1,939
Views
2
CrossRef citations to date
0
Altmetric
Review Article

Nutritional and toxicological characteristics of Saccharina latissima, Ulva fenestrata, Ulva intestinalis, and Ulva rigida: a review

, , , , &
Pages 2349-2378 | Received 05 May 2023, Accepted 04 Aug 2023, Published online: 23 Aug 2023

References

  • Araújo, R.; Vázquez Calderón, F.; Sánchez López, J.; Azevedo, I. C.; Bruhn, A.; Fluch, S.; Garcia Tasende, M.; Ghaderiardakani, F.; Ilmjärv, T.; Laurans, M., et al. Current Status of the Algae Production Industry in Europe: An Emerging Sector of the Blue Bioeconomy. Front. Mar. Sci. 2021, 7, 1247. DOI: 10.3389/fmars.2020.626389.
  • Mendes, M. C.; Navalho, S.; Ferreira, A.; Paulino, C.; Figueiredo, D.; Silva, D.; Gao, F.; Gama, F.; Bombo, G.; Jacinto, R., et al. Algae as Food in Europe: An Overview of Species Diversity and Their Application. Foods. 2022, 11(13). DOI: 10.3390/foods11131871.
  • Cai, J.; Lovatelli, A.; Aguilar-Manjarrez, J.; Cornish, L.; Dabbadie, L.; Desrochers, A.; Diffey, S.; Garrido Gamarro, E.; Geehan, J.; Hurtado, A. Seaweeds and Microalgae: An Overview for Unlocking Their Potential in Global Aquaculture Development. FAO Fish. Aquac Circular. 1229. DOI: 10.4060/cb5670en.
  • Parodi, A.; Leip, A.; De Boer, I. J. M.; Slegers, P. M.; Ziegler, F.; Temme, E. H. M.; Herrero, M.; Tuomisto, H.; Valin, H.; Van Middelaar, C. E., et al. The Potential of Future Foods for Sustainable and Healthy Diets. Nat. Sustain. 2018, 1(12), 782–789. DOI: 10.1038/s41893-018-0189-7.
  • Gephart, J. A.; Henriksson, P. J. G.; Parker, R. W. R.; Shepon, A.; Gorospe, K. D.; Bergman, K.; Eshel, G.; Golden, C. D.; Halpern, B. S.; Hornborg, S., et al. Environmental Performance of Blue Foods. Nature. 2021, 597(7876), 360–365. DOI: 10.1038/s41586-021-03889-2.
  • Cherry, P.; O’Hara, C.; Magee, P. J.; McSorley, E. M.; Allsopp, P. J. Risks and Benefits of Consuming Edible Seaweeds. Nutr. rev. 2019, 77(5), 307–329. DOI: 10.1093/nutrit/nuy066.
  • Nova, P.; Martins, A. P.; Teixeira, C.; Abreu, H.; Silva, J. G.; Silva, A. M.; Freitas, A. C.; Gomes, A. M. Foods with Microalgae and Seaweeds Fostering Consumers Health: A Review on Scientific and Market Innovations. J. Appl. Phycol. 2020, 32(3), 1789–1802. DOI: 10.1007/s10811-020-02129-w.
  • Lozano Muñoz, I.; Díaz, N. F. Minerals in Edible Seaweed: Health Benefits and Food Safety Issues. Crit. Rev. Food Sci. Nutr. 2022, 62(6), 1592–1607. DOI: 10.1080/10408398.2020.1844637.
  • Sá Monteiro, M.; Sloth, J.; Holdt, S.; Hansen, M. Analysis and Risk Assessment of Seaweed. Efsa J. 2019, 17(Suppl 2), e170915. DOI: 10.2903/j.efsa.2019.e170915.
  • Kumar, M. S.; Sharma, S. Toxicological Effects of Marine Seaweeds: A Cautious Insight for Human Consumption. Crit. Rev. Food Sci. Nutr. 2020, 61(3), 500–521. DOI: 10.1080/10408398.2020.1738334.
  • CEVA [Centre d’Étude et de Valorisation des Algues]. 2021. Ulva Spp - Nutritional Data Sheet. https://www.ceva-algues.com/wp-content/uploads/2021/04/EN-Ulva-spp.pdf. (Assessed March, 2022).
  • Vincent, A.; Stanely, A.; Ring, J. Hidden Champion of the Ocean: Seaweed as a Growth Engine for a Sustainable European Future. Seaweed For Europe. https://www.seaweedeurope.com/wp-content/uploads/2020/10/Seaweed_for_Europe-Hidden_Champion_of_the_ocean-Report.pdf (2020).
  • MacArtain, P.; Gill, C. I. R.; Brooks, M.; Campbell, R.; Rowland, I. R. Nutritional Value of Edible Seaweeds. Nutr. rev. 2008, 65(12), 535–543. DOI: 10.1111/j.1753-4887.2007.tb00278.x.
  • Gamero-Vega, G.; Palacios-Palacios, M.; Quitral, V. Nutritional Composition and Bioactive Compounds of Red Seaweed: A Mini-Review. J. Food Nutr. Res. 2020, 8(8), 431–440. DOI: 10.12691/jfnr-8-8-7.
  • Kumar, M. S.; Sharma, S. A. Toxicological Effects of Marine Seaweeds: A Cautious Insight for Human Consumption. Crit. Rev. Food Sci. Nutr. 2021, 61(3), 500–521. DOI: 10.1080/10408398.2020.1738334.
  • Circuncisão, A. R.; Catarino, M. D.; Cardoso, S. M.; Silva, A. M. S. Minerals from Macroalgae Origin: Health Benefits and Risks for Consumers. Mar. Drugs. 2018, 16(11). DOI: 10.3390/md16110400.
  • Nielsen, C. W.; Rustad, T.; Holdt, S. L. Vitamin C from Seaweed: A Review Assessing Seaweed as Contributor to Daily Intake. Foods. 2021, 10(1). DOI: 10.3390/foods10010198.
  • Golden, C. D.; Koehn, J. Z.; Vaitla, B.; DeSisto, C.; Kelahan, H.; Manning, K.; Fiorella, K. J.; Kjellevold, M.; Thilsted, S. H., Aquatic Food Composition Database. 2021, Harvard Dataverse. V2. [ Assessed November 2021].
  • CEVA [Centre d’Étude et de Valorisation des Algues]. 2021. Saccharina Latissima - Nutritional Data Sheet. https://www.ceva-algues.com/wp-content/uploads/2021/04/EN-Saccharina-latissima-1.pdf (Assessed March, 2022).
  • CEVA [Centre d’Étude et de Valorisation des Algues]. Nutritional Data Sheets On Algae; 2021. https://www.ceva-algues.com/en/document/nutritional-data-sheets-on-algae/ (Accessed March, 2022).
  • Angell, A. R.; Mata, L.; de Nys, R.; Paul, N. A. The Protein Content of Seaweeds: A Universal Nitrogen-To-Protein Conversion Factor of Five. J. Appl. Phycol. 2016, 28(1), 511–524. DOI: 10.1007/s10811-015-0650-1.
  • Nordic Council of Ministers, Nordic Nutrition Recommendations 2012. Integrating Nutrition and Physical Activity. Copenhagen: Nordic Council of Ministers, 2014. DOI: 10.26530/OAPEN_483279.
  • Drewnowski, A. Defining Nutrient Density: Development and Validation of the Nutrient Rich Foods Index. J. Am. Coll. Nutr. 2009, 28(4), 421S–426S. DOI: 10.1080/07315724.2009.10718106.
  • Hallström, E.; Bergman, K.; Mifflin, K.; Parker, R.; Tyedmers, P.; Troell, M.; Ziegler, F. Combined Climate and Nutritional Performance of Seafoods. J. Clean. Prod. 2019, 230, 402–411. DOI: 10.1016/j.jclepro.2019.04.229.
  • Bianchi, M.; Hallström, E.; Parker, R. W. R.; Mifflin, K.; Tyedmers, P.; Ziegler, F. Assessing Seafood Nutritional Diversity Together with Climate Impacts Informs More Comprehensive Dietary Advice. Commun Earth Environ. 2022, 3(1), 188. DOI: 10.1038/s43247-022-00516-4.
  • Bianchi, M.; Strid, A.; Winkvist, A.; Lindroos, A.-K.; Sonesson, U.; Hallström, E. Systematic Evaluation of Nutrition Indicators for Use within Food LCA Studies. Sustainability. 2020, 12(21), 8992. DOI: 10.3390/su12218992.
  • EFSA [European Food Safety Authority]. Cadmium in Food ‐ Scientific Opinion of the Panel on Contaminants in the Food Chain. Efsa J., 2009, (980), 1–139. DOI: 10.2903/j.efsa.2009.980.
  • EFSA [European Food Safety Authority]. Scientific Opinion on Arsenic in Food. Efsa J. 2009, 7(10), 1351. DOI: 10.2903/j.efsa.2009.1351.
  • EFSA [European Food Safety Authority]. Scientific Opinion on Lead in Food. Efsa J. 2010, 8(4), 1570. DOI: 10.2903/j.efsa.2010.1570.
  • EFSA [European Food Safety Authority]. Scientific Opinion on the Risk for Public Health Related to the Presence of Mercury and Methylmercury in Food. Efsa J. 2012, 10(12), 2985. DOI: 10.2903/j.efsa.2012.2985.
  • Livsmedelsverket [Swedish Food Agency]. 2021. Livsmedelsdatabasen [Food Composition Database], Version 20210503. https://soknaringsinnehall.livsmedelsverket.se (Accessed January 10, 2023).
  • Abdollahi, M.; Axelsson, J.; Carlsson, N.-G.; Nylund, G. M.; Albers, E.; Undeland, I. Effect of Stabilization Method and Freeze/thaw-Aided Precipitation on Structural and Functional Properties of Proteins Recovered from Brown Seaweed (Saccharina Latissima). Food Hydrocoll. 2019, 96, 140–150. DOI: 10.1016/j.foodhyd.2019.05.007.
  • Afonso, C.; Cardoso, C.; Ripol, A.; Varela, J.; Quental-Ferreira, H.; Pousão-Ferreira, P.; Ventura, M. S.; Delgado, I. M.; Coelho, I.; Castanheira, I., et al. Composition and Bioaccessibility of Elements in Green Seaweeds from Fish Pond Aquaculture. Food. Res. Int. 2018, 105, 271–277. DOI: 10.1016/j.foodres.2017.11.015.
  • Afonso, C.; Matos, J.; Guarda, I.; Gomes-Bispo, A.; Gomes, R.; Cardoso, C.; Gueifão, S.; Delgado, I.; Coelho, I.; Castanheira, I., et al. Bioactive and Nutritional Potential of Alaria Esculenta and Saccharina Latissima. J. Appl. Phycol. 2021, 33(1), 501–513. DOI: 10.1007/s10811-020-02298-8.
  • Akalya, K.; Kumar, S. D.; Manigandan, G.; Santhanam, P.; Perumal, P.; Krishnaveni, N.; Arthikha, R.; Begum, A.; Dhanalakshmi, B.; Kim, M.-K. The Influence of the Macroalgae Liquid Extracts on the Pigments and Fatty Acids Profile of the Marine Microalga, Picochlorum Maculatum (PSDK01). Thalassas. 2021, 38(1), 1–12. DOI: 10.1007/s41208-021-00338-9.
  • Akköz, C.; Arslan, D.; Ünver, A.; Özcan, M.; Yilmaz, B. Chemical Composition, Total Phenolic and Mineral Contents of Enteromorpha Intestinalis (L.) Kütz. and Cladophora Glomerata (L.) Kütz. Seaweeds. J. Food Biochem. 2011, 35(2), 513–523. DOI: 10.1111/j.1745-4514.2010.00399.x.
  • Bak, U. G.; Nielsen, C. W.; Marinho, G. S.; Gregersen, Ó.; Jónsdóttir, R.; Holdt, S. L. The Seasonal Variation in Nitrogen, Amino Acid, Protein and Nitrogen-To-Protein Conversion Factors of Commercially Cultivated Faroese Saccharina Latissima. Algal Res. 2019, 42. DOI: 10.1016/j.algal.2019.101576.
  • Barbosa, M.; Fernandes, F.; Pereira, D. M.; Azevedo, I. C.; Sousa-Pinto, I.; Andrade, P. B.; Valentão, P. Fatty Acid Patterns of the Kelps Saccharina Latissima, Saccorhiza Polyschides and Laminaria Ochroleuca: Influence of Changing Environmental Conditions. Arab J. Chem. 2020, 13(1), 45–58. DOI: 10.1016/j.arabjc.2017.01.015.
  • Batista, S.; Pintado, M.; Marques, A.; Abreu, H.; Silva, J. L.; Jessen, F.; Tulli, F.; Valente, L. M. Use of Technological Processing of Seaweed and Microalgae as Strategy to Improve Their Apparent Digestibility Coefficients in European Seabass (Dicentrarchus Labrax) Juveniles. J. Appl. Phycol. 2020, 32(5), 3429–3446. DOI: 10.1007/s10811-020-02185-2.
  • Beacham, T. A.; Cole, I. S.; DeDross, L. S.; Raikova, S.; Chuck, C. J.; Macdonald, J.; Herrera, L.; Ali, T.; Airs, R. L.; Landels, A., et al. Analysis of Seaweeds from South West England as a Biorefinery Feedstock. Appl. Sci. 2019, 9(20), 4456. DOI: 10.3390/app9204456.
  • Benjama, O.; Masniyom, P. Nutritional Composition and Physicochemical Properties of Two Green Seaweeds (Ulva Pertusa and U. Intestinalis) from the Pattani Bay in Southern Thailand. Songklanakarin J. Sci. Technol. 2011, 33(5), 575–583.
  • Berik, N.; Cankiriligil, E. C. The Elemental Composition of Green Seaweed (Ulva Rigida) Collected from Çanakkale, Turkey. Aquat. Sci. Eng. 2019, 34(3), 74–79. DOI: 10.26650/ASE2019557380.
  • Biancarosa, I.; Espe, M.; Bruckner, C. G.; Heesch, S.; Liland, N.; Waagbø, R.; Torstensen, B.; Lock, E. J. Amino Acid Composition, Protein Content, and Nitrogen-To-Protein Conversion Factors of 21 Seaweed Species from Norwegian Waters. J. Appl. Phycol. 2017, 29(2), 1001–1009. DOI: 10.1007/s10811-016-0984-3.
  • Bikker, P.; Stokvis, L.; van Krimpen, M. M.; van Wikselaar, P. G.; Cone, J. W. Evaluation of Seaweeds from Marine Waters in Northwestern Europe for Application in Animal Nutrition. Anim. Feed Sci. Technol. 2020, 263. DOI: 10.1016/j.anifeedsci.2020.114460.
  • Blikra, M. J.; Løvdal, T.; Vaka, M. R.; Roiha, I. S.; Lunestad, B. T.; Lindseth, C.; Skipnes, D. Assessment of Food Quality and Microbial Safety of Brown Macroalgae (Alaria Esculenta and Saccharina Latissima). J. Sci. Food Agr. 2019, 99(3), 1198–1206. DOI: 10.1002/jsfa.9289.
  • Bogolitsyn, K. G.; Kaplitsin, P. A.; Pochtovalova, A. S. Amino-Acid Composition of Arctic Brown Algae. Chem. Nat. Comp. 2014, 49(6), 1110–1113. DOI: 10.1007/s10600-014-0831-1.
  • Cabrita, A. R. J.; Maia, M. R. G.; Oliveira, H. M.; Sousa-Pinto, I.; Almeida, A. A.; Pinto, E.; Fonseca, A. J. M. Tracing Seaweeds as Mineral Sources for Farm-Animals. J. Appl. Phycol. 2016, 28(5), 3135–3150. DOI: 10.1007/s10811-016-0839-y.
  • Cañedo-Castro, B.; Piñón-Gimate, A.; Carrillo, S.; Ramos, D.; Casas-Valdez, M. Prebiotic Effect of Ulva Rigida Meal on the Intestinal Integrity and Serum Cholesterol and Triglyceride Content in Broilers. J. Appl. Phycol. 2019, 31, 3265–3273. DOI: 10.1007/s10811-019-01785-x.
  • Correia, H.; Soares, C.; Morais, S.; Pinto, E.; Marques, A.; Nunes, M. L.; Almeida, A.; Delerue-Matos, C. Seaweeds Rehydration and Boiling: Impact on Iodine, Sodium, Potassium, Selenium, and Total Arsenic Contents and Health Benefits for Consumption. Food. Chem. Toxicol. 2021, 155, 112385. DOI: 10.1016/j.fct.2021.112385.
  • Costa, M.; Henriques, B.; Pinto, J.; Fabre, E.; Viana, T.; Ferreira, N.; Amaral, J.; Vale, C.; Pinheiro-Torres, J.; Pereira, E. Influence of Salinity and Rare Earth Elements on Simultaneous Removal of Cd, Cr, Cu, Hg, Ni and Pb from Contaminated Waters by Living Macroalgae. Environ. Poll. 2020, 266(Pt 1), 115374. DOI: 10.1016/j.envpol.2020.115374.
  • Dammak Walha, L.; Hamza, A.; Abdmouleh Keskes, F.; Cibic, T.; Mechi, A.; Mahfoudi, M.; Sammari, C. Heavy Metals Accumulation in Environmental Matrices and Their Influence on Potentially Harmful Dinoflagellates Development in the Gulf of Gabes (Tunisia). Estuarine Coastal Shelf Sci. 2021, 254, 107317. DOI: 10.1016/j.ecss.2021.107317.
  • Díaz, O.; Tapia, Y.; Muñoz, O.; Montoro, R.; Velez, D.; Almela, C. Total and Inorganic Arsenic Concentrations in Different Species of Economically Important Algae Harvested from Coastal Zones of Chile. Food. Chem. Toxicol. 2012, 50(3–4), 744–749. DOI: 10.1016/j.fct.2011.11.024.
  • Diop, M.; Howsam, M.; Diop, C.; Goossens, J. F.; Diouf, A.; Amara, R. Assessment of Trace Element Contamination and Bioaccumulation in Algae (Ulva Lactuca), Mussels (Perna Perna), Shrimp (Penaeus Kerathurus), and Fish (Mugil Cephalus, Saratherondon Melanotheron) Along the Senegalese Coast. Mar. Pollut. Bull. 2016, 103(1–2), 339–343. DOI: 10.1016/j.marpolbul.2015.12.038.
  • El-Said, G. F. Bioaccumulation of Key Metals and Other Contaminants by Seaweeds from the Egyptian Mediterranean Sea Coast in Relation to Human Health Risk. Hum. Ecol. Risk Assess. 2013, 19(5), 1285–1305. DOI: 10.1080/10807039.2012.708253.
  • Escobido, H. R. S.; Orbita, M. L. S.; Orbita, R. R. Evaluation of the Biochemical and Phytochemical Components of Green Seaweed Enteromorpha Intestinalis (Linnaeus) in Initao, Misamis Oriental, Mindanao, Philippines. Int. J. Biosci. 2016, 9, 114–122. DOI: 10.12692/ijb/9.4.114-122.
  • Ferreira, J. P.; Sharma, A.; Zannad, F. The Future of Meat: Health Impact Assessment with Randomized Evidence. Am. j. med. 2021, 134(5), 569–575. DOI: 10.1016/j.amjmed.2020.11.007.
  • Flores, S. R. L.; Dobbs, J.; Dunn, M. A. Mineral Nutrient Content and Iron Bioavailability in Common and Hawaiian Seaweeds Assessed by an in vitro Digestion/caco-2 Cell Model. J. Food Comp. Anal. 2015, 43, 185–193. DOI: 10.1016/j.jfca.2015.06.008.
  • Frikha, F.; Kammoun, M.; Hammami, N.; McHirgui, R. A.; Belbahri, L.; Gargouri, Y.; Miled, N.; Ben-Rebah, F. Chemical Composition and Some Biological Activities of Marine Algae Collected in Tunisia. Ciencias Marinas. 2011, 37(2), 113–124. DOI: 10.7773/cm.v37i2.1712.
  • Gaillard, C.; Bhatti, H. S.; Novoa-Garrido, M.; Lind, V.; Roleda, M. Y.; Weisbjerg, M. R. Amino Acid Profiles of Nine Seaweed Species and Their in situ Degradability in Dairy Cows. Anim. Feed Sci. Technol. 2018, 241, 210–222. DOI: 10.1016/j.anifeedsci.2018.05.003.
  • Gao, G.; Clare, A.; Rose, C.; Caldwell, G. Reproductive Sterility Increases the Capacity to Exploit the Green Seaweed Ulva Rigida for Commercial Applications. Algal Res. 2017, 24, 64–71. DOI: 10.1016/j.algal.2017.03.008.
  • García-Sartal, C.; Romarís-Hortas, V.; Del Carmen Barciela-Alonso, M.; Moreda-Piñeiro, A.; Dominguez-Gonzalez, R.; Bermejo-Barrera, P. Use of an in vitro Digestion Method to Evaluate the Bioaccessibility of Arsenic in Edible Seaweed by Inductively Coupled Plasma-Mass Spectrometry. Microchem. J. 2011, 98(1), 91–96. DOI: 10.1016/j.microc.2010.12.001.
  • García-Sartal, C.; Del Carmen Barciela-Alonso, M.; Moreda-Piñeiro, A.; Bermejo-Barrera, P. Study of Cooking on the Bioavailability of As, Co, Cr, Cu, Fe, Ni, Se and Zn from Edible Seaweed. Microchem. J. 2013, 108, 92–99. DOI: 10.1016/j.microc.2012.10.003.
  • Ghanemi, K.; Navidi, M.-A.; Fallah-Mehrjardi, M.; Dadolahi-Sohrab, A. Ultra-Fast Microwave-Assisted Digestion in Choline Chloride–Oxalic Acid Deep Eutectic Solvent for Determining Cu, Fe, Ni and Zn in Marine Biological Samples. Anal. Meth. 2014, 6(6), 1774–1781. DOI: 10.1039/C3AY41843J.
  • Harrysson, H.; Krook, J. L.; Larsson, K.; Tullberg, C.; Oerbekke, A.; Toth, G.; Pavia, H.; Undeland, I. Effect of Storage Conditions on Lipid Oxidation, Nutrient Loss and Colour of Dried Seaweeds, Porphyra Umbilicalis and Ulva Fenestrata, Subjected to Different Pretreatments. Algal. Res. 2021, 56, 102295. DOI: 10.1016/j.algal.2021.102295.
  • Hossain, M. T.; Sohag, A. A. M.; Haque, M. N.; Tahjib-Ul-Arif, M.; Dash, R.; Chowdhury, M. T. H.; Hossain, M. A.; Moon, I. S.; Hannan, M. A. Nutritional Value, Phytochemical Profile, Antioxidant Property and Agar Yielding Potential of Macroalgae from Coasts of Cox’s Bazar and St. Martin’s Island of Bangladesh. J. Aq. Food Prod. Technol. 2021, 30(2), 217–227. DOI: 10.1080/10498850.2020.1869876.
  • Ismail, M. M.; El Zokm, G. M.; El-Sayed, A. A. Variation in Biochemical Constituents and Master Elements in Common Seaweeds from Alexandria Coast, Egypt, with Special Reference to Their Antioxidant Activity and Potential Food Uses: Prospective Equations. Env. Monit. Assess. 2017, 189(12), 1–17. DOI: 10.1007/s10661-017-6366-8.
  • Jannat-Alipour, H.; Rezaei, M.; Shabanpour, B.; Tabarsa, M. Edible Green Seaweed, Ulva Intestinalis as an Ingredient in Surimi-Based Product: Chemical Composition and Physicochemical Properties. J. Appl. Phycol. 2019, 31, 2529–2539. DOI: 10.1007/s10811-019-1744-y.
  • Jara-Marini, M. E.; Molina-García, A.; Martínez-Durazo, Á.; Páez-Osuna, F. Trace Metal Trophic Transference and Biomagnification in a Semiarid Coastal Lagoon Impacted by Agriculture and Shrimp Aquaculture. Environ. Sci. Pollut. Res. 2020, 27(5), 5323–5336. DOI: 10.1007/s11356-019-06788-2.
  • Jard, G.; Jackowiak, D.; Carrère, H.; Delgenès, J.-P.; Torrijos, M.; Steyer, J.-P.; Dumas, C. Batch and Semi-Continuous Anaerobic Digestion of Palmaria Palmata: Comparison with Saccharina Latissima and Inhibition Studies. Chem. Eng. J. 2012, 209, 513–519. DOI: 10.1016/j.cej.2012.08.010.
  • Jard, G.; Marfaing, H.; Carrère, H.; Delgenes, J. P.; Steyer, J. P.; Dumas, C. French Brittany Macroalgae Screening: Composition and Methane Potential for Potential Alternative Sources of Energy and Products. Biores. Technol. 2013, 144, 492–498. DOI: 10.1016/j.biortech.2013.06.114.
  • Jayasinghe, G.; Jinadasa, B.; Chinthaka, S. D. M. Nutritional Composition and Heavy Metal Content of Five Tropical Seaweeds. Open Sci. J. Anal. Chem. 2018, 3(2), 17–22. DOI: 10.1016/j.foodchem.2022.133866.
  • Kisten, K.; Moodley, R.; Jonnalagadda, S. B. Elemental Analysis and Nutritional Value of Seaweed from the East Coast of KwaZulu-Natal, South Africa. Anal. Lett. 2017, 50(3), 580–590. DOI: 10.1080/00032719.2016.1182545.
  • Kreissig, K. J.; Hansen, L. T.; Jensen, P. E.; Wegeberg, S.; Geertz-Hansen, O.; Sloth, J. J.; Hu, Y. Characterisation and Chemometric Evaluation of 17 Elements in ten Seaweed Species from Greenland. PLoS One. 2021, 16(2), e0243672. DOI: 10.1371/journal.pone.0243672.
  • Krogdahl, Å.; Jaramillo-Torres, A.; Ahlstrøm, Ø.; Chikwati, E.; Aasen, I. M.; Kortner, T. M. Protein Value and Health Aspects of the Seaweeds Saccharina Latissima and Palmaria Palmata Evaluated with Mink as Model for Monogastric Animals. Anim. Feed Sci. Technol. 2021, 276. DOI: 10.1016/j.anifeedsci.2021.114902.
  • Kumar, M.; Kumari, P.; Trivedi, N.; Shukla, M. K.; Gupta, V.; Reddy, C.; Jha, B. Minerals, PUFAs and Antioxidant Properties of Some Tropical Seaweeds from Saurashtra Coast of India. J. Appl. Phycol. 2011, 23, 797–810. DOI: 10.1007/s10811-010-9578-7.
  • Kumar, Y.; Tarafdar, A.; Kumar, D.; Verma, K.; Aggarwal, M.; Badgujar, P. C.; Durazzo, A. Evaluation of Chemical, Functional, Spectral, and Thermal Characteristics of Sargassum Wightii and Ulva Rigida from Indian Coast. J. Food Qual. 2021, 2021, 1–9. DOI: 10.1155/2021/9133464.
  • Leri, A. C.; Dunigan, M. R.; Wenrich, R. L.; Ravel, B. Particulate Organohalogens in Edible Brown Seaweeds. Food Chem. 2019, 272, 126–132. DOI: 10.1016/j.foodchem.2018.08.050.
  • Machado, M.; Machado, S.; Pimentel, F. B.; Freitas, V.; Alves, R. C.; Oliveira, M. B. P. Amino Acid Profile and Protein Quality Assessment of Macroalgae Produced in an Integrated Multi-Trophic Aquaculture System. Foods. 2020, 9(10), 1382. DOI: 10.3390/foods9101382.
  • Mæhre, H. K.; Malde, M. K.; Eilertsen, K. E.; Elvevoll, E. O. Characterization of Protein, Lipid and Mineral Contents in Common Norwegian Seaweeds and Evaluation of Their Potential as Food and Feed. J. Sci. Food Agr. 2014, 94(15), 3281–3290. DOI: 10.1002/jsfa.6681.
  • Maia, M. R. G.; Fonseca, A. J. M.; Oliveira, H. M.; Mendonça, C.; Cabrita, A. R. J. The Potential Role of Seaweeds in the Natural Manipulation of Rumen Fermentation and Methane Production. Sci. Rep. 2016, 6(1). DOI: 10.1038/srep32321.
  • Maia, M. R. G.; Fonseca, A. J. M.; Cortez, P. P.; Cabrita, A. R. J. In vitro Evaluation of Macroalgae as Unconventional Ingredients in Ruminant Animal Feeds. Algal. Res. 2019, 40, 101481. DOI: 10.1016/j.algal.2019.101481.
  • Manns, D.; Nielsen, M. M.; Bruhn, A.; Saake, B.; Meyer, A. S. Compositional Variations of Brown Seaweeds Laminaria Digitata and Saccharina Latissima in Danish Waters. J. Appl. Phycol. 2017, 29(3), 1493–1506. DOI: 10.1007/s10811-017-1056-z.
  • Milinovic, J.; Noronha, J.; Diniz, M.; Mata, P.; Mata, P.; Diniz, M.; Noronha, J.; Milinovic, J. Umami Taste in Edible Seaweeds: The Current Comprehension and Perception. Int. J. Gastr. Food Sci. 2021, 23, 100301. DOI: 10.1016/j.ijgfs.2020.100301.
  • Monteiro, J. P.; Rey, F.; Melo, T.; Moreira, A. S. P.; Arbona, J. F.; Skjermo, J.; Forbord, S.; Funderud, J.; Raposo, D.; Kerrison, P. D., et al. The Unique Lipidomic Signatures of Saccharina Latissima Can Be Used to Pinpoint Their Geographic Origin. Biomolecules. 2020, 10(1), 107. DOI: 10.3390/biom10010107.
  • Monteiro, J. P.; Melo, T.; Skjermo, J.; Forbord, S.; Broch, O. J.; Domingues, P.; Calado, R.; Domingues, M. R. Effect of Harvesting Month and Proximity to Fish Farm Sea Cages on the Lipid Profile of Cultivated Saccharina Latissima. Algal. Res. 2021, 54, 102201. DOI: 10.1016/j.algal.2021.102201.
  • Moreda-Piñeiro, J.; Moreda-Piñeiro, A.; Romarís-Hortas, V.; Domínguez-González, R.; Alonso-Rodríguez, E.; López-Mahía, P.; Muniategui-Lorenzo, S.; Prada-Rodríguez, D.; Bermejo-Barrera, P. Trace Metals in Marine Foodstuff: Bioavailability Estimation and Effect of Major Food Constituents. Food Chem. 2012, 134(1), 339–345. DOI: 10.1016/j.foodchem.2012.02.165.
  • Moreda-Piñeiro, J.; Moreda-Piñeiro, A.; Romarís-Hortas, V.; Dominguez-Gonzalez, R.; Alonso-Rodríguez, E.; Lopez-Mahia, P.; Muniategui-Lorenzo, S.; Prada-Rodriguez, D.; Bermejo-Barrera, P. ICP-MS for the Determination of Selenium Bioavailability from Seafood and Effect of Major Food Constituents. Microchem. J. 2013, 108, 174–179. DOI: 10.1016/j.microc.2012.10.019.
  • Moreira, A. S.; da Costa, E.; Melo, T.; Lopes, D.; Pais, A. C.; Santos, S. A.; Pitarma, B.; Mendes, M.; Abreu, M. H.; Collén, P. N. Polar Lipids of Commercial Ulva Spp. of Different Origins: Profiling and Relevance for Seaweed Valorization. Foods. 2021, 10(5), 914. DOI: 10.3390/foods10050914.
  • Moutinho, S.; Linares, F.; Rodríguez, J.; Sousa, V.; Valente, L. Inclusion of 10% Seaweed Meal in Diets for Juvenile and On-Growing Life Stages of Senegalese Sole (Solea Senegalensis). J. Appl. Phycol. 2018, 30, 3589–3601. DOI: 10.1007/s10811-018-1482-6.
  • Mwalugha, H. M.; Wakibia, J. G.; Kenji, G. M.; Mwasaru, M. A. Chemical Composition of Common Seaweeds from the Kenya Coast. J. Food Res. 2015, 4(6), 28. DOI: 10.5539/JFR.V4N6P28.
  • Negreanu-Pîrjol, B.; Negreanu-Pîrjol, T.; Paraschiv, G.; Bratu, M.; Sîrbu, R.; Roncea, F.; Meghea, A. Physical-Chemical Characterization of Some Green and Red Macrophyte Algae from the Romanian Black Sea Littoral. Sci. Study Res. Chem. Chem. Eng, Biotechnol. Food Ind. 2011, 12(2), 173.
  • Neto, R. T.; Marçal, C.; Queirós, A. S.; Abreu, H.; Silva, A. M. S.; Cardoso, S. M. Screening of Ulva Rigida, Gracilaria sp., Fucus Vesiculosus and Saccharina Latissima as Functional Ingredients. Int. J. Mol. Sci. 2018, 19(10). DOI: 10.3390/ijms19102987.
  • Nielsen, M. M.; Manns, D.; D’Este, M.; Krause-Jensen, D.; Rasmussen, M. B.; Larsen, M. M.; Alvarado-Morales, M.; Angelidaki, I.; Bruhn, A. Variation in Biochemical Composition of Saccharina Latissima and Laminaria Digitata Along an Estuarine Salinity Gradient in Inner Danish Waters. Algal. Res. 2016, 13, 235–245. DOI: 10.1016/j.algal.2015.12.003.
  • Nielsen, C. W.; Holdt, S. L.; Sloth, J. J.; Marinho, G. S.; Sæther, M.; Funderud, J.; Rustad, T. Reducing the High Iodine Content of Saccharina Latissima and Improving the Profile of Other Valuable Compounds by Water Blanching. Foods. 2020, 9(5), 569. DOI: 10.3390/foods9050569.
  • Nitschke, U.; Stengel, D. B. Quantification of Iodine Loss in Edible Irish Seaweeds During Processing. J. Appl. Phycol. 2016, 28, 3527–3533. DOI: 10.1007/s10811-016-0868-6.
  • Nunes, N.; Ferraz, S.; Valente, S.; Barreto, M. C.; Pinheiro de Carvalho, M. Biochemical Composition, Nutritional Value, and Antioxidant Properties of Seven Seaweed Species from the Madeira Archipelago. J. Appl. Phycol. 2017, 29, 2427–2437. DOI: 10.1007/s10811-017-1074-x.
  • Olsson, J.; Toth, G. B.; Albers, E. Biochemical Composition of Red, Green and Brown Seaweeds on the Swedish West Coast. J. Appl. Phycol. 2020, 32(5), 3305–3317. DOI: 10.1007/s10811-020-02145-w.
  • Oucif, H.; Benaissa, M.; Ali Mehidi, S.; Prego, R.; Aubourg, S. P.; Abi-Ayad, S.-M. E.-A. Chemical Composition and Nutritional Value of Different Seaweeds from the West Algerian Coast. J. Aq Food Prod. Technol. 2020, 29(1), 90–104. DOI: 10.1080/10498850.2019.1695305.
  • Paiva, L.; Lima, E.; Neto, A. I.; Marcone, M.; Baptista, J. Health-Promoting Ingredients from Four Selected Azorean Macroalgae. Food. Res. Int. 2016, 89, 432–438. DOI: 10.1016/j.foodres.2016.08.007.
  • Paiva, L.; Lima, E.; Neto, A. I.; Marcone, M.; Baptista, J. Nutritional and Functional Bioactivity Value of Selected Azorean Macroalgae: Ulva Compressa, Ulva Rigida, Gelidium Microdon, and Pterocladiella Capillacea. J. Food Sci. 2017, 82(7), 1757–1764. DOI: 10.1111/1750-3841.13778.
  • Paul, J.; Sheeba, M. Atomic Absorption Spectroscopic Determination and Comparison of Some Mineral Elements in Ulva Rigida C. AG. from Hare Island, Thoothukudi Tamil Nadu, India. World J. Pharm. Res. 2014, 3(4), 785–795.
  • Peasura, N.; Laohakunjit, N.; Kerdchoechuen, O.; Wanlapa, S. Characteristics and Antioxidant of Ulva Intestinalis Sulphated Polysaccharides Extracted with Different Solvents. Int J. Biol. Macromol. 2015, 81, 912–919. DOI: 10.1016/j.ijbiomac.2015.09.030.
  • Pétursdóttir, Á. H.; Gunnlaugsdóttir, H. Selective and Fast Screening Method for Inorganic Arsenic in Seaweed Using Hydride Generation Inductively Coupled Plasma Mass Spectrometry (HG-ICPMS). Microchem. J. 2019, 144, 45–50. DOI: 10.1016/j.microc.2018.08.055.
  • Pirian, K.; Piri, K.; Sohrabipour, J.; Jahromi, S. T.; Blomster, J. Nutritional and Phytochemical Evaluation of the Common Green Algae, Ulva Spp. (Ulvophyceae), from the Persian Gulf. Fund. Appl. Limnol. 2016, 188(4), 315–327. DOI: 10.1127/fal/2016/0947.
  • Queirós, A. S.; Circuncisão, A. R.; Pereira, E.; Válega, M.; Abreu, M. H.; Silva, A. M.; Cardoso, S. M. Valuable Nutrients from Ulva Rigida: Modulation by Seasonal and Cultivation Factors. Appl. Sci. 2021, 11(13), 6137. DOI: 10.3390/app11136137.
  • Raab, A.; Newcombe, C.; Pitton, D.; Ebel, R.; Feldmann, J. Comprehensive Analysis of Lipophilic Arsenic Species in a Brown Alga (Saccharina Latissima). Anal. Chem. 2013, 85(5), 2817–2824. DOI: 10.1021/ac303340t.
  • Ramin, M.; Franco, M.; Roleda, M. Y.; Aasen, I. M.; Hetta, M.; Steinshamn, H. In vitro Evaluation of Utilisable Crude Protein and Methane Production for a Diet in Which Grass Silage Was Replaced by Different Levels and Fractions of Extracted Seaweed Proteins. Anim. Feed Sci. Technol. 2019, 255, 114225. DOI: 10.1016/j.anifeedsci.2019.114225.
  • Rasyid, A. Evaluation of Nutritional Composition of the Dried Seaweed Ulva Lactuca from Pameungpeuk Waters, Indonesia. Trop. Life Sci. Res. 2017, 28(2), 119. DOI: 10.21315/tlsr2017.28.2.9.
  • Reka, P.; Banu, T. A.; Seethalakshmi, M. Elemental Composition of Selected Edible Seaweeds Using SEM-Energy Dispersive Spectroscopic Analysis. Int. Food Res. J. 2017, 24(2), 600.
  • Ripol, A.; Cardoso, C.; Afonso, C.; Varela, J.; Quental-Ferreira, H.; Pousão-Ferreira, P.; Bandarra, N. M. Composition, Anti-Inflammatory Activity, and Bioaccessibility of Green Seaweeds from Fish Pond Aquaculture. Nat. Prod. Comm. 2018, 13(5), 1934578X1801300. DOI: 10.1177/1934578X1801300521.
  • Rohani-Ghadikolaei, K.; Abdulalian, E.; Ng, W.-K. Evaluation of the Proximate, Fatty Acid and Mineral Composition of Representative Green, Brown and Red Seaweeds from the Persian Gulf of Iran as Potential Food and Feed Resources. J. Food Sci. Techol. 2012, 49(6), 774–780. DOI: 10.1007/s13197-010-0220-0.
  • Roleda, M. Y.; Skjermo, J.; Marfaing, H.; Jónsdóttir, R.; Rebours, C.; Gietl, A.; Stengel, D. B.; Nitschke, U. Iodine Content in Bulk Biomass of Wild-Harvested and Cultivated Edible Seaweeds: Inherent Variations Determine Species-Specific Daily Allowable Consumption. Food Chem. 2018, 254, 333–339. DOI: 10.1016/j.foodchem.2018.02.024.
  • Roleda, M. Y.; Marfaing, H.; Desnica, N.; Jónsdóttir, R.; Skjermo, J.; Rebours, C.; Nitschke, U. Variations in Polyphenol and Heavy Metal Contents of Wild-Harvested and Cultivated Seaweed Bulk Biomass: Health Risk Assessment and Implication for Food Applications. Food Cont. 2019, 95, 121–134. DOI: 10.1016/j.foodcont.2018.07.031.
  • Samarasinghe, M. B.; Sehested, J.; Weisbjerg, M. R.; Vestergaard, M.; Hernández-Castellano, L. E. Milk Supplemented with Dried Seaweed Affects the Systemic Innate Immune Response in Preweaning Dairy Calves. J. Dairy. Sci. 2021, 104(3), 3575–3584. DOI: 10.3168/jds.2020-19528.
  • Samarasinghe, M. B.; van der Heide, M. E.; Weisbjerg, M. R.; Sehested, J.; Sloth, J. J.; Bruhn, A.; Vestergaard, M.; Nørgaard, J. V.; Hernández-Castellano, L. E. A Descriptive Chemical Analysis of Seaweeds, Ulva sp., Saccharina Latissima and Ascophyllum Nodosum Harvested from Danish and Icelandic Waters. Anim. Feed Sci. Technol. 2021, 278. DOI: 10.1016/j.anifeedsci.2021.115005.
  • Sappati, P. K.; Nayak, B.; VanWalsum, G. P.; Mulrey, O. T. Combined Effects of Seasonal Variation and Drying Methods on the Physicochemical Properties and Antioxidant Activity of Sugar Kelp (Saccharina Latissima). J. Appl. Phycol. 2019, 31(2), 1311–1332. DOI: 10.1007/s10811-018-1596-x.
  • Schiener, P.; Black, K. D.; Stanley, M. S.; Green, D. H. The Seasonal Variation in the Chemical Composition of the Kelp Species Laminaria Digitata, Laminaria Hyperborea, Saccharina Latissima and Alaria Esculenta. J. Appl. Phycol. 2015, 27(1), 363–373. DOI: 10.1007/s10811-014-0327-1.
  • Schiener, P.; Zhao, S.; Theodoridou, K.; Carey, M.; Mooney-McAuley, K.; Greenwell, C. The Nutritional Aspects of Biorefined Saccharina Latissima, Ascophyllum Nodosum and Palmaria Palmata. Biomass Convers. Biorefin. 2017, 7(2), 221–235. DOI: 10.1007/s13399-016-0227-5.
  • Sharma, S.; Neves, L.; Funderud, J.; Mydland, L. T.; Øverland, M.; Horn, S. J. Seasonal and Depth Variations in the Chemical Composition of Cultivated Saccharina Latissima. Algal. Res. 2018, 32, 107–112. DOI: 10.1016/j.algal.2018.03.012.
  • Shuuluka, D.; Bolton, J. J.; Anderson, R. J. Protein Content, Amino Acid Composition and Nitrogen-To-Protein Conversion Factors of Ulva Rigida and Ulva Capensis from Natural Populations and Ulva Lactuca from an Aquaculture System, in South Africa. J. Appl. Phycol. 2013, 25(2), 677–685. DOI: 10.1007/s10811-016-0984-3.
  • Stévant, P.; Marfaing, H.; Rustad, T.; Sandbakken, I.; Fleurence, J.; Chapman, A. Nutritional Value of the Kelps Alaria Esculenta and Saccharina Latissima and Effects of Short-Term Storage on Biomass Quality. J. Appl. Phycol. 2017, 29(5), 2417–2426. DOI: 10.1007/s10811-017-1126-2.
  • Stévant, P.; Indergård, E.; Ólafsdóttir, A.; Marfaing, H.; Larssen, W. E.; Fleurence, J.; Roleda, M. Y.; Rustad, T.; Slizyte, R.; Nordtvedt, T. S. Effects of Drying on the Nutrient Content and Physico-Chemical and Sensory Characteristics of the Edible Kelp Saccharina Latissima. J. Appl. Phycol. 2018, 30(4), 2587–2599. DOI: 10.1007/s10811-018-1451-0.
  • Stévant, P.; Marfaing, H.; Duinker, A.; Fleurence, J.; Rustad, T.; Sandbakken, I.; Chapman, A. Biomass Soaking Treatments to Reduce Potentially Undesirable Compounds in the Edible Seaweeds Sugar Kelp (Saccharina Latissima) and Winged Kelp (Alaria Esculenta) and Health Risk Estimation for Human Consumption. J. Appl. Phycol. 2018, 30(3), 2047–2060. DOI: 10.1007/s10811-017-1343-8.
  • Susanto, E.; Fahmi, A. S.; Hosokawa, M.; Miyashita, K. Variation in Lipid Components from 15 Species of Tropical and Temperate Seaweeds. Mar. Drugs. 2019, 17(11), 630. DOI: 10.3390/md17110630.
  • Tabarsa, M.; Rezaei, M.; Ramezanpour, Z.; Waaland, J. R. Chemical Compositions of the Marine Algae Gracilaria Salicornia (Rhodophyta) and Ulva Lactuca (Chlorophyta) as a Potential Food Source. J. Sci. Food Agr. 2012, 92(12), 2500–2506. DOI: 10.1002/jsfa.5659.
  • Taboada, C.; Millán, R.; Míguez, I. Evaluation of the Marine Alga Ulva Rigida as a Food Supplement: Effect of Intake on Intestinal, Hepatic, and Renal Enzyme Activities in Rats. J. Med. Food. 2011, 14(1–2), 161–166. DOI: 10.1089/jmf.2009.0291.
  • Taylor, V. F.; Jackson, B. P. Concentrations and Speciation of Arsenic in New England Seaweed Species Harvested for Food and Agriculture. Chemosphere. 2016, 163, 6–13. DOI: 10.1016/j.chemosphere.2016.08.004.
  • Thodhal Yoganandham, S.; Raguraman, V.; Muniswamy, G.; Sathyamoorthy, G.; Rajan Renuka, R.; Chidambaram, J.; Rajendran, T.; Chandrasekaran, K.; Santha Ravindranath, R. R. Mineral and Trace Metal Concentrations in Seaweeds by Microwave-Assisted Digestion Method Followed by Quadrupole Inductively Coupled Plasma Mass Spectrometry. Biol. Trace Elem. Res. 2019, 187, 579–585. DOI: 10.1007/s12011-018-1397-8.
  • Tibbetts, S. M.; Milley, J. E.; Lall, S. P. Nutritional Quality of Some Wild and Cultivated Seaweeds: Nutrient Composition, Total Phenolic Content and in vitro Digestibility. J. Appl. Phycol. 2016, 28(6), 3575–3585. DOI: 10.1007/s10811-016-0863-y.
  • Tolpeznikaite, E.; Bartkevics, V.; Ruzauskas, M.; Pilkaityte, R.; Viskelis, P.; Urbonaviciene, D.; Zavistanaviciute, P.; Zokaityte, E.; Ruibys, R.; Bartkiene, E. Characterization of Macro- and Microalgae Extracts Bioactive Compounds and Micro- and Macroelements Transition from Algae to Extract. Foods. 2021, 10(9). DOI: 10.3390/foods10092226.
  • Trigo, J. P.; Engström, N.; Steinhagen, S.; Juul, L.; Harrysson, H.; Toth, G. B.; Pavia, H.; Scheers, N.; Undeland, I. In vitro Digestibility and Caco-2 Cell Bioavailability of Sea Lettuce (Ulva Fenestrata) Proteins Extracted Using Ph-Shift Processing. Food Chem. 2021, 356, 129683. DOI: 10.1016/j.foodchem.2021.129683.
  • Turan, G.; Tekogul, H. The Turkish Mezzes Formulated with Protein-Rich Green Sea Vegetable (Chlorophyta), Ulva Rigida, Cultured in Onshore Tank System. J. Aqua. Food Prod. Technol. 2014, 23(5), 447–452. DOI: 10.1080/10498850.2012.723307.
  • Turan, F.; Ozgun, S.; Sayın, S.; Ozyılmaz, G. Biochemical Composition of Some Red and Green Seaweeds from Iskenderun Bay, the Northeastern Mediterranean Coast of Turkey. J. Black Sea/Mediterranean Environ. 2015, 21, 239–249.
  • Uribe, E.; Vega-Gálvez, A.; García, V.; Pastén, A.; López, J.; Goñi, G. Effect of Different Drying Methods on Phytochemical Content and Amino Acid and Fatty Acid Profiles of the Green Seaweed, Ulva Spp. J. Appl. Phycol. 2019, 31, 1967–1979. DOI: 10.1007/s10811-018-1686-9.
  • Verma, P.; Kumar, M.; Mishra, G.; Sahoo, D. Multivariate Analysis of Fatty Acid and Biochemical Constitutes of Seaweeds to Characterize Their Potential as Bioresource for Biofuel and Fine Chemicals. Bioresources Technol. 2017, 226, 132–144. DOI: 10.1016/j.biortech.2016.11.044.
  • Viera, M.; De Vicose, G. C.; Gómez-Pinchetti, J.; Bilbao, A.; Fernandez-Palacios, H.; Izquierdo, M. Comparative Performances of Juvenile Abalone (Haliotis Tuberculata Coccinea Reeve) Fed Enriched Vs Non-Enriched Macroalgae: Effect on Growth and Body Composition. Aquaculture. 2011, 319(3–4), 423–429. DOI: 10.1016/j.aquaculture.2011.07.024.
  • Viera, M.; de Viçose, G. C.; Robaina, L.; Izquierdo, M. First Development of Various Vegetable-Based Diets and Their Suitability for Abalone Haliotis Tuberculata Coccinea Reeve. Aquaculture. 2015, 448, 350–358. DOI: 10.1016/j.aquaculture.2015.05.031.
  • Vilg, J. V.; Undeland, I. pH-Driven Solubilization and Isoelectric Precipitation of Proteins from the Brown Seaweed Saccharina Latissima-Effects of Osmotic Shock, Water Volume and Temperature. J. Appl. Phycol. 2017, 29(1), 585–593. DOI: 10.1007/s10811-016-0957-6.
  • Wan, A. H. L.; Wilkes, R. J.; Heesch, S.; Bermejo, R.; Johnson, M. P.; Morrison, L. Assessment and Characterisation of Ireland’s Green Tides (Ulva Species). PLoS One. 2017, 12(1), e0169049. DOI: 10.1371/journal.pone.0169049.
  • Yildiz, G.; Dere, E.; Dere, S. Comparison of the Antioxidative Components of Some Marine Macroalgae from Turkey. Pak. J. Bot. 2014, 46(2), 753–757.
  • Zeroual, S.; El Bakkal, S. E.; Mansori, M.; Lhernould, S.; Faugeron-Girard, C.; El Kaoua, M.; Zehhar, N. Cell Wall Thickening in Two Ulva Species in Response to Heavy Metal Marine Pollution. Reg. Stud Mar. Sci. 2020, 35, 101125. DOI: 10.1016/j.rsma.2020.101125.
  • Chirapart, A.; Praiboon, J.; Puangsombat, P.; Pattanapon, C.; Nunraksa, N. Chemical Composition and Ethanol Production Potential of Thai Seaweed Species. J. Appl. Phycol. 2014, 26, 979–986. DOI: 10.1007/s10811-013-0235-9.
  • Rutzke, C. J.; Glahn, R. P.; Rutzke, M. A.; Welch, R. M.; Langhans, R. W.; Albright, L. D.; Combs, G. F., Jr; Wheeler, R. M. Bioavailability of Iron from Spinach Using an in Vitro/Human Caco-2 Cell Bioassay Model. Habitation (Elmsford). 2004, 10(1), 7–14. DOI: 10.3727/154296604774808900.
  • Marques de Brito, B.; Campos, V. D. M.; Neves, F. J.; Ramos, L. R.; Tomita, L. Y. Vitamin B12 Sources in Non-Animal Foods: A Systematic Review. Crit. Rev. Food Sci. Nutr. 2022, 1–15. DOI: 10.1080/10408398.2022.2053057.
  • Duinker, A.; Kleppe, M.; Fjære, E.; Biancarosa, I.; Hilde, E. H.; Dahl, L.; Lunestad, B. T. Knowledge Update on Macroalgae Food and Feed Safety - Based on Data Generated in the Period 2014-2019 by the Institute of Marine Research, Norway; Bergen, Norway: National Institutes of Nutrition and Seafood Research (NIFES), 2020.
  • Hornborg, S.; Ziegler, F.; Thomas, J. B.; Axelsson, A.; Wocken, Y.; Sanders, C.; Jacobsen, M.; Hallström, E.; Bianchi, M.; Bryngelsson, S. Environmental and Nutritional Perspectives of Algae with Emphasis on Swedish Conditions; In print. RISE Research Institutes of Sweden: Gothenburg, Sweden, 2023.
  • Hogstad, S.; Cederberg, D.; Eriksen, H.; Kollander, B.; Ólafsson, G.; Mikkelsen, B. A Nordic Approach to Food Safety Risk Management of Seaweed for Use as Food. Current Status and Basis for Future Work; Nordic Council of Ministers, 2022; 564.
  • Trigo, J. P.; Stedt, K.; Schmidt, A. E. M.; Kollander, B.; Edlund, U.; Nylund, G.; Pavia, H.; Abdollahi, M.; Undeland, I. Mild Blanching Prior to pH-Shift Processing of Saccharina Latissima Retains Protein Extraction Yields and Amino Acid Levels of Extracts While Minimizing Iodine Content. Food Chem. 2023, 404, 8. DOI: 10.1016/j.foodchem.2022.134576.
  • Stedt, K.; Steinhagen, S.; Trigo, J. P.; Kollander, B.; Undeland, I.; Toth, G. B.; Wendin, K.; Pavia, H. Post-Harvest Cultivation with Seafood Process Waters Improves Protein Levels of Ulva Fenestrata While Retaining Important Food Sensory Attributes. Front. Mar. Sci. 2022, 9. DOI: 10.3389/fmars.2022.991359.
  • Bikker, P.; van Krimpen, M. M.; van Wikselaar, P.; Houweling-Tan, B.; Scaccia, N.; van Hal, J. W.; Huijgen, W. J.; Cone, J. W.; López-Contreras, A. M. Biorefinery of the Green Seaweed Ulva Lactuca to Produce Animal Feed, Chemicals and Biofuels. J. Appl. Phycol. 2016, 28(6), 3511–3525. DOI: 10.1007/s10811-016-0842-3.
  • Mæhre, H. K.; Jensen, I.-J.; Eilertsen, K.-E. Enzymatic Pre-Treatment Increases the Protein Bioaccessibility and Extractability in Dulse (Palmaria Palmata). Mar. Drugs. 2016, 14(11), 196. DOI: 10.3390/md14110196.
  • Blikra, M. J.; Henjum, S.; Aakre, I. Iodine from Brown Algae in Human Nutrition, with an Emphasis on Bioaccessibility, Bioavailability, Chemistry, and Effects of Processing: A Systematic Review. Compr. Rev. Food Sci. Food Sa. 2022, 21(2), 1517–1536. DOI: 10.1111/1541-4337.12918.
  • Akalya, K.; Kumar, S. D.; Manigandan, G.; Santhanam, P.; Perumal, P.; Krishnaveni, N.; Arthikha, R.; Begum, A.; Dhanalakshmi, B.; Kim, M.-K. The Influence of the Macroalgae Liquid Extracts on the Pigments and Fatty Acids Profile of the Marine Microalga, Picochlorum Maculatum (PSDK01). Thalassas. 2022, 38(1), 553–564. DOI: 10.1007/s41208-021-00338-9.
  • Sabeena Farvin, K. H.; Jacobsen, C. Phenolic Compounds and Antioxidant Activities of Selected Species of Seaweeds from Danish Coast. Food Chem. 2013, 138(2–3), 1670–1681. DOI: 10.1016/j.foodchem.2012.10.078.
  • Ferreira, M.; Teixeira, C.; Abreu, H.; Silva, J.; Costas, B.; Kiron, V.; Valente, L. M. P. Nutritional Value, Antimicrobial and Antioxidant Activities of Micro- and Macroalgae, Single or Blended, Unravel Their Potential Use for Aquafeeds. J. Appl. Phycol. 2021, 33(6), 3507–3518. DOI: 10.1007/s10811-021-02549-2.
  • Jard, G.; Jackowiak, D.; Carrère, H.; Delgenes, J. P.; Torrijos, M.; Steyer, J. P.; Dumas, C. Batch and Semi-Continuous Anaerobic Digestion of Palmaria Palmata: Comparison with Saccharina Latissima and Inhibition Studies. Chem. Eng. J. 2012, 209, 513–519. DOI: 10.1016/j.cej.2012.08.010.
  • Stévant, P.; Rebours, C.; Chapman, A. Seaweed Aquaculture in Norway: Recent Industrial Developments and Future Perspectives. Aquac. Inter. 2017, 25(4), 1373–1390. DOI: 10.1007/s10499-017-0120-7.
  • Vilg, J. V.; Nylund, G. M.; Werner, T.; Qvirist, L.; Mayers, J. J.; Pavia, H.; Undeland, I.; Albers, E. Seasonal and Spatial Variation in Biochemical Composition of Saccharina Latissima During a Potential Harvesting Season for Western Sweden. Botanica Marina. 2015, 58(6). DOI: 10.1515/bot-2015-0034.