2,209
Views
25
CrossRef citations to date
0
Altmetric
Technical Papers

PM2.5 source apportionment with organic markers in the Southeastern Aerosol Research and Characterization (SEARCH) study

, , , , , & show all
Pages 1104-1118 | Received 02 Jan 2015, Accepted 19 May 2015, Published online: 14 Aug 2015

References

  • Andren, A.W., D.H. Klein, and K. Talmi. 1975. Selenium in coal-fired steam plant emissions. Environ. Sci. Technol. 9:856–858. doi:10.1021/es60107a002
  • Balachandran, S., J.E. Pachon, Y.T. Hu, D. Lee, J.A. Mulholland, and A.G. Russell. 2012. Ensemble-trained source apportionment of fine particulate matter and method uncertainty analysis. Atmos. Environ. 61:387–394. doi:10.1016/j.atmosenv.2012.07.031
  • Blanchard, C.L., J.C. Chow, E.S. Edgerton, J.G. Watson, G.M. Hidy, and S. Shaw. 2014. Organic aerosols in the southeastern United States: Speciated particulate carbon measurements from the SEARCH network, 2006 to 2010. Atmos. Environ. 95:327–333. doi:10.1016/j.atmosenv.2014.06.050
  • Blanchard, C.L., S. Tanenbaum, and G.M. Hidy. 2013. Source attribution of air pollutant concentrations and trends in the Southeastern Aerosol Research and Characterization (SEARCH) network. Environ. Sci. Technol. 47:13536–13545. doi:10.1021/es402876s
  • Brinkman, G., G. Vance, M.P. Hannigan, and J.B. Milford. 2006. Use of synthetic data to evaluate positive matrix factorization as a source apportionment tool for PM2.5 exposure data. Environ. Sci. Technol. 40:1892–1901. doi:10.1021/es051712y
  • Chan, T., and M. Lippmann. 1977. Particle collection efficiencies of sampling cyclones: An empirical theory. Environ. Sci. Technol. 11:377–386. doi:10.1021/es60127a003
  • Chen, L.-W.A., J.C. Chow, X.L. Wang, J.A. Robles, B.J. Sumlin, D.H. Lowenthal, and J.G. Watson. 2015. Multi-wavelength optical measurement to enhance thermal/optical analysis for carbonaceous aerosol. Atmos. Meas. Tech. 8:451–461. doi:10.5194/amt-8-451-2015
  • Chen, L.-W.A., D.H. Lowenthal, J.G. Watson, D. Koracin, N. Kumar, E.M. Knipping, N. Wheeler, K. Craig, and S. Reid. 2010. Toward effective source apportionment using positive matrix factorization: Experiments with simulated PM2.5 data. J. Air Waste Manage. Assoc. 60:43–54. doi:10.3155/1047-3289.60.1.43
  • Chen, L.-W.A., J.G. Watson, J.C. Chow, D.W. DuBois, and L. Herschberger. 2011. PM2.5 source apportionment: Reconciling receptor models for U.S. non-urban and urban long-term networks. J. Air Waste Manage. Assoc. 61:1204–1217. doi:10.1080/10473289.2011.619082
  • Chen, L.-W.A., J.G. Watson, J.C. Chow, and K.L. Magliano. 2007. Quantifying PM2.5 source contributions for the San Joaquin Valley with multivariate receptor models. Environ. Sci. Technol. 41:2818–2826. doi:10.1021/es0525105
  • Chow, J.C., J.P. Engelbrecht, J.G. Watson, W.E. Wilson, N.H. Frank, and T. Zhu. 2002a. Designing monitoring networks to represent outdoor human exposure. Chemosphere 49:961–978. doi:10.1016/S0045-6535(02)00239-4
  • Chow, J.C., and J.G. Watson. 1999. Ion chromatography in elemental analysis of airborne particles. Elemental Analysis of Airborne Particles, vol. 1, 97–137. Amsterdam: Gordon and Breach Science.
  • Chow, J.C., J.G. Watson, J.L. Bowen, C.A. Frazier, A.W. Gertler, K.K. Fung, D. Landis, and L.L. Ashbaugh. 1993. A sampling system for reactive species in the western United States. Sampling and Analysis of Airborne Pollutants, 209–228. Ann Arbor, MI: Lewis Publishers.
  • Chow, J.C., J.G. Watson, L.-W.A. Chen, M.-C.O. Chang, N.F. Robinson, D.L. Trimble, and S.D. Kohl. 2007c. The IMPROVE_A temperature protocol for thermal/optical carbon analysis: Maintaining consistency with a long-term database. J. Air Waste Manage. Assoc. 57:1014–1023. doi:10.3155/1047-3289.57.9.1014
  • Chow, J.C., J.G. Watson, L.-W.A. Chen, J. Rice, and N.H. Frank. 2010. Quantification of PM2.5 organic carbon sampling artifacts in US networks. Atmos. Chem. Phys. 10:5223–5239. doi:10.5194/acp-10-5223-2010
  • Chow, J.C., J.G. Watson, S.A. Edgerton, and E. Vega. 2002b. Chemical composition of PM10 and PM2.5 in Mexico City during winter 1997. Sci. Total Environ. 287:177–201. doi:10.1016/S0048-9697(01)00982-2
  • Chow, J.C., J.G. Watson, H.D. Kuhns, V.R. Etyemezian, D.H. Lowenthal, D.J. Crow, S.D. Kohl, J.P. Engelbrecht, and M.C. Green. 2004. Source profiles for industrial, mobile, and area sources in the Big Bend Regional Aerosol Visibility and Observational (BRAVO) Study. Chemosphere 54:185–208. doi:10.1016/j.chemosphere.2003.07.004
  • Chow, J.C., J.G. Watson, D.H. Lowenthal, L.-W.A. Chen, B. Zielinska, L.R. Mazzoleni, and K.L. Magliano. 2007a. Evaluation of organic markers for chemical mass balance source apportionment at the Fresno supersite. Atmos. Chem. Phys. 7:1741–1754. doi:10.5194/acp-7-1741-2007
  • Chow, J.C., J.G. Watson, J. Robles, X.L. Wang, L.-W.A. Chen, D.L. Trimble, S.D. Kohl, R.J. Tropp, and K.K. Fung. 2011. Quality assurance and quality control for thermal/optical analysis of aerosol samples for organic and elemental carbon. Anal. Bioanal. Chem. 401:3141–3152.
  • Chow, J.C., J.Z. Yu, J.G. Watson, S.S.H. Ho, T.L. Bohannan, M.D. Hays, and K.K. Fung. 2007b. The application of thermal methods for determining chemical composition of carbonaceous aerosols: A review. J. Environ. Sci. Health A 42:1521–1541. doi:10.1080/10934520701513365
  • Christensen, W.F., and J.J. Schauer. 2008a. Impact of species uncertainty perturbation on the solution stability of positive matrix factorization of atmospheric particulate matter data. Environ. Sci. Technol. 42:6015–6021. doi:10.1021/es800085t
  • Christensen, W.F., and J.J. Schauer. 2008b. Quantifying and manipulating species influence in positive matrix factorization. Chemometr. Intell. Lab. Syst. 94:140–148. doi:10.1016/j.chemolab.2008.07.004
  • Christopher, S.A., P. Gupta, U. Nair, T.A. Jones, S. Kondragunta, Y.L. Wu, J.L. Hand, and X.Y. Zhang. 2009. Satellite remote sensing and mesoscale modeling of the 2007 Georgia/Florida fires. IEEE J. Selected Topics Appl. Earth Observ. Remote Sens. 2:163–175. doi:10.1109/JSTARS.2009.2026626
  • Couvidat, F., K. Sartelet, and C. Seigneur. 2013. Investigating the impact of aqueous-phase chemistry and wet deposition on organic aerosol formation using a molecular surrogate modeling approach. Environ. Sci. Technol. 47:914–922. doi:10.1021/es3034318
  • Dabek-Zlotorzynska, E., T.F. Dann, P.K. Martinelango, V. Celo, J.R. Brook, D. Mathieu, L.Y. Ding, and C.C. Austin. 2011. Canadian National Air Pollution Surveillance (NAPS) PM2.5 speciation program: Methodology and PM2.5 chemical composition for the years 2003–2008. Atmos. Environ. 45:673–686. doi:10.1016/j.atmosenv.2010.10.024
  • Daisey, J.M., J.L. Cheney, and P.J. Lioy. 1986. Profiles of organic particulate emissions from air pollution sources: Status and needs for receptor source apportionment modeling. J. Air Pollut. Control Assoc. 36:17–33. doi:10.1080/00022470.1986.10466041
  • Diab, J., T. Streibel, F. Cavalli, S.C. Lee, H. Saathoff, T. Mamakos, J.C. Chow, L.-W.A. Chen, J.G. Watson, O. Sippula, and R. Zimmermann. 2014. Hyphenation of a EC/OC thermal-optical carbon analyzer to photo ionization time-of-flight mass spectrometry: A new off-line aerosol mass spectrometric approach for characterization of primary and secondary particulate matter. Atmos. Meas. Tech. Discuss. In press. doi:10.5194/amtd-8-269-2015
  • Duce, R.A., G.L. Hoffman, and W.H. Zoller. 1975. Atmospheric trace metals at remote Northern and Southern Hemisphere sites: Pollution or natural? Science 187:59–61. doi:10.1126/science.187.4171.59
  • Eatough, D.J., R.J. Farber, and J.G. Watson. 2000. Second-generation chemical mass balance source apportionment of sulfur oxides and sulfate at the Grand Canyon during the Project MOHAVE summer intensive. J. Air Waste Manage. Assoc. 50:759–774. doi:10.1080/10473289.2000.10464113
  • Edgerton, E.S., B.E. Hartsell, R.D. Saylor, J.J. Jansen, D.A. Hansen, and G.M. Hidy. 2005. The Southeastern Aerosol Research and Characterization Study part II: Filter-based measurements of fine and coarse particulate matter mass and composition. J. Air Waste Manage. Assoc. 55:1527–1542. doi:10.1080/10473289.2005.10464744
  • Edgerton, E.S., B.E. Hartsell, R.D. Saylor, J.J. Jansen, D.A. Hansen, and G.M. Hidy. 2006. The Southeastern Aerosol Research and Characterization Study, part 3: Continuous measurements of fine particulate matter mass and composition. J. Air Waste Manage. Assoc. 56:1325–1341. doi:10.1080/10473289.2006.10464585
  • England, G.C., J.G. Watson, J.C. Chow, B. Zielinska, M.-C.O. Chang, K.R. Loos, and G.M. Hidy. 2007. Dilution-based emissions sampling from stationary sources: Part 1. Compact sampler, methodology and performance. J. Air Waste Manage. Assoc. 57:65–78. doi:10.1080/10473289.2007.10465291
  • Fujita, E.M., D.E. Campbell, W.P. Arnott, J.C. Chow, and B. Zielinska. 2007. Evaluations of the chemical mass balance method for determining contributions of gasoline and diesel exhaust to ambient carbonaceous aerosols. J. Air Waste Manage. Assoc. 57:721–740. doi:10.3155/1047-3289.57.6.721
  • Grabowsky, J., T. Streibel, M. Sklorz, J.C. Chow, A. Mamakos, and R. Zimmermann. 2011. Hyphenation of a carbon analyzer to photo-ionization mass spectrometry to unravel the organic composition of particulate matter on a molecular level. Anal. Bioanal. Chem. 401:3153–3164. doi:10.1007/s00216-011-5425-1
  • Green, M.C., L-W.A. Chen, D.W. DuBois, and J.V. Molenar. 2012. Fine particulate matter and visibility in the Lake Tahoe Basin: Chemical characterization, trends, and source apportionment. J. Air Waste Manage. Assoc. 62:953–965. doi:10.1080/10962247.2012.690362
  • Habre, R., B. Coull, and P. Koutrakis. 2011. Impact of source collinearity in simulated PM(2.5) data on the PMF receptor model solution. Atmos. Environ. 45:6938–6946. doi:10.1016/j.atmosenv.2011.09.034
  • Hansen, D.A., E.S. Edgerton, B.E. Hartsell, J.J. Jansen, N. Kandasamy, G.M. Hidy, and C.L. Blanchard. 2003. The Southeastern Aerosol Research and Characterization Study: Part 1—Overview. J. Air Waste Manage. Assoc. 53:1460–1471. doi:10.1080/10473289.2003.10466318
  • Hays, M.D., and R.J. Lavrich. 2007. Developments in direct thermal extraction gas chromatography-mass spectrometry of fine aerosols. Trends Anal. Chem. 26:88–102. doi:10.1016/j.trac.2006.08.007
  • Hemann, J.G., G.L. Brinkman, S.J. Dutton, M.P. Hannigan, J.B. Milford, and S.L. Miller. 2009. Assessing positive matrix factorization model fit: A new method to estimate uncertainty and bias in factor contributions at the measurement time scale. Atmos. Chem. Phys. 9:497–513. doi:10.5194/acp-9-497-2009
  • Henry, R.C., and E.R. Christensen. 2010. Selecting an appropriate multivariate source apportionment model result. Environ. Sci. Technol. 44:2474–2481. doi:10.1021/es9018095
  • Hidy, G.M., C.L. Blanchard, K. Baumann, E. Edgerton, S. Tannenbaum, S. Shaw, E. Knipping, I. Tombach, J. Jansen, and J. Walters. 2014. Chemical climatology of the southeastern United States, 1999–2013. Atmos. Chem. Phys. 14:11893–11914. doi:10.5194/acp-14-11893-2014
  • Hildemann, L.M., G.R. Cass, and G.R. Markowski. 1989. A dilution stack sampler for collection of organic aerosol emissions: Design, characterization and field tests. Aerosol Sci. Technol. 10:193–204. doi:10.1080/02786828908959234
  • Hildemann, L.M., G.R. Markowski, and G.R. Cass. 1991. Chemical composition of emissions from urban sources of fine organic aerosol. Environ. Sci. Technol. 25:744–759. doi:10.1021/es00016a021
  • Ho, S.S.H., K.F. Ho, S.X. Liu, W.D. Liu, S.C. Lee, K.K. Fung, J.J. Cao, R.J. Zhang, Y. Huang, N.S.Y. Feng, and Y. Cheng. 2012. Quantification of carbonate carbon in aerosol filter samples using a modified thermal/optical carbon analyzer (M-TOCA). Anal. Methods 4:2578–2584.
  • Ho, S.S.H., and J.Z. Yu. 2004. In-injection port thermal desorption and subsequent gas chromatography-mass spectrometric analysis of polycyclic aromatic hydrocarbons and n-alkanes in atmospheric aerosol samples. J. Chromatogr. A 1059:121–129. doi:10.1016/j.chroma.2004.10.013
  • Ho, S.S.H., J.Z. Yu, J.C. Chow, B. Zielinska, J.G. Watson, E.H.L. Sit, and J.J. Schauer. 2008. Evaluation of an in-injection port thermal desorption-gas chromatography/mass spectrometry method for analysis of non-polar organic compounds in ambient aerosol samples. J. Chromatogr. A 1200:217–227. doi:10.1016/j.chroma.2008.05.056
  • IMPROVE. 2015. Interagency Monitoring of Protected Visual Environments. http://vista.cira.colostate.edu/IMPROVE (accessed July 14, 2015).
  • Iyer, H.K., W.C. Malm, and R.A. Ahlbrandt. 1987. A mass balance method for estimating the fractional contributions of pollutants from various sources to a receptor site. Transactions, Visibility Protection: Research and Policy Aspects, 861–871. Pittsburgh, PA: Air Pollution Control Association.
  • Jaoui, M., E. Corse, T.E. Kleindienst, J.H. Offenberg, M. Lewandowski, and E.O. Edney. 2006. Analysis of secondary organic aerosol compounds from the photooxidation of d-limonene in the presence of NOx and their detection in ambient PM2.5. Environ. Sci. Technol. 40:3819–3828. doi:10.1021/es052566z
  • Ke, L., W. Liu, Y. Wang, A.G. Russell, E.S. Edgerton, and M. Zheng. 2008. Comparison of PM2.5 source apportionment using positive matrix factorization and molecular marker-based chemical mass balance. Sci. Total Environ. 394:290–302. doi:10.1016/j.scitotenv.2008.01.030
  • Kim, E., and P.K. Hopke. 2007. Comparison between sample-species specific uncertainties and estimated uncertainties for the source apportionment of the speciation trends network data. Atmos. Environ. 41:567–575. doi:10.1016/j.atmosenv.2006.08.023
  • Kuhns, H.D., M.-C.O.Chang, J.C. Chow, V.R. Etyemezian, L.-W.A. Chen, N.J. Nussbaum, S.K. Nathagoundenpalayam, T.C. Trimble, S.D. Kohl, M. MacLaren, M. Abu-Allaban, J.A. Gillies, and A.W. Gertler. 2004. Lake Tahoe Source Characterization Study, Desert Research Institute, Reno, NV.
  • Lee, S., K. Baumann, J.J. Schauer, R.J. Sheesley, L.P. Naeher, S. Meinardi, D.R. Blake, E.S. Edgerton, A.G. Russell, and M. Clements. 2005. Gaseous and particulate emissions from prescribed burning in Georgia. Environ. Sci. Technol. 39:9049–9056. doi:10.1021/es051583l
  • Lee, S., W. Liu, Y.H. Wang, A.G. Russell, and E.S. Edgerton. 2008. Source apportionment of PM2.5: Comparing PMF and CMB results for four ambient monitoring sites in the southeastern United States. Atmos. Environ. 42:4126–4137. doi:10.1016/j.atmosenv.2008.01.025
  • Lee, S., and A.G. Russell. 2007. Estimating uncertainties and uncertainty contributors of CMB PM2.5 source apportionment results. Atmos. Environ. 41:9616–9624. doi:10.1016/j.atmosenv.2007.08.022
  • Lingwall, J.W., and W.F. Christensen. 2007. Pollution source apportionment using a priori information and positive matrix factorization. Chemometr. Intell. Lab. Syst. 87:281–294. doi:10.1016/j.chemolab.2007.03.007
  • Liu, W., Y.H. Wang, A. Russell, and E.S. Edgerton. 2006. Enhanced source identification of southeast aerosols using temperature-resolved carbon fractions and gas phase components. Atmos. Environ. 40(Suppl. 2):S445–S466. doi:10.1016/j.atmosenv.2005.11.079
  • Lowenthal, D.H., J.G. Watson, D. Koracin, L.-W.A. Chen, D.W. DuBois, R. Vellore, N. Kumar, E.M. Knipping, N. Wheeler, K. Craig, and S. Reid. 2010. Evaluation of regional scale receptor modeling. J. Air Waste Manage. Assoc. 60:26–42. doi:10.3155/1047-3289.60.1.26
  • Malm, W.C., J.F. Sisler, D. Huffman, R.A. Eldred, and T.A. Cahill. 1994. Spatial and seasonal trends in particle concentration and optical extinction in the United States. J. Geophys. Res. 99(D1):1347–1370. doi:10.1029/93JD02916
  • Marmur, A., S.K. Park, J.A. Mulholland, P.E. Tolbert, and A.G. Russell. 2006. Source apportionment of PM2.5 in the southeastern United States using receptor and emissions-based models: Conceptual differences and implications for time-series health studies. Atmos. Environ. 40:2533–2551. doi:10.1016/j.atmosenv.2005.12.019
  • Mason, B. 1966. Principles of Geochemistry, 3rd ed. New York: Wiley.
  • Mazurek, M.A., B.R.T. Simoneit, G.R. Cass, and H.A. Gray. 1987. Quantitative high-resolution gas chromatography and high-resolution gas chromatography/mass spectrometry analyses of carbonaceous fine aerosol particles. Int. J. Environ. Anal. Chem. 29:119–139. doi:10.1080/03067318708078415
  • Miller, S.L., M.J. Anderson, E.P. Daly, and J.B. Milford. 2002. Source apportionment of exposures to volatile organic compounds. I. Evaluation of receptor models using simulated exposure data. Atmos. Environ. 36:3629–3641. doi:10.1016/S1352-2310(02)00279-0
  • Mooibroek, D., M. Schaap, E.P. Weijers, and R. Hoogerbrugge. 2011. Source apportionment and spatial variability of PM(2.5) using measurements at five sites in The Netherlands. Atmos. Environ. 45:4180–4191. doi:10.1016/j.atmosenv.2011.05.017
  • Orasche, J., J. Schnelle-Kreis, G. Abbaszade, and R. Zimmermann. 2011. Technical Note: In-situ derivatization thermal desorption GC-TOFMS for direct analysis of particle-bound non-polar and polar organic species. Atmos. Chem. Phys. 11:8977–8993. doi:10.5194/acp-11-8977-2011
  • Paatero, P., and U. Tapper. 1994. Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 5:111–126. doi:10.1002/env.3170050203
  • Peters, T.M., R.W. Vanderpool, and R.W. Wiener. 2001. Design and calibration of the EPA PM2.5 well impactor ninety-six (WINS). Aerosol Sci. Technol. 34:389–397. doi:10.1080/027868201750172752
  • Ramdahl, T. 1983. Retene-A molecular marker of wood combustion in ambient air. Nature 306:580–582. doi:10.1038/306580a0
  • Reff, A., S.I. Eberly, and P.V. Bhave. 2007. Receptor modeling of ambient particulate matter data using positive matrix factorization: Review of existing methods. J. Air Waste Manage. Assoc. 57:146–154. doi:10.1080/10473289.2007.10465319
  • Roscoe, B.A., P.K. Hopke, S.L. Dattner, and J.M. Jenks. 1982. The use of principal component factor analysis to interpret particulate compositional data sets. J. Air Pollut. Control Assoc. 32:637–642. doi:10.1080/00022470.1982.10465439
  • Sakata, M., M. Kurata, and N. Tanaka. 2000. Estimating contribution from municipal solid waste incineration to trace metal concentrations in Japanese urban atmosphere using lead as a marker element. Geochem. J. 34:23–32. doi:10.2343/geochemj.34.23
  • Schauer, J.J., W.F. Rogge, M.A. Mazurek, L.M. Hildemann, G.R. Cass, and B.R.T. Simoneit. 1996. Source apportionment of airborne particulate matter using organic compounds as tracers. Atmos. Environ. 30:3837–3855. doi:10.1016/1352-2310(96)00085-4
  • Shen, G.F., S. Tao, S.Y. Wei, Y.Y. Zhang, R. Wang, B. Wang, W. Li, H.Z. Shen, Y. Huang, Y.F. Yang, W. Wang, X.L. Wang, and S.L.M. Simonich. 2012. Retene emission from residential solid fuels in China and evaluation of retene as a unique marker for soft wood combustion. Environ. Sci. Technol. 46:4666–4672. doi:10.1021/es300144m
  • Sheya, S.A., C. Glowacki, M.-C.O. Chang, J.C. Chow, and J.G. Watson. 2008. Hot filter/impinger and dilution sampling for fine particulate matter characterization from ferrous metal casting processes. J. Air Waste Manage. Assoc. 58:553–561. doi:10.3155/1047-3289.58.4.553
  • Thurston, G.D., and J.D. Spengler. 1985. A quantitative assessment of source contributions to inhalable particulate matter pollution in metropolitan Boston. Atmos. Environ. 19:9–25. doi:10.1016/0004-6981(85)90132-5
  • Tian, D., Y.T. Hu, Y.H. Wang, J.W. Boylan, M. Zheng, and A.G. Russell. 2009. Assessment of biomass burning emissions and their impacts on urban and regional PM2.5: A Georgia case study. Environ. Sci. Technol. 43:299–305. doi:10.1021/es801827s
  • Truex, T.J., W.R. Pierson, D.E. McKee, M. Shelef, and R.E. Baker. 1980. Effects of barium fuel additive and fuel sulfur level on diesel particulate emissions. Environ. Sci. Technol. 14:1121–1124. doi:10.1021/es60169a018
  • Turley, C.D., D.L. Brenchley, and R.R. Landolt. 1973. Barium additives as diesel smoke suppressants. J. Air Pollut. Control Assoc. 23:783–787. doi:10.1080/00022470.1973.10469844
  • U.S. Environmental Protection Agency. 1989. Ambient air monitoring reference and equivalent methods; Reference method designation. Fed. Regist. 54:12273.
  • U.S. Environmental Protection Agency. 1999. Compendium Method IO-3.5: Determination of metals in ambient particulate matter using inductively coupled plasma/mass spectrometry (ICP/MS). EPA/625/R-96/010a. http://www.epa.gov/ttn/amtic/files/ambient/inorganic/mthd-3-5.pdf.
  • U.S. Environmental Protection Agency. 2000. Method 5. Particulate matter (PM), Determination of particulate matter emissions from stationary sources. http://www.epa.gov/ttn/emc/promgate/m-05.pdf (accessed July 14, 2015).
  • U.S. Environmental Protection Agency. 2004. Chemical Mass Balance (CMB) Model. http://www.epa.gov/ttn/scram/receptor_cmb.htm (accessed July 14, 2015).
  • U.S. Environmental Protection Agency. 2007. Guidance on the use of models and other analyses for demonstrating attainment of air quality goals for ozone, PM2.5, and regional haze. EPA-454/B-07-002. http://www.epa.gov/ttn/scram/guidance/guide/final-03-pm-rh-guidance.pdf (accessed July 14, 2015).
  • U.S. Environmental Protection Agency. 2010. EPA Positive Matrix Factorization (PMF) 3.0 model. http://www.epa.gov/heasd/products/pmf/pmf.html (accessed July 14, 2015).
  • U.S. Environmental Protection Agency. 2014a. Chemical speciation. http://www.epa.gov/ttn/amtic/speciepg.html (accessed July 14, 2015).
  • U.S. Environmental Protection Agency. 2014b. EPA Positive Matrix Factorization (PMF) 5.0 model. http://www.epa.gov/heasd/research/pmf.html (accessed July 14, 2015).
  • U.S. Environmental Protection Agency. 2014c. SPECIATE version 4.4. http://www.epa.gov/ttn/chief/software/speciate/index.html (accessed July 14, 2015).
  • van Eijck, A., T. Opatz, D. Taraborrelli, R. Sander, and T. Hoffmann. 2013. New tracer compounds for secondary organic aerosol formation from beta-caryophyllene oxidation. Atmos. Environ. 80:122–130. doi:10.1016/j.atmosenv.2013.07.060
  • Wang, X.L., J.G. Watson, J.C. Chow, S. Gronstal, and S.D. Kohl. 2012a. An efficient multipollutant system for measuring real-world emissions from stationary and mobile sources. Aerosol Air Qual Res. 12:145–160. doi:10.4209/aaqr.2011.11.0187
  • Wang, X.L., J.G. Watson, J.C. Chow, S.D. Kohl, L.-W.A. Chen, D.A. Sodeman, A.H. Legge, and K.E. Percy. 2012b. Measurement of real-world stack emissions with a dilution sampling system. Alberta Oil Sands: Energy, Industry, and the Environment, 171–192. Amsterdam, The Netherlands: Elsevier Press.
  • Watson, J.G. 2004. Protocol for applying and validating the CMB model for PM2.5 and VOC. EPA-451/R-04-001. www.epa.gov/scram001/models/receptor/CMB_Protocol.pdf (accessed July 14, 2015).
  • Watson, J.G., L.-W.A. Chen, J.C. Chow, D.H. Lowenthal, and P. Doraiswamy. 2008. Source apportionment: Findings from the U.S. Supersite Program. J. Air Waste Manage. Assoc. 58:265–288. doi:10.3155/1047-3289.58.2.265
  • Watson, J.G., and J.C. Chow. 2015. Receptor models and measurements for identifying and quantifying air pollution sources. Introduction to Environmental Forensics, 3rd edition, 677–706. Amsterdam, The Netherlands: Elsevier.
  • Watson, J.G., J.C. Chow, L.-W.A. Chen, and N.H. Frank. 2009. Methods to assess carbonaceous aerosol sampling artifacts for IMPROVE and other long-term networks. J. Air Waste Manage. Assoc. 59:898–911. doi:10.3155/1047-3289.59.8.898
  • Watson, J.G., J.C. Chow, and C.A. Frazier. 1999. X-ray fluorescence analysis of ambient air samples. Elemental Analysis of Airborne Particles, vol. 1, 67–96. Amsterdam, The Netherlands: Gordon and Breach Science.
  • Watson, J.G., J.C. Chow, D.H. Lowenthal, N.F. Robinson, C.F. Cahill, and D.L. Blumenthal. 2002. Simulating changes in source profiles from coal-fired power stations: Use in chemical mass balance of PM2.5 in the Mt. Zirkel Wilderness. Energy Fuels 16:311–324. doi:10.1021/ef010202w
  • Watson, J.G., J.C. Chow, F.W. Lurmann, and S. Musarra. 1994. Ammonium nitrate, nitric acid, and ammonia equilibrium in wintertime Phoenix, Arizona. J. Air Waste Manage. Assoc. 44:405–412. doi:10.1080/10473289.1999.10463837
  • Watson, J.G., J.C. Chow, X.L. Wang, S.D. Kohl, L.-W.A. Chen, and V.R. Etyemezian. 2012. Overview of real-world emission characterization methods. Alberta Oil Sands: Energy, Industry, and the Environment, 145–170. Amsterdam, The Netherlands: Elsevier Press.
  • Watson, J.G., J.A. Cooper, and J.J. Huntzicker. 1984. The effective variance weighting for least squares calculations applied to the mass balance receptor model. Atmos. Environ. 18:1347–1355. doi:10.1016/0004-6981(84)90043-X
  • Watson, J.G., B.J. Turpin, and J.C. Chow. 2001. The measurement process: Precision, accuracy, and validity. Air Sampling Instruments for Evaluation of Atmospheric Contaminants, ninth edition, 201–216. Cincinnati, OH: American Conference of Governmental Industrial Hygienists.
  • Zhang, X.Y., Y.Q. Wang, T. Niu, X.C. Zhang, S.L. Gong, Y.M. Zhang, and J.Y. Sun. 2012. Atmospheric aerosol compositions in China: Spatial/temporal variability, chemical signature, regional haze distribution and comparisons with global aerosols. Atmos. Chem. Phys. 12:779–799. doi:10.5194/acp-12-779-2012
  • Zhang, Y.X., R.J. Sheesley, M.S. Bae, and J.J. Schauer. 2009. Sensitivity of a molecular marker based positive matrix factorization model to the number of receptor observations. Atmos. Environ. 43:4951–4958. doi:10.1016/j.atmosenv.2009.07.009
  • Zheng, M., G.R. Cass, L. Ke, F. Wang, J.J. Schauer, E.S. Edgerton, and A.G. Russell. 2007. Source apportionment of daily fine particulate matter at Jefferson street, Atlanta, GA, during summer and winter. J. Air Waste Manage. Assoc. 57:228–242. doi:10.1080/10473289.2007.10465322
  • Zheng, M., G.R. Cass, J.J. Schauer, and E.S. Edgerton. 2002. Source apportionment of PM2.5 in the southeastern United States using solvent-extractable organic compounds as tracers. Environ. Sci. Technol. 36:2361–2371. doi:10.1021/es011275x
  • Zheng, M., L. Ke, E.S. Edgerton, J.J. Schauer, M.Y. Dong, and A.G. Russell. 2006. Spatial distribution of carbonaceous aerosol in the southeastern United States using molecular markers and carbon isotope data. J.Geophys Res. Atmos. 111(D10):D10S06. doi:10.1029/2005JD006777

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.