504
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Characteristic flavor compounds and bacterial community of different gray sufu, a traditional Chinese fermented soybean curd

, , , , , & show all
Pages 462-477 | Received 23 Oct 2023, Accepted 02 Mar 2024, Published online: 22 Mar 2024

References

  • Yang, J.; Ding, X.; Qin, Y.; Zeng, Y. Safety Assessment of the Biogenic Amines in Fermented Soya Beans and Fermented Bean Curd. J. Agric. Food. Chem. 2014, 62(31), 7947–7954. DOI: 10.1021/jf501772s.
  • Ding, S.; Tian, M.; Yang, L.; Pan, Y.; Suo, L.; Zhu, X.; Ren, D.; Yu, H. Diversity and Dynamics of Microbial Population During Fermentation of Gray Sufu and Their Correlation with Quality Characteristics. LWT Food Sci. Technol. 2023, 180, 114711. DOI: 10.1016/j.lwt.2023.114711.
  • Xie, C.; Zeng, H.; Li, J.; Qin, L. Comprehensive Explorations of Nutritional, Functional and Potential Tasty Components of Various Types of Sufu, a Chinese Fermented Soybean Appetizer. Food Sci. Technol. 2019, 39(suppl 1), 105–114. DOI: 10.1590/fst.37917.
  • Xie, C.; Zeng, H.; Qin, L. Physicochemical, Taste, and Functional Changes During the Enhanced Fermentation of Low-Salt Sufu Paste, a Chinese Fermented Soybean Food. Int. J. Food Prop. 2018, 21(1), 2714–2729. DOI: 10.1080/10942912.2018.1560313.
  • Hu, X.; Liu, S.; Li, E. Microbial Community Succession and Its Correlation with the Dynamics of Flavor Compound Profiles in Naturally Fermented Stinky Sufu. Food. Chem. 2023, 427, 136742. DOI: 10.1016/j.foodchem.2023.136742.
  • Chen, Y. P.; Chiang, T. K.; Chung, H. Y. Optimization of a Headspace Solid-Phase Micro-Extraction Method to Quantify Volatile Compounds in Plain Sufu, and Application of the Method in Sample Discrimination. Food. Chem. 2019, 275, 32–40. DOI: 10.1016/j.foodchem.2018.09.018.
  • He, W.; Chen, Z.; Chung, H. Y. Dynamic Correlations Between Major Enzymatic Activities, Physicochemical Properties and Targeted Volatile Compounds in Naturally Fermented Plain Sufu During Production. Food. Chem. 2022, 378, 131988. DOI: 10.1016/j.foodchem.2021.131988.
  • Li, K.; Tang, J.; Zhang, Z.; Wu, Z.; Zhong, A.; Li, Z.; Wang, Y. Correlation Between Flavor Compounds and Microorganisms of Chaling Natural Fermented Red Sufu. LWT- Food Sci. Technol. 2022, 154, 112873. DOI: 10.1016/j.lwt.2021.112873.
  • Xie, C.; Zeng, H.; Wang, C.; Xu, Z.; Qin, L. Volatile Flavor Components, Microbiota and Their Correlations in Different Sufu, a Chinese Fermented Soybean Food. J. Appl. Microbiol. 2018, 125(6), 1761–1773. DOI: 10.1111/jam.14078.
  • Chen, Z.; Liu, L.; Du, H.; Lu, K.; Chen, C.; Xue, Q.; Hu, Y. Microbial Community Succession and Their Relationship with the Flavor Formation During the Natural Fermentation of Mouding Sufu. Food. Chem. 2023, 18, 100686. DOI: 10.1016/j.fochx.2023.100686.
  • He, W.; Chung, H. Y. Exploring Core Functional Microbiota Related with Flavor Compounds Involved in the Fermentation of a Natural Fermented Plain Sufu (Chinese Fermented Soybean Curd). Food. Microbiol. 2020, 90, 103408. DOI: 10.1016/j.fm.2019.103408.
  • Liang, J.; Li, D.; Shi, R.; Wang, J.; Guo, S.; Ma, Y.; Xiong, K. Effects of Microbial Community Succession on Volatile Profiles and Biogenic Amine During Sufu Fermentation. LWT- Food Sci. Technol. 2019, 114, 108379. DOI: 10.1016/j.lwt.2019.108379.
  • Liu, P.; Xiang, Q.; Gao, L.; Wang, X.; Li, J.; Cui, X.; Lin, J.; Che, Z. Effects of Different Fermentation Strains on the Flavor Characteristics of Fermented Soybean Curd. J. Food Sci. 2019, 84(1), 154–164. DOI: 10.1111/1750-3841.14412.
  • Yao, D.; Xu, L.; Wu, M.; Wang, X.; Zhu, L.; Wang, C. Effects of Microbial Community Succession on Flavor Compounds and Physicochemical Properties During CS Sufu Fermentation. LWT- Food Sci. Technol. 2021, 152, 112313. DOI: 10.1016/j.lwt.2021.112313.
  • Wu, W.; Wang, Z.; Xu, B.; Cai, J.; Cheng, J.; Mu, D.; Wu, X.; Li, X. Exploring Core Microbiota Based on Characteristic Flavor Compounds in Different Fermentation Phases of Sufu. Molecules. 2022, 27(15), 4933. DOI: 10.3390/molecules27154933.
  • Liu, L.; Chen, X.; Hao, L.; Zhang, G.; Jin, Z.; Li, C.; Yang, Y.; Rao, J.; Chen, B. Traditional Fermented Soybean Products: Processing, Flavor Formation, Nutritional and Biological Activities. Crit. Rev. Food Sci. Nutr. 2020, 62(7), 1971–1989. DOI: 10.1080/10408398.2020.1848792.
  • He, R.; Wan, P.; Liu, J.; Chen, D. W. Characterisation of Aroma-Active Compounds in Guilin Huaqiao White Sufu and Their Influence on Umami Aftertaste and Palatability of Umami Solution. Food. Chem. 2020, 321, 126739. DOI: 10.1016/j.foodchem.2020.126739.
  • Liu, J.; Chen, J.; Li, S.; Tian, W.; Wu, H.; Han, B. Comparison of Volatile and Non-Volatile Metabolites in Sufu Produced with bacillus licheniformis by Rapid Fermentation. Int. J. Food. Prop. 2021, 24(1), 553–563. DOI: 10.1080/10942912.2021.1901733.
  • Zang, J.; Yu, D.; Li, T.; Xu, Y.; Regenstein, J. M.; Xia, W. Identification of Characteristic Flavor and Microorganisms Related to Flavor Formation in Fermented Common Carp (Cyprinus Carpio L.). Food Res. Int. 2022, 155, 111128. DOI: 10.1016/j.foodres.2022.111128.
  • Alarcón, M.; López- ViñViñAs, M.; Pérez-Coello, M. S.; Díaz-Maroto, M. C.; Alañón, M. E.; Soriano, A. Effect of Wine Lees As Alternative Antioxidants on Physicochemical and Sensorial Composition of Deer Burgers Stored During Chilled Storage. Antioxidants. 2020, 9(8), 687. DOI: 10.3390/antiox9080687.
  • Aguiar, J.; Goncalves, J. L.; Alves, V. L.; Câmara, J. S. Relationship Between Volatile Composition and Bioactive Potential of Vegetables and Fruits of Regular Consumption—An Integrative Approach. Molecules. 2021, 26(12), 3653. DOI: 10.3390/molecules26123653.
  • Sridharan, G. V.; Choi, K.; Klemashevich, C.; Wu, C.; Prabakaran, D.; Pan, L. B.; Steinmeyer, S.; Mueller, C.; Yousofshahi, M.; Alaniz, R. C., et al. Prediction and Quantification of Bioactive Microbiota Metabolites in the Mouse Gut. Nat. Commun. 2014, 5(1), 5492. DOI: 10.1038/ncomms6492.
  • Delgado, F. J.; González-Crespo, J.; Cava, R.; Ramírez, R. Changes in the Volatile Profile of a Raw Goat Milk Cheese Treated by Hydrostatic High Pressure at Different Stages of Maturation. Int. Dairy J. 2011, 21(3), 135–141. DOI: 10.1016/j.idairyj.2010.10.006.
  • Chung, H. Y.; Fung, P. K.; Kim, J. Aroma Impact Components in Commercial Plain Sufu. J. Agric. Food Chem. 2005, 53(5), 1684–1691. DOI: 10.1021/jf048617d.
  • Wang, J.; Hou, J.; Zhang, X.; Hu, J.; Yu, Z.; Zhu, Y. Improving the Flavor of Fermented Sausage by Increasing Its Bacterial Quality via Inoculation with Lactobacillus Plantarum MSZ2 and Staphylococcus xylosus YCC3. Foods. 2022, 11(5), 736. DOI: 10.3390/foods11050736.
  • Nunes, A. R.; Gonçalves, A. C.; Pinto, E.; Amaro, F.; Flores-Félix, J. D.; Almeida, A.; Guedes de Pinho, P.; Falcão, A.; Alves, G.; Silva, L. R. Mineral Content and Volatile Profiling of Prunus Avium L. (Sweet Cherry) By-Products from Fundão Region (Portugal). Foods. 2022, 11(5), 751. DOI: 10.3390/foods11050751.
  • Yu, J.; Lu, K.; Zi, J.; Yang, X.; Zheng, Z.; Xie, W. Halophilic Bacteria As Starter Cultures: A New Strategy to Accelerate Fermentation and Enhance Flavor of Shrimp Paste. Food Chem. 2022, 393, 133393. DOI: 10.1016/j.foodchem.2022.133393.
  • Xu, Q.; Wang, L.; Li, W.; Xing, Y.; Zhang, P.; Wang, Q.; Li, H.; Liu, H.; Yang, H.; Liu, X., et al. Scented Tartary Buckwheat Tea: Aroma Components and Antioxidant Activity. Molecules. 2019, 24(23), 4368. DOI: 10.3390/molecules24234368.
  • Qian, Y.; Zhang, S.; Yao, S.; Xia, J.; Li, Y.; Dai, X.; Wang, W.; Jiang, X.; Liu, Y.; Li, M., et al. Effects of Vitro Sucrose on Quality Components of Tea Plants (Camellia sinensis) Based on Transcriptomic and Metabolic Analysis. BMC Plant. Biol. 2018, 18(1), 121. DOI: 10.1186/s12870-018-1335-0.
  • Zhu, L.; Zhang, M.; Liu, Z.; Shi, Y.; Duan, C. Q. Levels of Furaneol in Msalais Wines: A Comprehensive Overview of Multiple Stages and Pathways of Its Formation During Msalais Winemaking. Molecules. 2019, 24(17), 3104. DOI: 10.3390/molecules24173104.
  • Anast, J. M.; Dzieciol, M.; Schultz, D. L.; Wagner, M.; Mann, E.; Schmitz-Esser, S. Brevibacterium from Austrian hard cheese harbor a putative histamine catabolism pathway and a plasmid for adaptation to the cheese environment[J]. Sci. Rep. 2019, 9(1), 6164. DOI: 10.1038/s41598-019-42525-y.
  • Farag, M. A.; Otify, A. M.; El-Sayed, A. M.; Michel, C. G.; ElShebiney, S. A.; Ehrlich, A.; Wessjohann, L. A. Sensory Metabolite Profiling in a Date Pit Based Coffee Substitute and in Response to Roasting As Analyzed via Mass Spectrometry Based Metabolomics. Molecules. 2019, 24(18), 3377. DOI: 10.3390/molecules24183377.
  • Ni, Z. J.; Wei, C. K.; Zheng, A. R.; Thakur, K.; Zhang, J.-G.; Wei, Z.-J. Analysis of Key Precursor Peptides and Flavor Components of Flaxseed Derived Maillard Reaction Products Based on iBAQ Mass Spectrometry and Molecular Sensory Science. Food Chem.: X. 2022, 13, 100224. DOI: 10.1016/j.fochx.2022.100224.
  • Hernandez-Valdes, J. A.; Dalglish, M. M.; Hermans, J.; Kuipers, O. P. Development of Lactococcus lactis Biosensors for Detection of Sulfur-Containing Amino Acids. Front. Microbiol. 2020, 11, 1654. DOI: 10.3389/fmicb.2020.01654.
  • Ritschard, J. S.; Van Loon, H.; Amato, L.; Meile, L.; Schuppler, M. High Prevalence of Enterobacterales in the Smear of Surface-Ripened Cheese with Contribution to Organoleptic Properties. Foods. 2022, 11(3), 361. DOI: 10.3390/foods11030361.
  • Song, Z.; Hu, Y.; Chen, X.; Li, G.; Zhong, Q.; He, X.; Xu, W. Correlation Between Bacterial Community Succession and Propionic Acid During Gray Sufu Fermentation. Food Chem. 2021, 2021(489), 129447. -DOI: 10.1016/j.foodchem.2021.129447.
  • Wan, H.; Liu, T.; Su, C.; Ji, X.; Wang, L.; Zhao, Y.; Wang, Z. Evaluation of Bacterial and Fungal Communities During the Fermentation of Baixi Sufu, a Traditional Spicy Fermented Bean Curd. J. Sci. Food Agric. 2020, 100(4), 1448–1457. DOI: 10.1002/jsfa.10151.
  • Yang, B.; Tan, Y.; Kan, J. Determination and Mitigation of Chemical Risks in Sufu by NaCl and Ethanol Addition During Fermentation. J. Food Compost. Anal. 2021, 98, 103820. DOI: 10.1016/j.jfca.2021.103820.
  • Cai, H.; Dumba, T.; Sheng, Y.; Li, J.; Lu, Q.; Liu, C.; Cai, C.; Feng, F.; Zhao, M. Microbial Diversity and Chemical Property Analyses of Sufu Products with Different Producing Regions and Dressing Flavors. LWT- Food Sci. Technol. 2021, 144, 111245. DOI: 10.1016/j.lwt.2021.111245.
  • Xu, D.; Wang, P.; Zhang, X.; Zhang, J.; Sun, Y.; Gao, L.; Wang, W. High-Throughput Sequencing Approach to Characterize Dynamic Changes of the Fungal and Bacterial Communities During the Production of Sufu, a Traditional Chinese Fermented Soybean Food. Food Microbiol. 2020, 86, 103340. DOI: 10.1016/j.fm.2019.103340.
  • Zheng, X.; Liu, F.; Li, K.; Shi, X.; Ni, Y.; Li, B.; Zhuge, B. Evaluating the microbial ecology and metabolite profile in Kazak artisanal cheeses from Xinjiang, China[J]. Food Res. Int. 2018, 111, 130–136. DOI: 10.1016/j.foodres.2018.05.019.
  • Wu, L. H.; Lu, Z. M.; Zhang, X. J.; Wang, Z. M.; Yu, Y. J.; Shi, J. S.; Xu, Z. H. Metagenomics Reveals Flavour Metabolic Network of Cereal Vinegar Microbiota. Food. Microbiol. 2017, 62, 23–31. DOI: 10.1016/j.fm.2016.09.010.
  • Shrestha, P.; Kim, M.; Elbasani, E.; Kim, JD.; Oh, TJ. Prediction of Trehalose-Metabolic Pathway and Comparative Analysis of KEGG, MetaCyc, and RAST Databases Based on Complete Genome of Variovorax sp. PAMC28711. BMC. Genom. Data. 2022, 23(1), 4. DOI: 10.1186/s12863-021-01020-y.
  • Ramalingam, V.; Song, Z.; Hwang, I. The Potential Role of Secondary Metabolites in Modulating the Flavor and Taste of the Meat. Food Res. Int. 2019, 122, 174–182. DOI: 10.1016/j.foodres.2019.04.007.
  • Rizo, J.; Guillen, D.; Farres, A.; Díaz-Ruiz, G.; Sánchez, S.; Wacher, C.; Rodríguez-Sanoja, R. Omics in Traditional Vegetable Fermented Foods and Beverages. Crit. Rev. Food Sci. Nutr. 2020, 60(5), 791–809.
  • Chen, C.; Tian, T.; Yu, H.; Wang, B.; Xu, Z.; Tian, H. Characterisation of the Key Volatile Compounds of Commercial Gouda Cheeses and Their Contribution to Aromas According to Chinese consumers’ Preferences. Food Chem.: X. 2022, 15, 100416. DOI: 10.1016/j.fochx.2022.100416.
  • Yvon, M.; Rijnen, L.; Kelly, P. E.; Zhou, R.; Ma, M. Cheese Flavour Formation by Amino Acid Catabolism. Int. Dairy J. 2001, 11(4), 185–201. DOI: 10.1016/S0958-6946(01)00049-8.
  • Zhang, X.; Zheng, Y.; Feng, J.; Zhou, R.; Ma, M. Integrated Metabolomics and High-Throughput Sequencing to Explore the Dynamic Correlations Between Flavor Related Metabolites and Bacterial Succession in the Process of Mongolian Cheese Production. Food Res. Int. 2022, 160, 111672. DOI: 10.1016/j.foodres.2022.111672.
  • Jin, Y.; Li, D.; Ai, M.; Tang, Q.; Huang, J.; Ding, X.; Wu, C.; Zhou, R. Correlation between volatile profiles and microbial communities: A metabonomic approach to study Jiang-flavor liquor Daqu[J]. Food Res. Int. 2019, 121, 422–432. DOI: 10.1016/j.foodres.2019.03.021.
  • Zang, J.; Xu, Y.; Xia, W.; Regenstein, J. M.; Yu, D.; Yang, F.; Jiang, Q. Correlations Between Microbiota Succession and Flavor Formation During Fermentation of Chinese Low-Salt Fermented Common Carp (Cyprinus Carpio L.) Inoculated with Mixed Starter Cultures. Food Microbiol. 2020, 90, 103487. DOI: 10.1016/j.fm.2020.103487.
  • Yang, H.; Yang, L.; Zhang, J.; Li, H.; Tu, Z.; Wang, X. Exploring Functional Core Bacteria in Fermentation of a Traditional Chinese Food, Aspergillus-Type Douchi. PLoS One. 2019, 14(12), e226965. DOI: 10.1371/journal.pone.0226965.
  • He, G.; Huang, J.; Zhou, R.; Wu, C.; Jin, Y. Effect of Fortified Daqu on the Microbial Community and Flavor in Chinese Strong-Flavor Liquor Brewing Process. Front. Microbiol. 2019, 10, 56. DOI: 10.3389/fmicb.2019.00056.
  • An, F.; Li, M.; Zhao, Y.; Zhang, Y.; Mu, D.; Hu, X.; You, S.; Wu, J.; Wu, R. Metatranscriptome-Based Investigation of Flavor-Producing Core Microbiota in Different Fermentation Stages of Dajiang, a Traditional Fermented Soybean Paste of Northeast China. Food Chem. 2021, 343, 128509. DOI: 10.1016/j.foodchem.2020.128509.