1,879
Views
19
CrossRef citations to date
0
Altmetric
Technical Paper

Optimizing chemical oxygen demand removal from synthesized wastewater containing lignin by catalytic wet-air oxidation over CuO/Al2O3 catalysts

, , , , &
Pages 828-836 | Received 05 Nov 2014, Accepted 22 Feb 2015, Published online: 16 Jun 2015

References

  • Ayusheev, A.B., O.P. Taran, I.A. Seryak, O. Yu. Podyacheva, C. Descorme, M. Besson, L.S. Kibis, A.I. Boronin, A.I. Romanenko, Z.R. Ismagilov, V. Parmon 2014. Ruthenium nanoparticles supported on nitrogen-doped carbon nanofibers for the catalytic wet air oxidation of phenol. 7th International Conference on Environmental Catalysis (ICEC2012), Lyon, France. Appl. Catal. B Environ. 146:177–185. doi:10.1016/j.apcatb.2013.03.017
  • Catalkaya, E.C., and F. Kargi. 2007. Color, TOC and AOX removals from pulp mill effluent by advanced oxidation processes: A comparative study. J. Hazard. Mater. 139:244–253. doi:10.1016/j.jhazmat.2006.06.023
  • Catalkaya, E.C., and F. Kargi. 2008. Advanced oxidation treatment of pulp mill effluent for TOC and toxicity removals. J. Environ. Manage. 87:396–404. doi:10.1016/j.jenvman.2007.01.016
  • Cervantes, A., G. Del Angel, G. Torres, G. Lafaye, J. Barbier Jr., J.N. Beltramini, J.G. Cabañas-Moreno, and A. Espinosa de los Monteros. 2013. Degradation of methyl tert-butyl ether by catalytic wet air oxidation over Rh/TiO2–CeO2 Catalysts. In Special Issue on Selected Contributions of the 4th International Symposium on New Catalytic Materials, Cancun (México), August 2011. Catal. Today 212:2–9. doi:10.1016/j.cattod.2012.11.021
  • Chang, L., I.-P. Chen, and S.-S. Lin. 2005. An assessment of the suitable operating conditions for the CeO2/γ-Al2O3 catalyzed wet air oxidation of phenol. Chemosphere 58:485–492. doi:10.1016/j.chemosphere.2004.09.011
  • Demirel, M., and B. Kayan. 2012. Application of response surface methodology and central composite design for the optimization of textile dye degradation by wet air oxidation. Int. J. Ind. Chem. 3:1–10. doi:10.1186/2228-5547-3-24
  • Domínguez, C.M., A. Quintanilla, J.A. Casas, and J.J. Rodriguez. 2014. Kinetics of wet peroxide oxidation of phenol with a gold/activated carbon catalyst. Chem. Eng. J. 253:486–492. doi:10.1016/j.cej.2014.05.063
  • Fu, J., and G.Z. Kyzas. 2014. Wet air oxidation for the decolorization of dye wastewater: An overview of the last two decades. Chin. J. Catal. 35:1–7. doi:10.1016/S1872-2067(12)60724-4
  • Garg, A., I.M. Mishra, and S. Chand. 2007. Catalytic wet oxidation of the pretreated synthetic pulp and paper mill effluent under moderate conditions. Chemosphere 66:1799–1805. doi:10.1016/j.chemosphere.2006.07.038
  • Hua, L., H. Ma, and L. Zhang. 2013. Degradation process analysis of the azo dyes by catalytic wet air oxidation with catalyst CuO/γ-Al2O3. Chemosphere 90:143–149. doi:10.1016/j.chemosphere.2012.06.018
  • Jin, Y., Y. Wu, J. Cao, and Y. Wu. 2014. Optimizing decolorization of methylene blue and methyl orange dye by pulsed discharged plasma in water using response surface methodology. J. Taiwan Inst. Chem. Eng. 45:589–595. doi:10.1016/j.jtice.2013.06.012
  • Kaewpuang-Ngam, S., K. Inazu, T. Kobayashi, and K.-I. Aika. 2004. Selective wet-air oxidation of diluted aqueous ammonia solutions over supported Ni catalysts. Water Res. 38:778–782. doi:10.1016/j.watres.2003.10.025
  • Khataee, A.R., and G. Dehghan. 2011. Optimization of biological treatment of a dye solution by Macroalgae cladophora sp. using response surface methodology. J. Taiwan Inst. Chem. Eng. 42:26–33. doi:10.1016/j.jtice.2010.03.007
  • Kim, K.-H., and S.-K. Ihm. 2007. Characteristics of titania supported copper oxide catalysts for wet air oxidation of phenol. Environ. Appl. Adv. Oxid. Process. 146:610–616. doi:10.1016/j.jhazmat.2007.04.063
  • Kim, K.-H., and S.-K. Ihm. 2011. Heterogeneous catalytic wet air oxidation of refractory organic pollutants in industrial wastewaters: A review. J. Hazard. Mater. 186:16–34. doi:10.1016/j.jhazmat.2010.11.011
  • Lee, C.-Li, C. Lin, and C.-J.G. Jou. 2012. Microwave-induced nanoscale zero-valent iron degradation of perchloroethylene and pentachlorophenol. J. Air Waste Manage. Assoc. 62:1443–1448. doi:10.1080/10962247.2012.719579
  • Lefèvre, S., O. Boutin, J.-H. Ferrasse, L. Malleret, R. Faucherand, and A. Viand. 2011. Thermodynamic and kinetic study of phenol degradation by a non-catalytic wet air oxidation process. Chemosphere 84:1208–1215. doi:10.1016/j.chemosphere.2011.05.049
  • Levec, J., and A. Pintar. 2007. Catalytic wet-air oxidation processes: A review. Adv. Catal. Oxid. Process. 124:172–184. doi:10.1016/j.cattod.2007.03.035
  • Lin, S.S., D.J. Chang, C.-H. Wang, and C.C. Chen. 2003. Catalytic wet air oxidation of phenol by CeO2 catalyst—Effect of reaction conditions. Water Res. 37:793–800. doi:10.1016/S0043-1354(02)00422-0
  • Luan, M., G. Jing, Y. Piao, D. Liu, and L. Jin. In press. Treatment of refractory organic pollutants in industrial wastewater by wet air oxidation. Arabian J. Chem. doi:10.1016/j.arabjc.2012.12.003
  • Mokhtar, W.N.A.W., W.A.W.A. Bakar, R. Ali, and A.A.A. Kadir. 2014. Deep desulfurization of model diesel by extraction with N, N-dimethylformamide: Optimization by Box–Behnken design. J. Taiwan Inst. Chem. Eng. 45:1542–1548. doi:10.1016/j.jtice.2014.03.017
  • Ovejero, G., A. Rodríguez, A. Vallet, and J. García. 2013. Catalytic wet air oxidation of a non-azo dye with Ni/MgAlO catalyst. Chem. Eng. J. 215–216:168–173. doi:10.1016/j.cej.2012.11.028
  • Parilti, N.B., and D. Akten. 2011. Response surface methodological approach and the kinetic study for the assessment of the photodegradation of a pulp mill effluent with H2O2/Fe(III)/solar UV. Fresenius Environ. Bull. 20:1390–1400.
  • Pintar, A., J. Batista, and T. Tišler. 2008. Catalytic wet-air oxidation of aqueous solutions of formic acid, acetic acid and phenol in a continuous-flow trickle-bed reactor over Ru/TiO2 catalysts. Appl. Catal. B Environ. 84:30–41. doi:10.1016/j.apcatb.2008.03.001
  • Pokhrel, D., and T. Viraraghavan. 2004. Treatment of pulp and paper mill wastewater—A review. Sci. Total Environ. 333:37–58. doi:10.1016/j.scitotenv.2004.05.017
  • Salman, J.M. 2014. Optimization of preparation conditions for activated carbon from palm oil fronds using response surface methodology on removal of pesticides from aqueous solution. Arabian J. Chem. Special Issue: Environmental Chemistry 7:101–108. doi:10.1016/j.arabjc.2013.05.033
  • Song, C., Y. Kitamura, and S. Li. 2014. Optimization of a novel cryogenic CO2 capture process by response surface methodology (RSM). J. Taiwan Inst. Chem. Eng. 45:1666–1676. doi:10.1016/j.jtice.2013.12.009
  • Sriprom, P., S. Neramittagapong, A. Neramittagapong. 2011. Optimization for lignin removal from synthetic wastewater by catalytic wet air oxidation. Paper presented at the TIChE International Conference, Hatyai, Songkla, Thailand, November 10–11, 2011.
  • Sriprom, P., P. Assawasaengrat, A. Neramittagapong, and S. Neramittagapong. 2014. Catalytic wet-air oxidation of aniline removal from synthetic wastewater. Adv. Mater. Res. 931–932:32–36. doi:10.4028/www.scientific.net/AMR.931-932.32
  • Wang, J., W. Fu, X. He, S. Yang, and W. Zhu. 2014. Catalytic wet air oxidation of phenol with functionalized carbon materials as catalysts: Reaction mechanism and pathway. J. Environ. Sci. 26:1741–1749. doi:10.1016/j.jes.2014.06.015
  • Wantala, K., E. Khongkasem, N. Khlongkarnpanich, S. Sthiannopkao, and K.-W. Kim. 2012. Optimization of As(V) adsorption on Fe-RH-MCM-41-immobilized GAC using Box–Behnken design: Effects of pH, loadings, and initial concentrations. Recent Progress Environ. Geochem. 27: 1027–1034. doi:10.1016/j.apgeochem.2011.11.014
  • Wei, H., X. Yan, S. He, and C. Sun. 2013. Catalytic wet air oxidation of pentachlorophenol over Ru/ZrO2 and Ru/ZrSiO2 catalysts. Catal. Low Carbon Energy Dev. Environ. Qual. Control 201:49–56. doi:10.1016/j.cattod.2012.07.004
  • Yang, S., Y. Cui, Y. Sun, and H. Yang. 2014. Graphene oxide as an effective catalyst for wet air oxidation of phenol. J. Hazard. Mater. 280:55–62. doi:10.1016/j.jhazmat.2014.07.051
  • Yan, Y., S. Jiang, and H. Zhang. 2014. Efficient catalytic wet peroxide oxidation of phenol over Fe-ZSM-5 catalyst in a fixed bed reactor. Sep. Purif. Technol. 133:365–374. doi:10.1016/j.seppur.2014.07.014
  • Zhang, G., S. Wang, S. Zhao, L. Fu, G. Chen, and F. Yang. 2011. Oxidative degradation of azo dye by hydrogen peroxide electrogenerated in situ on anthraquinonemonosulphonate/polypyrrole composite cathode with heterogeneous CuO/γ-Al2O3 catalyst. Appl. Catal. B Environ. 106:370–378. doi:10.1016/j.apcatb.2011.05.042
  • Zhang, Z., and H. Zheng. 2009. Optimization for decolorization of azo dye Acid Green 20 by ultrasound and H2O2 using response surface methodology. J. Hazard. Mater. 172:1388–1393. doi:10.1016/j.jhazmat.2009.07.146
  • Zhou, S., C. Zhang, X. Hu, Y. Wang, R. Xu, C. Xia, H. Zhang, and Z. Song. 2014. Catalytic wet peroxide oxidation of 4-chlorophenol over Al-Fe-, Al-Cu-, and Al-Fe-Cu-pillared clays: Sensitivity, kinetics and mechanism. Appl. Clay Sci. 95:275–283. doi:10.1016/j.clay.2014.04.024

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.