1,731
Views
22
CrossRef citations to date
0
Altmetric
Technical Papers

Iron-functionalized titanium dioxide on flexible glass fibers for photocatalysis of benzene, toluene, ethylbenzene, and o-xylene (BTEX) under visible- or ultraviolet-light irradiation

, , &

References

  • Azad, A.-M., and R. Hershey. 2010. Bactericidal efficacy of electrospun pure and Fe- doped titania nanofibers. J. Mater. Res. 25:1761–1770. doi:10.1557/JMR.2010.0237
  • Bianchi, C., C. Pirola, E. Selli, and S. Biella. 2012. Photocatalytic NOx abatement: The role of the material supporting the TiO2 active layer. J. Hazard. Mater. 211–212:203–207. doi:10.1016/j.jhazmat.2011.10.095
  • Bouras, P., E. Stathatos, and P. Lianos. 2007. Pure versus metal-ion-doped nanocrystalline titania for photocatalysis. Appl. Catal. B 73:51–59. doi:10.1016/j.apcatb.2006.06.007
  • Cui, L., F. Huang, M. Niu, L. Zeng, J. Xu, and Y. Wang. 2010. A visible light active photocatalyst: Nano-composite with Fe-doped anatase TiO2 nanoparticles coupling with TiO2 (B) nanobelts. J. Mol. Catal. A 326:1–7. doi:10.1016/j.molcata.2010.04.013
  • Cullity, B.D., and S.R. Stock. 2001. Elements of X-ray Diffraction, 3rd ed., 167–171. Upper Saddle River, NJ: Prentice Hall.
  • Esplugues, A., F. Ballester, M. Estarlich, S. Llop, V. Fuentes-Leonarte, E. Mantilla, and C. Iñiguez. 2010. Indoor and outdoor air concentrations of BTEX and determinants in a cohort of one-year old children in Valencia, Spain. Sci. Total Environ. 409:63–69. doi:10.1016/j.scitotenv.2010.09.039
  • Folli, P., C. Pade, T.B. Hansen, T. De Marco, and D.E. Macphee. 2012. TiO2 photocatalysis in cementitious systems: Insights into self-cleaning and depollution chemistry. Cement Concrete Res. 42:539–548. doi:10.1016/j.cemconres.2011.12.001
  • Gaya, U.I., and A.H. Abdullah. 2008. Heterogeneous photocatalytic decomposition of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems. J. Photochem. Photobiol. C 9:1–12. doi:10.1016/j.jphotochemrev.2007.12.003
  • Henderson, M.A. 2011. A surface science perspective on TiO2 photocatalysis. Surf. Sci. Rep. 66:185–297. doi:10.1016/j.surfrep.2011.01.001
  • Inturi, S.N.R., T. Boningari, M. Suidan, and P.G. Smirniotis. 2014. Visible-light- induced photodecomposition of gas phase acetonitrileusing aerosol-made transition metal (V, Cr, Fe, Co, Mn, Mo, Ni, Cu, Y, Ce, and Zr) doped TiO2. Appl. Catal. B 144:333–342. doi:10.1016/j.apcatb.2013.07.032
  • Jo, W.K., and J.T. Kim. 2009. Application of visible-light photocatalysis with nitrogen-doped or unmodified titanium dioxide for control of indoor-level volatile organic compounds. J. Hazard. Mater. 164:360–366. doi:10.1016/j.jhazmat.2008.08.033
  • Jo, W.K., S.H. Shin, and E.S. Hwang. 2011. Removal of dimethyl sulfide utilizing activated carbon fiber-supported photocatalyst in continuous-flow system. J. Hazard. Mater. 191:234–239. doi:10.1016/j.jhazmat.2011.04.069
  • Kedem, S., D. Rozen, Y. Cohen, and Y. Paz. 2009. Enhanced stability effect in composite polymeric nanofibers containing titanium dioxide and carbon nanotubes. J. Phys. Chem. C 113:14893–14899. doi:10.1021/jp9007366
  • Lan, Y., Y. Lu, and Z. Ren. 2013. Mini review on photocatalysis of titanium dioxide nanoparticles and their solar applications. Nano Energ. 2: 1031–1045. doi:10.1016/j.nanoen.2013.04.002
  • Leuchner, M., and B. Rappenglück. 2010. VOC source–receptor relationships in Houston during TexAQS-II. Atmos. Environ. 44:4056–4067. doi:10.1016/j.atmosenv.2009.02.029
  • Lin, S., X. Zhang, Q. Sun, T. Zhou, and J. Lu. 2013. Fabrication of solar light induced Fe-TiO2 immobilized on glass-fiber and application for phenol photocatalytic decomposition. Mater. Res. Bull. 48:4570–4575. doi:10.1016/j.materresbull.2013.07.063
  • Liu, L., F. Chen, F. Yang, Y. Chen, and J. Crittenden. 2012. Photocatalytic decomposition of 2,4-dichlorophenol using nanoscale Fe/TiO2. Chem. Eng. J. 181– 182:189–195. doi:10.1016/j.cej.2011.11.060
  • Lu, X., Y. Ma, B. Tian, and J. Zhang. 2011. Preparation and characterization of Fe- TiO2 films with high visible photoactivity by autoclaved-sol method at low temperature. Solid State Sci. 13:625–629. doi:10.1016/j.solidstatesciences.2010.12.036
  • Matos, J., E. García-López, L. Palmisano, A. García, and G. Marcì. 2010. Influence of activated carbon in TiO2 and ZnO mediated photo-assisted decomposition of 2- propanol in gas–solid regime. Appl. Catal. B 99: 170–180. doi:10.1016/j.apcatb.2010.06.014
  • Panniello, A., M.L. Curri, D. Diso, A. Licciulli, V. Locaputo, A. Agostiano, R. Comparelli, and G. Mascolo. 2012. Nanocrystalline TiO2 based films onto fibers for photocatalytic decomposition of organic dye in aqueous solution. Appl. Catal. B 121–122:190–197. doi:10.1016/j.apcatb.2012.03.019
  • Paola, A.D., and E. García-López. 2012. A survey of photocatalytic materials for environmental remediation. J. Hazard. Mater. 211–212:3–29.
  • Park, H., Y. Park, W. Kim, and W. Choi. 2013. Surface modification of TiO2 photocatalyst for environmental applications. J. Photochem. Photobiol. C 15:1–20. doi:10.1016/j.jphotochemrev.2012.10.001
  • Paz, Y. 2010. Application of TiO2 photocatalysis for air treatment: Patents’ overview. Appl. Catal. B 99:448–460. doi:10.1016/j.apcatb.2010.05.011
  • Ramírez, N., A. Cuadras, E. Rovira, F. Borrull, and R.M. Marcé. 2012. Chronic risk assessment of exposure to volatile organic compounds in the atmosphere near the largest Mediterranean industrial site. Environ. Int. 39: 200–209. doi:10.1016/j.envint.2011.11.002
  • Shin, S.H., and W.K. Jo. 2012. Volatile organic compound concentrations, emission rates, and source apportionment in newly-built apartments at pre-occupancy stage. Chemosphere 89:569–578. doi:10.1016/j.chemosphere.2012.05.054
  • Shin, S.H., and W.K. Jo. 2013. Longitudinal variations in indoor VOC concentrations after moving into new apartments and indoor source characterization. Environ. Sci. Pollut. Res. 20:3696–3707. doi:10.1007/s11356-012-1296-z
  • Spurr, R.A., and H. Myers. 1957. Quantitative analysis of anatase-rutile mixtures with a X-ray diffractometer. Anal. Chem. 29:760–762. doi:10.1021/ac60125a006
  • Strini, A., S. Cassese, and L. Schiavi. 2005. Measurement of benzene, toluene, ethyl benzene and o-xylene gas phase photodecomposition by titanium dioxide dispersed in cementitious materials using a mixed flow reactor. Appl. Catal. B 61:90–97. doi:10.1016/j.apcatb.2005.04.009
  • Sun, S., J. Ding, J. Bao, C. Gao, Z. Qi, X. Yang, B. He, and C. Li. 2012. Photocatalytic decomposition of gaseous toluene on Fe-TiO2 under visible light irradiation: A study on the structure, activity and deactivation mechanism. Appl. Surf. Sci. 258:5031–5037. doi:10.1016/j.apsusc.2012.01.075
  • Tieng, S., A. Kanaev, and K. Chhor. 2011. New homogeneously impregnated Fe(III)- TiO2 photocatalyst for gaseous pollutant decomposition. Appl. Catal. A 399:191–197. doi:10.1016/j.apcata.2011.03.056
  • Vargas, X., E. Tauchert, J.-M. Marin, G. Restrepo, R. Dillert, and D. Bahnemann. 2012. Fe-impregnated titanium dioxide synthesized: Photocatalytic activity and mineralization study for azo dye. J. Photochem. Photobiol. A 243: 17–22. doi:10.1016/j.jphotochem.2012.06.001
  • Yu, C., F. Cao, G. Li, R. Wei, J.C. Yu, R. Jin, Q. Fan, and C. Wang. 2013. Novel metal (Rh, Pd, Pt)/BiOX(Cl, Br, I) composite photocatalysts with enhanced photocatalytic performance in dye decomposition. Sep. Purif. Technol. 120:110–122. doi:10.1016/j.seppur.2013.09.036
  • Zhao, B., G. Mele, I. Pio, J. Li, L. Palmisano, and G. Vasapollo. 2010. Degradation of 4-nitrophenol (4-NP) using Fe-TiO2 as a heterogeneous photo-Fenton catalyst. J. Hazard. Mater. 176:569–574. doi:10.1016/j.jhazmat.2009.11.066

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.