803
Views
6
CrossRef citations to date
0
Altmetric
Technical Papers

The accuracy of two- and three-way positive matrix factorization models: Applying simulated multisite data sets

, , , , , , & show all
Pages 1122-1129 | Received 06 Mar 2014, Accepted 15 May 2014, Published online: 16 Sep 2014

References

  • Abdollahi, H., and S.M. Sajjadi. 2010. On rotational ambiguity in parallel factor analysis. Chemom. Intell. Lab. Syst. 103:144–51. doi:10.1016/j.chemolab.2010.06.010
  • Belsley, D.A., E. Kuh, and R.E. Welsch. 2005. Regression Diagnostics: Identifying Influential Data and Sources of Collinearity. New York, NY: John Wiley & Sons.
  • Beuck, H., U. Quass, O. Klemm, and T.A.J. Kuhlbusch. 2011. Assessment of sea salt and mineral dust contributions to PM10 in NW Germany using tracer models and positive matrix factorization. Atmos. Environ. 45:5813–21. doi:10.1016/j.atmosenv.2011.07.010
  • Brinkman, G., G. Vance, M.P. Hannigan, and J.B. Milford. 2006. Use of synthetic data to evaluate positive matrix factorization as a source apportionment tool for PM2.5 exposure data. Environ. Sci. Technol. 40:1892–901. doi:10.1021/es051712y
  • Bruinen de Bruin, Y., K. Koistinen, T. Yli-Tuomi, S. Kephalopoulos, and M. Jantunen. 2006. Source apportionment techniques and marker substances available for identification of personal exposure, indoor and outdoor sources of chemicals. EUR 22349 EN, Joint Research Center JRC, Ispra, Italy. ISBN 92-79-02981-9.
  • Chan, Y.C., O. Hawas, D. Hawker, P. Vowles, D.D. Cohen, E. Stelcer, R. Simpson, G. Golding, and E. Christensen. 2011. Using multiple type composition data and wind data in PMF analysis to apportion and locate sources of air pollutants. Atmos. Environ. 45:439–49. doi:10.1016/j.atmosenv.2010.09.060
  • Chen, L.W.A., D.H. Lowenthal, J.G. Watson, D. Koracin, N. Kumar, E.M. Knipping, N. Wheeler, K. Craig, and S. Reid. 2010. Toward effective source apportionment using positive matrix factorization: Experiments with simulated PM2.5 data. J. Air Waste Manage Assoc. 60:43–54. doi:10.3155/1047-3289.60.1.43
  • Escrig, A., E. Monfort, I. Celades, X. Querol, F. Amato, M.C. Minguillón, and P.K. Hopke. 2009. Application of optimally scaled target factor analysis for assessing source contribution of ambient PM10. J. Air Waste Manage Assoc. 59:1296–307. doi:10.3155/1047-3289.59.11.1296
  • Faber, N.M., R. Bro, and P.K. Hopke. 2003. Recent developments in CANDECOMP/PARAFAC algorithms: A critical review. Chemom. Intell. Lab. Syst. 65:119–37. doi:10.1016/S0169-7439(02)00089-8
  • Green, M.C., L.W.A. Chen, D.W. DuBois, and J.V. Molenar. 2012. Fine particulate matter and visibility in the Lake Tahoe Basin: Chemical characterization, trends, and source apportionment. J. Air Waste Manage Assoc. 62: 53–65. doi:10.1080/10962247.2012.690362
  • Gu, J., J. Schnelle-Kreis, M. Pitz, J. Diemer, A. Reller, R. Zimmermann, J. Soentgen, A. Peters, and J. Cyrys. 2013. Spatial and temporal variability of PM10 sources in Augsburg, Germany. Atmos. Environ. 71:131–39. doi:10.1016/j.atmosenv.2013.01.043
  • Habre, R., B. Coull, and P. Koutrakis. 2011. Impact of source collinearity in simulated PM2.5 data on the PMF receptor model solution. Atmos. Environ. 45:6938–46. doi:10.1016/j.atmosenv.2011.09.034
  • Henry, R.C., and E.R. Christensen. 2010. Selecting an appropriate multivariate source apportionment model result. Environ. Sci. Technol. 44: 2474–2481. doi:10.1021/es9018095
  • Hwang, I., P.K. Hopke, and J.P. Pinto. 2008. Source apportionment and spatial distributions of coarse particles during the regional air pollution study. Environ. Sci. Technol. 42:3524–30. doi:10.1021/es0716204
  • Javitz, H.S., J.G. Watson, and N. Robinson. 1988. Performance of the chemical mass balance model with simulated local-scale aerosol. Atmos. Environ. 22:2309–22. doi:10.1016/0004-6981(88)90142-4
  • Kelly, K.E., R. Kotchenruther, R. Kuprov, and G.D. Silcox. 2013. Receptor model source attributions for Utah’s Salt Lake City airshed and the impacts of wintertime secondary ammonium nitrate and ammonium chloride aerosol. J. Air Waste Manage Assoc. 63:575–90. doi:10.1080/10962247.2013.774819
  • Keuken, M.P., M. Moerman, M. Voogt, M. Blom, E.P. Weijers, T. Röckmann, and U. Dusek. 2013. Source contributions to PM2.5 and PM10 at an urban background and a street location. Atmos. Environ. 71:26–35. doi:10.1016/j.atmosenv.2013.01.032
  • Kim, E., P.K. Hopke, J.P. Pinto, and W. Wilson. 2005. Spatial variability of fine particle mass, components, and source contributions during the regional air pollution study in St. Louis. Environ. Sci. Technol. 39:4172–79. doi:10.1021/es049824x
  • Larsen, B.R., S. Gilardoni, K. Stenström, J. Niedzialek, J. Jimenez, and C.A. Belis. 2012. Sources for PM air pollution in the Po Plain, Italy: II. Probabilistic uncertainty characterization and sensitivity analysis of secondary and primary sources. Atmos. Environ. 50:203–13. doi:10.1016/j.atmosenv.2011.12.038
  • Lowenthal, D.H., J.G. Watson, D. Koracin, L.W.A. Chen, D. Dubois, R. Vellore, N. Kumar, E.M. Kumar, N. Wheeler, and K. Craig. 2012. Evaluation of regional-scale receptor modeling. J. Air Waste Manage Assoc. 60:26–42. doi:10.3155/1047-3289.60.1.26
  • Marmur, A., A. Unal, J.A. Mulholland, and A.G. Russell. 2005. Optimization-based source apportionment of PM2.5 incorporating gas-to-particle ratios. Environ. Sci. Technol. 39:3245–54. doi:10.1021/es0490121
  • Minguillón, M.C., X. Querol, U. Baltensperger, and A.S.H. Prévôt. 2012. Fine and coarse PM composition and sources in rural and urban sites in Switzerland: Local or regional pollution. Sci. Total Environ. 427–28: 191–202. doi:10.1016/j.scitotenv.2012.04.030
  • Mooibroek, D., M. Schaap, E.P. Weijers, and R. Hoogerbrugge. 2011. Source apportionment and spatial variability of PM2.5 using measurements at five sites in the Netherlands. Atmos. Environ. 45:4180–91. doi:10.1016/j.atmosenv.2011.05.017
  • Ofosu, F.G., P.K. Hopke, I.J.K. Aboh, and S.A. Bamford. 2013. Biomass burning contribution to ambient air particulate levels at Navrongo in the Savannah zone of Ghana. J. Air Waste Manage Assoc. 63:1036–45. doi:10.1080/10962247.2013.783888
  • Öztürk, F., A. Zararsız, V.A. Dutkiewicz, L. Husain, P.K. Hopke, and G. Tuncel. 2012. Temporal variations and sources of Eastern Mediterranean aerosols based on a 9-year observation. Atmos. Environ. 61:463–75. doi:10.1016/j.atmosenv.2012.07.051
  • Paatero, P., and U. Tapper. 1994. Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 5:111–26. doi:10.1002/(ISSN)1099-095X
  • Paatero, P. 1997. A weighted non-negative least squares algorithm for three-way “PARAFAC’ factor analysis. Chemom. Intell. Lab. Syst. 38:223–42. doi:10.1016/S0169-7439(97)00031-2
  • Paatero, P. 1999. The Multilinear Engine—A table-driven least squares program for solving multilinear problems, including the n-way parallel factor analysis model. J. Comput. Graph. Stat. 8:854–88. doi:10.2307/1390831
  • Paatero, P. 2007. User’s Guide for Positive Matrix Factorization Programs PMF2 and PMF3, Part 1–2: Tutorial. Helsinki, Finland: University of Helsinki.
  • Pant, P., and R.M. Harrison. 2012. Critical review of receptor modelling for particulate matter: A case study of India. Atmos. Environ. 49:1–12. doi:10.1016/j.atmosenv.2011.11.060
  • Pokorna, P., J. Hovorka, J. Krouzek, and P.K. Hopke. 2013. Particulate matter source apportionment in a village situated in industrial region of Central Europe. J. Air Waste Manage Assoc. 63:1412–21. doi:10.1080/10962247.2013.825215
  • Russell, A.G., and B.A. Brunekreef. 2009. A focus on particulate matter and health. Environ. Sci. Technol. 43:4620–25. doi:10.1021/es9005459
  • Shen, G.F., S. Wei, W. Wei, Y. Zhang, Y. Min, B. Wang, R. Wang, W. Li, H. Shen, Y. Huang, Y. Yang, W. Wang, X. Wang, X. Wang, and S. Tao. 2012. Emission factors, size distributions, and emission inventories of carbonaceous particulate matter from residential wood combustion in rural China. Environ. Sci. Technol. 46:4207–14. doi:10.1021/es203957u
  • Shen, G.F., M. Xue, S.Y. Yuan, J. Zhang, Q.Y. Zaho, B. Li, H.S. Wu, and A.J. Ding. 2014. Chemical compositions and reconstructed light extinction coefficients of particulate matter in a mega-city in the western Yangtze River Delta, China. Atmos. Environ. 83:14–20. doi:10.1016/j.atmosenv.2013.10.055
  • Shi, G.L., X. Li, Y.C. Feng, Y.Q. Wang, J.H. Wu, J. Li, and T. Zhu. 2009a. Combined source apportionment, using positive matrix factorization-chemical mass balance and principal component analysis/multiple linear regression-chemical mass balance models. Atmos. Environ. 43:2929–37. doi:10.1016/j.atmosenv.2009.02.054
  • Shi, G.L., Y.C. Feng, G. Zeng, X. Li, Y.F. Zhang, Y.Q. Wang, and T. Zhu. 2009b. Use of a nonnegative constrained principal component regression chemical mass balance model to study the contributions of nearly collinear sources. Environ. Sci. Technol. 43:8867–73. doi:10.1021/es902785c
  • Shi, G.L., F. Zeng, X. Li, Y.C. Feng, Y.Q. Wang, G.X. Liu, and T. Zhu. 2011a. Estimated contributions and uncertainties of PCA/MLR-CMB results: Source apportionment for synthetic and ambient data sets. Atmos. Environ. 45:2811–19. doi:10.1016/j.atmosenv.2011.03.007
  • Shi, G.L., Y.Z. Tian, Y.F. Zhang, W.Y. Ye, X. Li, X.X. Tie, Y.C. Feng, and T. Zhu. 2011b. Estimation of the concentrations of primary and secondary organic carbon in ambient particulate matter: Application of the CMB-Iteration method. Atmos. Environ. 45:5692–98. doi:10.1016/j.atmosenv.2011.07.031
  • Titos, G., H. Lyamani, M. Pandolfi, A. Alastuey, and L. Alados-Arboledas. 2014. Identification of fine (PM1) and coarse (PM10-1) sources of particulate matter in an urban environment. Atmos. Environ. 89:593–602. doi:10.1016/j.atmosenv.2014.03.001
  • Watson, J.G., and J.C. Chow. 2001. Source characterization of major emission sources in the Imperial and Mexicali Valleys along the US–Mexico border. Sci. Total Environ. 276:33–47. doi:10.1016/S0048-9697(01)00770-7
  • Watson, J.G., L.W. Antony Chen, J.C. Chow, P. Doraiswamy, and D.H. Lowenthal. 2008. Source apportionment: Findings from the U.S. Supersites program. J. Air Waste Manage Assoc. 58:265–88. doi:10.3155/1047-3289.58.2.265
  • Xie, M., T.L. Coons, J.G. Hemann, S.J. Dutton, J.B. Milford, J.L. Peel, S.L. Miller, S.Y. Kim, S. Vedal, L. Sheppard, and M.P. Hannigan. 2012. Intra-urban spatial variability and uncertainty assessment of PM2.5 sources based on carbonaceous species. Atmos. Environ. 60:305–15. doi:10.1016/j.atmosenv.2012.06.036
  • Zeng, Y.S., and P.K. Hopke. 1992. A new receptor model: A direct trilinear decomposition followed by a matrix reconstruction. J. Chemom. 6:65–83. doi:10.1002/(ISSN)1099-128X
  • Zhao, X.J., P.S. Zhao, J. Xu, W. Meng, W.W. Pu, F. Dong, D. He, and Q.F. Shi. 2013a. Analysis of a winter regional haze event and its formation mechanism in the North China Plain. Atmos. Chem. Phys. 13:5685–96. doi:10.5194/acp-13-5685-2013
  • Zhao, P.S., F. Dong, Y.D. Yang, D. He, X.J. Zhao, W.Z. Zhamng, Q. Yao, and H.Y. Liu. 2013b. Characteristics of carbonaceous aerosol in the region of Beijing, Tianjin, and Hebei, China. Atmos. Environ. 71:389–98. doi:10.1016/j.atmosenv.2013.02.010
  • Zheng, M., G.R. Cass, L. Ke, F. Wang, J.J. Schauer, E.S. Edgerton, and A.G. Russell. 2007. Source apportionment of daily fine particulate matter at Jefferson Street, Atlanta, GA, during summer and winter. J. Air Waste Manage Assoc. 57:228–42. doi:10.1080/10473289.2007.10465322
  • Zheng, M., F. Wang, G.S.W. Hagler, X. Hou, M. Bergin, Y. Cheng, L.G. Salmon, J.J. Schauer, P.K.K. Louie, L. Zeng, and Y.H. Zhang. 2011. Sources of excess urban carbonaceous aerosol in the Pearl River Delta Region, China. Atmos. Environ. 45:1175–82. doi:10.1016/j.atmosenv.2010.09.041

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.