperature, initial nitrite level, and storage time on residual nitrite, pigments, and curing efficiency of chicken sausages

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 2186-2200 | Received 15 May 2023, Accepted 01 Aug 2023, Published online: 08 Aug 2023

References

  • Skibsted, L. H. Nitric Oxide and Quality and Safety of Muscle Based Foods. Nitric Oxide - Biol. Chem. 2011, 24(4), 176–183. DOI: 10.1016/j.niox.2011.03.307.
  • Honikel, K.-O. The Use and Control of Nitrate and Nitrite for the Processing of Meat Products. Meat. Sci. 2008, 78(1), 68–76. DOI: 10.1016/j.meatsci.2007.05.030.
  • Zhu, Y.; Wang, P.; Guo, L.; Wang, J.; Han, R.; Sun, J.; Yang, Q. Effects of Partial Replacement of Sodium Nitrite with Lactobacillus Pentosus Inoculation on Quality of Fermented Sausages. J. Food Process Preserv. 2019, 43(5). DOI: 10.1111/jfpp.13932.
  • Zhu, Y.; Guo, L.; Yang, Q. Partial Replacement of Nitrite with a Novel Probiotic Lactobacillus Plantarum on Nitrate, Color, Biogenic Amines and Gel Properties of Chinese Fermented Sausages. Food. Res. Int. 2020, 137. DOI: 10.1016/j.foodres.2020.109351.
  • Eichholzer, M.; Gutzwiller, F. Dietary Nitrates, Nitrites and N-Nitroso Compounds and Cancer Risk with Special Emphasis on the Epidemiological Evidence. In Food Safety: Contaminants and Toxins, D’Mello, J. P. F. Ed.; CABI Publishing Edinburgh: Scottish Agricultural College, 2003; pp 217–234. DOI: 10.1079/9780851996073.0217
  • Alirezalu, K.; Hesari, J.; Nemati, Z.; Munekata, P. E. S.; Barba, F. J.; Lorenzo, J. M. Combined Effect of Natural Antioxidants and Antimicrobial Compounds During Refrigerated Storage of Nitrite-Free Frankfurter-Type Sausage. Food Res. Int. 2019, 120, 839–850. DOI: 10.1016/j.foodres.2018.11.048.
  • Ahmad, S.; Jafarzadeh, S.; Ariffin, F.; Zainul Abidin, S. Evaluation of Physicochemical, Antioxidant and Antimicrobial Properties of Chicken Sausage Incorporated with Different Vegetables. Ital. J. Food Sci. 2020, 32(1), 75–90. DOI: 10.14674/IJFS-1574.
  • Ayaseh, A.; Alirezalu, K.; Yaghoubi, M.; Razmjouei, Z.; Jafarzadeh, S.; Marszałek, K.; Mousavi Khaneghah, A. Production of Nitrite-Free Frankfurter-Type Sausages by Combining ε-Polylysine with Beetroot Extracts: An Assessment of Microbial, Physicochemical, and Sensory Properties. Food Biosci. 2022, 49, 101936. DOI: 10.1016/j.fbio.2022.101936.
  • Horsch, A. M.; Sebranek, J. G.; Dickson, J. S.; Niebuhr, S. E.; Larson, E. M.; Lavieri, N. A.; Ruther, B. L.; Wilson, L. A. The Effect of pH and Nitrite Concentration on the Antimicrobial Impact of Celery Juice Concentrate Compared with Conventional Sodium Nitrite on Listeria Monocytogenes. Meat. Sci. 2014, 96(1), 400–407. DOI: 10.1016/j.meatsci.2013.07.036.
  • Jin, S.-K.; Choi, J. S.; Yang, H.-S.; Park, T.-S.; Yim, D.-G. Natural Curing Agents as Nitrite Alternatives and Their Effects on the Physicochemical, Microbiological Properties and Sensory Evaluation of Sausages During Storage. Meat. Sci. 2018, 146, 34–40. DOI: 10.1016/j.meatsci.2018.07.032.
  • Kim, T. K.; Kim, Y. B.; Jeon, K. H.; Park, J. D.; Sung, J. M.; Choi, H. W.; Hwang, K. E.; Choi, Y. S. Effect of Fermented Spinach as Sources of Pre-Converted Nitrite on Color Development of Cured Pork Loin. Korean J. Food Sci. Anim. Resour. 2017, 37(1), 105–113. DOI: 10.5851/kosfa.2017.37.1.105.
  • Palamutoğlu, R.; Fidan, A.; Kasnak, C. Spinach Powder Addition to Sucuk for Alternative to Nitrite Addition. Bull Transilva. Univ Brasov, Series II: Forestry, Wood Ind, Agri Food Engine. 2018, 11(12–60), 155–162.
  • Riel, G.; Boulaaba, A.; Popp, J.; Klein, G. Effects of Parsley Extract Powder as an Alternative for the Direct Addition of Sodium Nitrite in the Production of Mortadella-Type Sausages – Impact on Microbiological, Physicochemical and Sensory Aspects. Meat. Sci. 2017, 131, 166–175. DOI: 10.1016/j.meatsci.2017.05.007.
  • Engchuan, W.; Jittanit, W.; Garnjanagoonchorn, W. The Ohmic Heating of Meat Ball: Modeling and Quality Determination. Innov. Food Sci. Emerg. Technol. 2014, 23, 121–130. DOI: 10.1016/j.ifset.2014.02.014.
  • Cho, H. Y.; Yousef, A. E.; Sastry, S. K. Growth Kinetics of Lactobacillus acidophilus Under Ohmic Heating. Biotechnol. Bioeng. 1996, 49(3), 334–340. DOI: 10.1002/(SICI)1097-0290(19960205)49:3<334:AID-BIT12>3.0.CO;2-E.
  • Inmanee, P.; Kamonpatana, P.; Pirak, T. Ohmic Heating Effects on Listeria Monocytogenes Inactivation, and Chemical, Physical, and Sensory Characteristic Alterations for Vacuum Packaged Sausage During Post Pasteurization. LWT-Food Sci. Technol. 2019, 108, 183–189. DOI: 10.1016/j.lwt.2019.03.027.
  • Gunvig, A.; Hansen, F.; Borggaard, C. A Mathematical Model for Predicting Growth/no-Growth of Psychrotrophic C. Botulinum in Meat Products with Five Variables. Food Control. 2013, 29(2), 309–317. DOI: 10.1016/j.foodcont.2012.06.046.
  • Lee, S.; Lee, H.; Kim, S.; Lee, J.; Ha, J.; Choi, Y.; Oh, H.; Choi, K.-H.; Yoon, Y. Microbiological Safety of Processed Meat Products Formulated with Low Nitrite Concentration—A Review. Asian-Australas J. Anim. Sci. 2018, 31(8), 1073. DOI: 10.5713/ajas.17.0675.
  • Thai FDA (Thailand Food and Drug Administration). Announcement of the Ministry of Public Health No. 418 (B.E.2563): Prescribing the principle, conditions, methods and proportion of food additives (No.2). 2020, 356.
  • USDA (U.S. Department of Agriculture). Safe Minimum Internal Temperature Chart. Food Safety Basics. 2020. https://www.fsis.usda.gov/food-safety/safe-food-handling-and-preparation/food-safety-basics/safe-temperature-chart
  • Wood, R.; Foster, L.; Damant, A.; Key, P. 9 - E249–50: Nitrites. In Analytical Methods for Food Additives, Wood, R., Foster, L., Damant, A. Key, P., Eds.; Woodhead Publishing, 2004; pp 98–127.
  • AMSA (American Meat Science Association). Section XI: Detail of Analytical Analyses Related to Meat Color. In Meat Color Measurement Guidelines, Hunt, M. C., and King, A. Eds.; Champaign, IL, USA: American Meat Science Association, 2012; pp 80–81.
  • Piette, G.; Dostie, M.; Ramaswamy, H. Ohmic Cooking of Processed Meats - State of the Art and Prospects. 47th International Congress of Meat Science and Technology; Krakow, Poland, 2001, 62–67.
  • Icier, F.; Ilicali, C. Temperature Dependent Electrical Conductivities of Fruit Purees During Ohmic Heating. Food. Res. Int. 2005, 38(10), 1135–1142. DOI: 10.1016/j.foodres.2005.04.003.
  • Khuenpet, K.; Fukuoka, M.; Jittanit, W.; Sirisansaneeyakul, S. Spray Drying of Inulin Component Extracted from Jerusalem Artichoke Tuber Powder Using Conventional and Ohmic-Ultrasonic Heating for Extraction Process. J. Food Eng. 2017, 194, 67–78. DOI: 10.1016/j.jfoodeng.2016.09.009.
  • Aamir, M.; Jittanit, W. Ohmic Heating Treatment for Gac Aril Oil Extraction: Effects on Extraction Efficiency, Physical Properties and Some Bioactive Compounds. Innov. Food Sci. Emerg. Technol. 2017, 41, 224–234. DOI: 10.1016/j.ifset.2017.03.013.
  • Srivastav, S.; Roy, S. Changes in Electrical Conductivity of Liquid Foods During Ohmic Heating. Int. J. Agric. Biol. Eng. 2014, 7(5), 133–138. DOI: 10.3965/j.ijabe.20140705.015.
  • Jo, K.; Lee, S.; Yong, H. I.; Choi, Y.-S.; Jung, S. Nitrite Sources for Cured Meat Products. LWT-Food Sci. Technol. 2020, 129. DOI: 10.1016/j.lwt.2020.109583.
  • Azeem, S. M. A.; Madbouly, M. D.; El-Shahat, M. F. Determination of Nitrite in Processed Meat Using Digital Image Method and Powdered Reagent. J. Food Compos. Anal. 2019, 81, 28–36. DOI: 10.1016/j.jfca.2019.05.003.
  • Karwowska, M.; Kononiuk, A.; Wojciak, K. M. Impact of Sodium Nitrite Reduction on Lipid Oxidation and Antioxidant Properties of Cooked Meat Products. Antioxidants. 2019, 9(1). DOI: 10.3390/antiox9010009.
  • Higuero, N.; Moreno, I.; Lavado, G.; Vidal-Aragón, M. C.; Cava, R. Reduction of Nitrate and Nitrite in Iberian Dry Cured Loins and Its Effects During Drying Process. Meat. Sci. 2020, 163, 108062. DOI: 10.1016/j.meatsci.2020.108062.
  • Carballo, J.; Cavestany, M.; Jiménez-Colmenero, F. Effect of Light on Colour and Reaction of Nitrite in Sliced Pork Bologna Under Different Chilled Storage Temperatures. Meat. Sci. 1991, 30(3), 235–244. DOI: 10.1016/0309-1740(91)90069-3.
  • Ishiwatari, N.; Fukuoka, M.; Sakai, N. Effect of Protein Denaturation Degree on Texture and Water State of Cooked Meat. J. Food Eng. 2013, 117(3), 361–369. DOI: 10.1016/j.jfoodeng.2013.03.013.
  • Okayama, T.; Fujii, M.; Yamanoue, M. Effect of Cooking Temperature on the Percentage Colour Formation, Nitrite Decomposition and Sarcoplasmic Protein Denaturation in Processed Meat Products. Meat. Sci. 1991, 30(1), 49–57. DOI: 10.1016/0309-1740(91)90034-N.
  • Sallan, S.; Kaban, G.; Çelik, M.; Kaya, M.; Kaya, M. Nitrosamine Formation in a Semi-Dry Fermented Sausage: Effects of Nitrite, Ascorbate and Starter Culture and Role of Cooking. Meat. Sci. 2020, 159, 159. DOI: 10.1016/j.meatsci.2019.107917.
  • US FDA (U.S. Food and Drug Administration). Code of Federal Regulations. Title 21, Chapter I, Subchapter B, Part 172: Food additives permitted for direct addition to food for human consumption, Subpart B, Sec. 172.175 Sodium nitrite. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=172.175 (accessed Nov 29, 2022).
  • Zając, M.; Zając, K.; Dybaś, J. The Effect of Nitric Oxide Synthase and Arginine on the Color of Cooked Meat. Food Chem. 2022, 373, 131503. DOI: 10.1016/j.foodchem.2021.131503.
  • Marches, C. M.; Cichoski, A. J.; Zanoelo, E. F.; Dariva, C. Influência das condições de armazenamento sobre os pigmentos cárneos e a cor do salame italiano fatiado. Ciênc. Tecnol. Aliment. 2006, 26, 697–704. DOI: 10.1590/S0101-20612006000300033.
  • Sindelar, J.; Cordray, J.; Sebranek, J.; Love, J.; Ahn, D. Effects of Vegetable Juice Powder Concentration and Storage Time on Some Chemical and Sensory Quality Attributes of Uncured, Emulsified Cooked Sausages. J. Food Sci. 2007, 72(5), S324–S332. DOI: 10.1111/j.1750-3841.2007.00369.x.
  • Ozaki, M. M.; Munekata, P. E.; Jacinto-Valderrama, R. A.; Efraim, P.; Pateiro, M.; Lorenzo, J. M.; Pollonio, M. A. R. Beetroot and Radish Powders as Natural Nitrite Source for Fermented Dry Sausages. Meat. Sci. 2021, 171, 108275. DOI: 10.1016/j.meatsci.2020.108275.