532
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Anti-bladder cancer and COVID-19 potentials of pachymic acid: clinical features and therapeutic targets

, , , , , , , , , , & show all
Pages 2679-2691 | Received 10 Apr 2023, Accepted 14 Jul 2023, Published online: 05 Sep 2023

References

  • Sharma, A.; Tiwari, S.; Deb, M. K.; Marty, J. L. Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2): A Global Pandemic and Treatment Strategies. Int. J. Antimicrob. Agents. 2020, 56(2), 106054. DOI: 10.1016/j.ijantimicag.2020.106054.
  • Huang, Y. Z.; Kuan, C. C. Vaccination to Reduce Severe COVID-19 and Mortality in COVID-19 Patients: A Systematic Review and Meta-Analysis. Eu.R Rev. Med. Pharmacol. Sci. 2022, 26, 1770–1776.
  • Liang, W.; Guan, W.; Chen, R.; Wang, W.; Li, J.; Xu, K.; Li, C.; Ai, Q.; Lu, W.; Liang, H., et al. Cancer Patients in SARS-CoV-2 Infection: A Nationwide Analysis in China. Lancet Oncol. 2020, 21(3), 335–337. DOI: 10.1016/S1470-2045(20)30096-6.
  • Shuman, A. G.; Pentz, R. D. Cancer Research Ethics and COVID-19. Oncologist. 2020, 25(6), 458–459. DOI: 10.1634/theoncologist.2020-0221.
  • Singh, M. K.; Jain, M.; Shyam, H.; Shankar, P.; Singh, V. Associated Pathogenesis of Bladder Cancer and SARS-CoV-2 Infection: A Treatment Strategy. VirusDis. 2021, 32(4), 613–615. DOI: 10.1007/s13337-021-00742-y.
  • Chen, J. Q.; Salas, L. A.; Wiencke, J. K.; Koestler, D. C.; Molinaro, A. M.; Andrew, A. S.; Seigne, J. D.; Karagas, M. R.; Kelsey, K. T.; Christensen, B. C. Immune Profiles and DNA Methylation Alterations Related with Non-Muscle-Invasive Bladder Cancer Outcomes. Clin. Epigenetics. 2022, 14(1), 14. DOI: 10.1186/s13148-022-01234-6.
  • Li, H. Z.; Zheng, R. S.; Du, L. B.; Zhang, S. W.; Zhu, C.; Wei, W. W.; He, J. Bladder Cancer Incidence, Mortality and Temporal Trends in China. Zhonghua Zhong Liu Za Zhi. 2021, 43(3), 293–298. DOI: 10.3760/cma.j.cn112152-20200421-00362.
  • National Cancer Center; Bladder Cancer Expert Committee of National Cancer Quality Control Center. [Quality Control Index for Standardized Diagnosis and Treatment of Bladder Cancer in China (2022 Edition)]. Zhonghua Zhong Liu Za Zhi. 2022, 44(10), 1003–1010. doi:10.3760/cma.j.cn112152-20220803-00531.
  • Li, L.; Zuo, Z. T.; Wang, Y. Z. The Traditional Usages, Chemical Components and Pharmacological Activities of Wolfiporia Cocos: A Review. Am. J. Chin. Med. 2022, 50(2), 389–440. DOI: 10.1142/S0192415X22500161.
  • Wen, H.; Wu, Z.; Hu, H.; Wu, Y.; Yang, G.; Lu, J.; Yang, G.; Guo, G.; Dong, Q. The Anti-Tumor Effect of Pachymic Acid on Osteosarcoma Cells by Inducing PTEN and Caspase 3/7-Dependent Apoptosis. J. Nat. Med. 2018, 72(1), 57–63. DOI: 10.1007/s11418-017-1117-2.
  • Ma, J.; Liu, J.; Lu, C.; Cai, D. Pachymic Acid Induces Apoptosis via Activating ROS-Dependent JNK and ER Stress Pathways in Lung Cancer Cells. Cancer Cell Int. 2015, 15(1), 78. DOI: 10.1186/s12935-015-0230-0.
  • Feng, Z.; Shi, H.; Liang, B.; Ge, T.; Cai, M.; Liu, F.; Huang, K.; Wen, J.; Chen, Q.; Ge, B. Bioinformatics and Experimental Findings Reveal the Therapeutic Actions and Targets of Pachymic Acid Against Cystitis Glandularis. BioFactors. 2021, 47(4), 665–673. DOI: 10.1002/biof.1734.
  • Jeong, J. W.; Lee, W. S.; Go, S. I.; Nagappan, A.; Baek, J. Y.; Lee, J. D.; Lee, S. J.; Park, C.; Kim, G. Y.; Kim, H. J., et al. Pachymic Acid Induces Apoptosis of EJ Bladder Cancer Cells by DR5 Up-Regulation, ROS Generation, Modulation of Bcl-2 and IAP Family Members. Phytother. Res. 2015, 29(10), 1516–1524. DOI: 10.1002/ptr.5402.
  • Wu, Z.; Chen, X.; Ni, W.; Zhou, D.; Chai, S.; Ye, W.; Zhang, Z.; Guo, Y.; Ren, L.; Zeng, Y. The Inhibition of Mpro, the Primary Protease of COVID-19, by Poria Cocos and Its Active Compounds: A Network Pharmacology and Molecular Docking Study. R.S.C. Adv. 2021, 11(20), 11821–11843. DOI: 10.1039/D0RA07035A.
  • Liu, J.; Chen, Y.; Nie, L.; Liang, X.; Huang, W.; Li, R. In Silico Analysis and Preclinical Findings Uncover Potential Targets of Anti-Cervical Carcinoma and COVID-19 in Laminarin, a Promising Nutraceutical. Front Pharmacol. 2022, 13, 955482. DOI: 10.3389/fphar.2022.955482.
  • Yang, L.; Xiong, H.; Li, X.; Li, Y.; Zhou, H.; Lin, X.; Chan, T. F.; Li, R.; Lai, K. P.; Chen, X. Network Pharmacology and Comparative Transcriptome Reveals Biotargets and Mechanisms of Curcumol Treating Lung Adenocarcinoma Patients with COVID-19. Front Nutr. 2022, 9, 870370. DOI: 10.3389/fnut.2022.870370.
  • Yang, L.; Yang, N.; Huang, H.; Yu, J.; Sui, X.; Tao, L.; Gao, Y.; Liu, Z. Bioinformatics Analysis to Identify Intersection Genes, Associated Pathways and Therapeutic Drugs Between COVID-19 and Oral Candidiasis. Comb. Chem. High Throughput Screen. 2023, 26(8), 1533–1546. DOI: 10.2174/1386207325666221007111239.
  • Zheng, W.; Wu, H.; Wang, T.; Zhan, S.; Liu, X. Quercetin for COVID-19 and DENGUE Co-Infection: A Potential Therapeutic Strategy of Targeting Critical Host Signal Pathways Triggered by SARS-CoV-2 and DENV. Brief Bioinform. 2021, 22(6), bbab199. DOI: 10.1093/bib/bbab199.
  • Tang, B.; Zhu, J.; Zhao, Z.; Lu, C.; Liu, S.; Fang, S.; Zheng, L.; Zhang, N.; Chen, M.; Xu, M., et al. Diagnosis and Prognosis Models for Hepatocellular Carcinoma Patient’s Management Based on Tumor Mutation Burden. J. Adv. Res. 2021, 33, 153–165. DOI: 10.1016/j.jare.2021.01.018.
  • McHugh, M. L. The Chi-Square Test of Independence. Biochem. Med. (Zagreb). 2013, 23, 143–149. DOI: 10.11613/BM.2013.018.
  • Cheng, X.; Wang, X.; Nie, K.; Cheng, L.; Zhang, Z.; Hu, Y.; Peng, W. Systematic Pan-Cancer Analysis Identifies TREM2 as an Immunological and Prognostic Biomarker. Front. Immunol. 2021, 12, 646523. DOI: 10.3389/fimmu.2021.646523.
  • Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N. S.; Wang, J. T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Res. 2003, 13(11), 2498–2504. DOI: 10.1101/gr.1239303.
  • Qin, Q.; Qin, L.; Xie, R.; Peng, S.; Guo, C.; Yang, B. Insight into Biological Targets and Molecular Mechanisms in the Treatment of Arsenic-Related Dermatitis with Vitamin a via Integrated in silico Approach. Front Nutr. 2022, 9, 847320. DOI: 10.3389/fnut.2022.847320.
  • Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B. A.; Thiessen, P. A.; Yu, B., et al. PubChem in 2021: New Data Content and Improved Web Interfaces. Nucleic Acids Res. 2021, 49(D1), 1388–1395. DOI: 10.1093/nar/gkaa971.
  • Seeliger, D.; de Groot, B. L. Ligand Docking and Binding Site Analysis with PyMol and Autodock/Vina. J. Comput. Aided. Mol. Des. 2010, 24(5), 417–422. DOI: 10.1007/s10822-010-9352-6.
  • Yuan, Y.; Jiao, B.; Qu, L.; Yang, D.; Liu, R. The Development of COVID-19 Treatment. Front. Immunol. 2023, 14, 1125246. DOI: 10.3389/fimmu.2023.1125246.
  • de Martel, C.; Georges, D.; Bray, F.; Ferlay, J.; Clifford, G. M. Global Burden of Cancer Attributable to Infections in 2018: A Worldwide Incidence Analysis. Lancet Glob. Health. 2020, 8(2), 180–190. DOI: 10.1016/S2214-109X(19)30488-7.
  • Tran, L.; Xiao, J. F.; Agarwal, N.; Duex, J. E.; Theodorescu, D. Advances in Bladder Cancer Biology and Therapy. Nat. Rev. Cancer. 2021, 21(2), 104–121. DOI: 10.1038/s41568-020-00313-1.
  • Li, T.; Liu, T.; Zhao, Z.; Pan, Y.; Xu, X.; Zhang, Y.; Zhan, S.; Zhou, S.; Zhu, W.; Guo, H., et al. Antifungal Immunity Mediated by C-Type Lectin Receptors May Be a Novel Target in Immunotherapy for Urothelial Bladder Cancer. Front. Immunol. 2022, 13, 911325. DOI: 10.3389/fimmu.2022.911325.
  • Song, D.; Powles, T.; Shi, L.; Zhang, L.; Ingersoll, M. A.; Lu, Y. J. Bladder Cancer, a Unique Model to Understand Cancer Immunity and Develop Immunotherapy Approaches. J. Pathol. 2019, 249(2), 151–165. DOI: 10.1002/path.5306.
  • Martin, A.; Woolbright, B. L.; Umar, S.; Ingersoll, M. A.; Taylor, J. A. Bladder Cancer, Inflammageing and Microbiomes. Nat. Rev. Urol. 2022, 19(8), 495–509. 3rd. DOI: 10.1038/s41585-022-00611-3.
  • Seneviratne, S. L.; Wijerathne, W.; Yasawardene, P.; Somawardana, B. COVID-19 in Cancer Patients. Trans. R. Soc. Trop. Med. Hyg. 2022, 116(9), 767–797. DOI: 10.1093/trstmh/trac015.
  • Su, W.; Han, H. H.; Wang, Y.; Zhang, B.; Zhou, B.; Cheng, Y.; Rumandla, A.; Gurrapu, S.; Chakraborty, G.; Su, J., et al. The Polycomb Repressor Complex 1 Drives Double-Negative Prostate Cancer Metastasis by Coordinating Stemness and Immune Suppression. Cancer Cell. 2019, 36(2), 139–155. DOI: 10.1016/j.ccell.2019.06.009.
  • Ma, W.; Ou, T.; Cui, X.; Wu, K.; Li, H.; Li, Y.; Peng, G.; Xia, W.; Wu, S. HSP47 Contributes to Angiogenesis by Induction of CCL2 in Bladder Cancer. Cell. Signal. 2021, 85, 110044. DOI: 10.1016/j.cellsig.2021.110044.
  • Conti, I.; Rollins, B. J. CCL2 (Monocyte Chemoattractant Protein-1) and Cancer. Semin. Cancer Biol. 2004, 14(3), 149–154. DOI: 10.1016/j.semcancer.2003.10.009.
  • Pius-Sadowska, E.; Niedźwiedź, A.; Kulig, P.; Baumert, B.; Sobuś, A.; Rogińska, D.; Łuczkowska, K.; Ulańczyk, Z.; Wnęk, S.; Karolak, I., et al. CXCL8, CCL2, and CMV Seropositivity as New Prognostic Factors for a Severe COVID-19 Course. Int. J. Mol. Sci. 2022, 23(19), 11338. DOI: 10.3390/ijms231911338.
  • Isenberg, J. S.; Roberts, D. D. THBS1 (Thrombospondin-1). Atlas Genet Cytogenet. Oncol. Haematol. 2020, 24(8), 291–299. DOI: 10.4267/2042/70774.
  • Nakamura, Y.; Miyata, Y.; Takehara, K.; Asai, A.; Mitsunari, K.; Araki, K.; Matsuo, T.; Ohba, K.; Sakai, H. The Pathological Significance and Prognostic Roles of Thrombospondin-1, and -2, and 4N1K-Peptide in Bladder Cancer. Anticancer. Res. 2019, 39(5), 2317–2324. DOI: 10.21873/anticanres.13348.
  • Xu, G.; Li, J.; Yu, L. MiR-19a-3p Promotes Tumor-Relevant Behaviors in Bladder Urothelial Carcinoma via Targeting THBS1. Comput. Math Methods Med. 2021, 2021, 2710231. DOI: 10.1155/2021/2710231.
  • Hamldar, S.; Kiani, S. J.; Khoshmirsafa, M.; Nahand, J. S.; Mirzaei, H.; Khatami, A.; Kahyesh-Esfandiary, R.; Khanaliha, K.; Tavakoli, A.; Babakhaniyan, K., et al. Expression Profiling of Inflammation-Related Genes Including IFI-16, NOTCH2, CXCL8, THBS1 in COVID-19 Patients. Biologicals. 2022, 80, 27–34. DOI: 10.1016/j.biologicals.2022.09.001.
  • Foley, C. J.; Luo, C.; O’Callaghan, K.; Hinds, P. W.; Covic, L.; Kuliopulos, A. Matrix Metalloprotease-1a Promotes Tumorigenesis and Metastasis. J. Biol. Chem. 2012, 287(29), 24330–24338. DOI: 10.1074/jbc.M112.356303.
  • Du, X.; Lin, B. C.; Wang, Q. R.; Li, H.; Ingalla, E.; Tien, J.; Rooney, I.; Ashkenazi, A.; Penuel, E.; Qing, J. MMP-1 and Pro-MMP-10 as Potential Urinary Pharmacodynamic Biomarkers of FGFR3-Targeted Therapy in Patients with Bladder Cancer. Clin. Cancer Res. 2014, 20(24), 6324–6335. DOI: 10.1158/1078-0432.CCR-13-3336.
  • Syed, F.; Li, W.; Relich, R. F.; Russell, P. M.; Zhang, S.; Zimmerman, M. K.; Yu, Q. Excessive Matrix Metalloproteinase-1 and Hyperactivation of Endothelial Cells Occurred in COVID-19 Patients and Were Associated with the Severity of COVID-19. J. Infect. Dis. 2021, 224(1), 60–69. DOI: 10.1093/infdis/jiab167.
  • Yang, T.; Tian, S.; Wang, Y.; Ji, J.; Zhao, J. Antitumor Activity of Pachymic Acid in Cervical Cancer Through Inducing Endoplasmic Reticulum Stress, Mitochondrial Dysfunction, and Activating the AMPK Pathway. Environ. Toxico. 2022, 37(9), 2121–2132. DOI: 10.1002/tox.23555.
  • Gui, Y.; Sun, L.; Liu, R.; Luo, J. Pachymic Acid Inhibits Inflammation and Cell Apoptosis in Lipopolysaccharide (LPS)-Induced Rat Model with Pneumonia by Regulating NF-Κb and MAPK Pathways. Allergol. Immunopathol. 2021, 49(5), 87–93. DOI: 10.15586/aei.v49i5.468.
  • Lee, Y. H.; Lee, N. H.; Bhattarai, G.; Kim, G. E.; Lee, I. K.; Yun, B. S.; Hwang, P. H.; Yi, H. K. Anti-Inflammatory Effect of Pachymic Acid Promotes Odontoblastic Differentiation via HO-1 in Dental Pulp Cells. Oral Dis. 2013, 19(2), 193–199. DOI: 10.1111/j.1601-0825.2012.01970.x.