3,406
Views
37
CrossRef citations to date
0
Altmetric
Technical Papers

Photocatalytic reduction of carbon dioxide to methanol and formic acid by graphene-TiO2

, , &
Pages 578-585 | Received 14 Oct 2013, Accepted 03 Dec 2013, Published online: 25 Apr 2014

References

  • Chen, C., W. Cai, M. Long, B. Zhou, Y. Wu, D. Wu, and Y. Feng. 2010. Synthesis of visible-light responsive graphene oxide/TiO2 composites with P/N heterojunction. ACS Nano. 4:6425–6432. doi:10.1021/nn102130m
  • Chen, C.C., C.S. Lu, Y.C. Chung, and J.L. Jan. 2007. UV light induced photodegradation of malachite green on TiO2 nanoparticles. J. Hazard. Mater. 141:520–528. doi:10.1016/j.jhazmat.2006.07.011
  • Czerw, R., B. Foley, D. Tekleab, A. Rubio, P.M. Ajayan, and D L. Carroll. 2002. Substrate-interface interactions between carbon nanotubes and the supporting substrate. Phys. Rev. B 66:408–414. doi:10.1103/PhysRevB.66.033408
  • Deng, Q., M. Wei, Z. Hong, X. Ding, L. Jiang, and K. Wei. 2010. Selective synthesis of rutile, anatase, and brookite nanorods by a hydrothermal route. Current Nanoscience. 6:479–482. doi:10.2174/157341310797574970
  • Fan, Y., H.T. Lu, J.H. Liu, C.P. Yang, Q.S. Jing, X. ZhangY, K. YangX, and K.J. Huang. 2011. Hydrothermal preparation and electrochemical sensing properties of TiO2-graphene nanocomposite. Colloids Surf. B Biointerfaces 83:78–82. doi:10.1016/j.colsurfb.2010.10.048
  • Fujishima, A., T.N. Rao, and D.A. Tryk. 2000. Titanium dioxide photocatalysis. J. Photochem. Photobiol. C Photochem. Rev. 1:1–21. doi:10.1016%2FS1389-5567%2800%2900002-2
  • Godfrey, B. 2004. Renewable Energy Power for a Sustainable Future. Oxford, UK: Oxford University Press.
  • Guo, S., and S. Dong. 2011. Graphene nanosheet: Synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications. Chem. Soc. Rev. 40:2644–2672. doi:10.1039/C0CS00079E
  • Guo, J., S. Zhu, Z. Chen, Y. Li, Z. Yu, Q. Liu, J. Li, C. Feng, and D. Zhang. 2011. Sonochemical synthesis of TiO2 nanoparticals on graphene for use as photocatalyst. Ultrason. Sonochem. 18:1082–1090. doi:10.1016/j.ultsonch.2011.03.021
  • Indrakanti, V.P., J.D. Kubicki,and H.H. Schobert. 2009. Photo induced activation of CO2 on Ti-based heterogeneous catalysts: Current state, chemical physics-based insights and outlook. Energy Environ. Sci. 2:745–758. doi:10.1039%2Fb822176f
  • Inoue, T., A. Fujishima, S. Konishi, and K. Honda. 1979. Photo electrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature 277:637–638. doi:10.1038/277637a0
  • Intergovernmental Panel on Climate Change. 2001.
  • Jiang, G, Z. Lin, C. Chen, L. Zhu, Q. Chang, N. Wang, W. Wei, and H. Tang. 2011. TiO2 nanoparticles assembled on graphene oxide nanosheets with high photocatalytic activity for removal of pollutants. Carbon 49:2693–2701. doi:10.1016/j.carbon.2011.02.059
  • Kohno, Y., T. Tanaka, T. Funabiki, and S. Yoshida. 1998. Identification and reactivity of a surface intermediate in the photoreduction of CO2 with H2 over ZrO2. J. Chem. Soc. Faraday Trans. 94:1875–1880. doi:10.1039/A801055B
  • Lee. J.M., M.S. Kim, B. Hwang,W. Bae, and B.W. Kim.2003. Photodegradation of acid red 114 dissolved using a photo-Fenton process with TiO2. Dyes Pigments 56:59–67. doi:10.1016%2FS0143-7208%2802%2900112-2
  • Liu. BJ., T. Torimoto, and H. Yoneyama. 1998. Photocatalytic reduction of CO2 using surface-modified CdS photocatalysts in organic solvents. J. Photochem. Photobiol. A Chem. 113:93–97. doi:10.1016%2FS1010-6030%2897%2900318-3
  • Liu. Y, B. Huang, Y. Dai, X. Zhang, M. Qin, X. Jiang, and M. Whangbo. 2009. Selective ethanol formation from photocatalytic reduction of carbon dioxide in water with BiVO4 photocatalyst. Catal. Commun. 11:210–213. doi:10.1016/j.catcom.2009.10.010
  • Morel, F M M., and J.G. Hering. 1993. Principles and Applications of Aquatic Chemistry. New York: Wiley.
  • National Oceanic and Atmospheric Administration National Climatic Data Center.
  • Richter, R.K., T. Ming, and S. Caillol. 2013. Fighting global warming by photocatalytic reduction of CO2 using giant photocatalytic reactors. Renew. Sustain. Energy Rev. 19(C):69–96.
  • Šteng lV, D. Popelková, and P. Vláčil. 2011. TiO2-graphene nanocomposite as high performace photocatalysts. J. Phys. Chem. C 115:25209–25218. doi:10.1021/jp207515z
  • Subrahmanyam, M., S. Kaneco, and N. Alonso-Vante. 1999. A screening for the photo reduction of carbon dioxide supported on metal oxide catalysts for C1–C3 selectivity. Appl. Catal. B Environ. 23:169–174. doi:10.1016%2FS0926-3373%2899%2900079-X
  • Tu, W., Y. Zhang, Q. Liu, S. Yan, S. Bao, X. Wang, M. Xiao, and Z. Zou. 2013. An in situ simultaneous reduction-hydrolysis technique for fabrication of TiO2—Graphene 2D sandwich-like hybrid nanosheets: Graphene-promoted selectivity of photocatalytic-driven hydrogenation and coupling of CO2 into methane and ethane. Adv. Funct. Mater. 23:1743–1749. doi:10.1002/adfm.201202349
  • Wang, G., J. Yang, J. Park, X. Gou, B. Wang, H. Liu, and J. Yao. 2008. Facile synthesis and characterization of graphene nanosheets. J. Phys. Chem. C 112:8192–8195. doi:10.1021/jp710931h
  • Whipple, D T., Finke, E C., and Kenis, P J A. 2010. Micro fluidic reactor for the electrochemical reduction of carbon dioxide: The effect of pH. Electrochem. Solid State Lett. 13(9):B109–B111. doi:10.1149/1.3456590
  • Xiang. Q, J. Yu, and M. Jaroniec. 2012a. Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles. J. Am. Chem. Soc. 134:6575−6578. doi:10.1021%2Fja302846n
  • Xiang, Q, J. Yu, and M. Jaroniec. 2012b. Graphene-based semiconductor photocatalysts. Chem. Soc. Rev. 41:782–796. doi:10.1039%2Fc1cs15172j
  • Xiao, Q, J. Zhang, C. Xiao, Z. Si, and X. Tan. 2008. Solar photocatalytic degradation of methylene blue in carbon-doped TiO2 nanoparticals suspension. Solar Energy 82:706–713. doi:10.1016/j.solener.2008.02.006
  • Xu, Y., and AA S.Martin.2000. The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am. Mineral. 85: 543–556.
  • Zhang, H., X. Lv, Y. Li, Y. Wang, and J. Li. 2010. P25-graphene composite as a high performance photocatalyst. ACS Nano. 4:380–386. doi:10.1021/nn901221k
  • Zhang, Y., and C. Pan. 2011. TiO2/graphene composite from thermal reaction of graphene oxide and its photocatalytic activity in visible light. J. Mater. Sci. 46:2622–2626. doi:10.1007/s10853-010-5116-x
  • Zhang. Y., Z R. Tang, X. Fu, and Y J. Xu. 2010. TiO2–graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant: Is TiO2–graphene truly different from other TiO2–carbon composite materials? ACS Nano. 4:7303–7314. doi:10.1021/nn1024219
  • Zhao, C., A. Krall, H. Zhao, Q. Zhang, and Y. Li. 2012. Ultrasonic spray pyrolysis synthesis of Ag/TiO2 nanocomposite photocatalysts for simultaneous H2 production and CO2 reduction. Int. J. Hydrogen Energy 37:9967–9976. doi:10.1016/j.ijhydene.2012.04.003
  • Zhao, D., G. Sheng, C. Chen, and X. Wang. 2012. Enhanced photocatalytic degradation of methylene blue under visible irradiation on graphene-TiO2 dyade structure. Appl. Catal. B Environ. 111–112:303–308. doi:10.1016/j.apcatb.2011.10.012

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.