1,115
Views
9
CrossRef citations to date
0
Altmetric
Technical Papers

Enhancement of nitric oxide decomposition efficiency achieved with lanthanum-based perovskite-type catalyst

, , , &
Pages 619-630 | Received 15 Oct 2015, Accepted 16 Feb 2016, Published online: 02 Mar 2016

References

  • Belessi, V.C., C.N. Costa, T.V. Bakas, T. Anastasiadou, P.J. Pomonis, and A.M. Efstathiou. 2000. Catalytic behavior of La–Sr–Ce–Fe–O mixed oxidic/perovskitic systems for the NO+CO and NO+CH4+O2 (lean-NOx) reactions. Catal. Today 59:347–363. doi:10.1016/S0920-5861(00)00300-X
  • Belessi, V.C., Ladavos, A.K., and Pomonis, P.J. 2001. Methane combustion on La–Sr–Ce–Fe–O mixed oxides: Bifunctional synergistic action of SrFeO3−x and CeOx phases. Appl. Catal. B Environ. 31:183–194. doi:10.1016/S0926-3373(00)00279-4
  • Bowker, M. 2008. Automotive catalysis studied by surface science. Chem. Soc. Rev. 37:2204–2211. doi:10.1039/b719206c
  • Ferri, D., and Forni, L. 1998. Methane combustion on some perovskite-like mixed oxides. Appl. Catal. B Environ. 16:119–126. doi:10.1016/S0926-3373(97)00065-9
  • Gao, L., Chua, H.T., and Kawi, S. 2008. The direct decomposition of NO over the La2CuO4 nanofiber catalyst. J. Solid State Chem. 181:2804–2807. doi:10.1016/j.jssc.2008.06.051
  • Hong, W.J., Lwamoto, S., and Lnoue, M. 2011. Direct NO decomposition over a Ce–Mn mixed oxide modified with alkali and alkaline earth species and CO2-TPD behavior of the catalysts. Catal. Today 164:489–494. doi:10.1016/j.cattod.2010.10.063
  • Iwamoto, M. 1996. Heterogeneous catalysis for removal of NO in excess oxygen. Progress in 1994. Catal. Today 29:29–35. doi:10.1016/0920-5861(95)00256-1
  • Iwamoto, M., and Hamada, H. 1991. Removal of nitrogen monoxide from exhaust gases through novel catalytic processes. Catal. Today 10:57–71. doi:10.1016/0920-5861(91)80074-J
  • Ishihara, T., Ando, M., Sada, K., Takiishi, K., Yamada, K., Nishiguchi, H., and Takita, Y. 2003. Direct decomposition of NO into N2 and O2 over La(Ba)Mn(In)O3 perovskite oxide. J. Catal. 220:104–114. doi:10.1246/cl.2003.1176
  • Iwakuni, H., Shinmyou, Y., Yano, H., Goto, K., Matsumoto, H., and Ishihara, T. 2008. Effects of added CO2 and H2 on the direct decomposition of NO over BaMnO3-based perovskite oxide. Bull. Chem. Soc. Jpn. 81:1175–1882. doi:10.1246/bcsj.81.1175
  • Iwakuni, H., Shinmyo, Y., Yano, H., Matsumoto, H., and Ishihara, T. 2007. Direct decomposition of NO into N2 and O2 on BaMnO3-based perovskite oxides. Appl. Catal. B Environ. 74:299–306. doi:10.1016/j.apcatb.2007.02.020
  • Ivanov, D.V., Pinaeva, L.G., Isupova, L.A., Nadeev, A.N., Prosvirin, I.P., and Dovlitova, L.S. 2011. Insights into the reactivity of La1−xSrxMnO3 (x = 0–0.7) in high temperature N2O decomposition. Catal. Lett. 141:322–331. doi:10.1007/s10562-010-0503-0
  • Imanaka, N., and Masui, T. 2012. Advances in direct NOx decomposition catalysts. Appl. Catal. A Gen. 431– 432:1–8. doi:10.1016/j.apcata.2012.02.047
  • Khan, H.R., and Frey, H. 1993. R.f. plasma spray deposition of LaMOx (M=Co, Mn, Ni) films and the investigations of structure, morphology and the catalytic oxidation of CO and C3H8. J. Alloy Compd. 190:209–217. doi:10.1016/0925-8388(93)90401-8
  • Kirchnerova, J., and Klvana, D. 1994. Preparation and characterization of high surface perovskite electrocatalysts. Int. J. Hydrogen Energy 19:501–506. doi:10.1016/0360-3199(94)90004-3
  • Klvana, D., Vaillancourt, J., Kirchnerova, J., and Chaouki, J. 1994. Combustion of methane over La0.66Sr0.34Ni0.3Co0.7O3 and La0.4Sr0.6Fe0.4Co0.6O3 prepared by freeze-drying. Appl. Catal. A Gen. 109:181–193. doi:10.1016/0926-860X(94)80117-7
  • Kirchnerova, J., Alifanti, M., and Delmon, B. 2002. Evidence of phase cooperation in the LaCoO3–CeO2–Co3O4 catalytic system in relation to activity in methane combustion. Appl. Catal. A Gen. 231:65–80. doi:10.1016/S0926-860X(01)00903-6
  • Kumar, S., Vinu, A., Subrt, J., Bakardjieva, S., Rayalu, S., Teraoka, Y., and Labhsetwar, N. 2012. Catalytic N2O decomposition on Pr0.8Ba0.2MnO3 type perovskite catalyst for industrial emission control. Catal. Today 198:125–132. doi:10.1016/j.cattod.2012.06.015
  • Lisi, L., Pirone, R., Russo, G., and Stanzione, V. 2009. Cu-ZSM5 based monolith reactors for NO decomposition. Chem. Eng. J. 154:341–347. doi:10.1016/j.cej.2009.04.025
  • Nitadori, T., and Misono, M. 1985. Catalytic properties of La1−xA′xFeO3 (A′ = Sr, Ce) and La1−xCexCoO3. J. Catal. 93:459–466. doi:10.1016/0021-9517(85)90193-9
  • National Association of Securities Dealers Automated Quotations System (NASDAQ), USA. 2014. http://www.nasdaq.com/ (accessed June 15, 2014).
  • Pechini, M.P. 1967, 11 July. Method of preparing lead and alkaline earth titanates and niobates and coating method using the same to form a capacitor. US Patent 3,330,697.
  • Pérez-Ramírez, J., Kapteijn, F., Schöffel, K., and Moulijn, J.A. 2003. Formation and control of N2O in nitric acid production: Where do we stand today?. Appl. Catal. B Environ. 44:117–151. doi:10.1016/S0926-3373(03)00026-2
  • Pietraszek, A., Da Costa, P., Marques, R., Kornelak, P., Hansen, T.W., Camra, J., and Najbar, M. 2007. The effect of the Rh–Al, Pt–Al and Pt–Rh–Al surface alloys on NO conversion to N2 on alumina supported Rh, Pt and Pt–Rh catalysts. Catal. Today 119:187–193. doi:10.1016/j.cattod.2006.08.009
  • Ran, R., Wu, X., Quan, C., and Weng, D. 2005. Effect of strontium and cerium doping on the structural and catalytic properties of PrMnO3 oxides. Solid State Ionics 176:965–971. doi:10.1016/j.ssi.2004.11.018
  • Russo, N., Mescia, D., Fino, D., Saracco, G., and Specchia, V. 2007. N2O decomposition over perovskite catalysts. Ind. Eng. Chem. Res. 46:4226–4231. doi:10.1021/ie0612008
  • Sugisawa, T., Shiraishi, J. Machihara, D., Irokawa K., Miki, H., Kodama, C., Kuriyama, T., Kubo, T., and Nozoye, H. 2001. Adsorption and decomposition of NO on Pt (112). Appl. Surface. Sci. 169– 170:292–295. doi:10.1016/S0169-4332(00)00675-9
  • Silveira, E.B., Perez, C.A.C., Baldanza, M.A.S., and Schmal, M. 2008. Performance of the CeZrO2 mixed oxide in the NOx decomposition. Catal. Today 133– 135:555–559. doi:10.1016/j.cattod.2007.12.057
  • Tabata, K., and Misono, M. 1990. Elimination of pollutant gases—oxidation of CO, reduction and decomposition of NO. Catal. Today 8:249–261. doi:10.1016/0920-5861(90)87021-T
  • Teraoka, Y., Harada, T., and Kagawa S. 1998. Reaction mechanism of direct decomposition of nitric oxide over Co- and Mn-based perovskite-type oxides. J. Chem. Soc. 94:1887–1891. doi:10.1039/a800872h
  • Tofan, C., Klvana, D., and Kirchnerova, J. 2002. Decomposition of nitric oxide over perovskite oxide catalysts: Effect of CO2, H2O and CH4. Appl. Catal. B Environ. 36:311–323. doi:10.1016/S0926-3373(01)00312-5
  • Voorhoeve, R.J.H., J.P. Remeika, P.E. Freeland, and B.T. Matthias. 1972. Rare-earth oxides of manganese and cobalt rival platinum for the treatment of carbon monoxide in auto exhaust. Mater. Res. Bull. 177:353–354. doi:10.1126/science.177.4046.353
  • Van den Brink, R.W., S. Booneveld, J.R. Pels, D.F. Bakker, and M.J.F.M. Verhaak. 2001. Catalytic removal of N2O in model flue gases of a nitric acid plant using a promoted Fe zeolite. Appl. Catal. B Environ. 32:73–81. doi:10.1016/S0926-3373(00)00294-0
  • Wang, H., Liu, J., Zhao, Z., Wei, Y., and Xu, C. 2012. Comparative study of nanometric Co-, Mn- and Fe-based perovskite-type complex oxide catalysts for the simultaneous elimination of soot and NOx from diesel engine exhaust. Catal. Today 184:288–300. doi:10.1016/j.cattod.2012.01.005
  • Wood, S.C. 1994. Select the right NOx control technology. Chem. Eng. Prog. 90:32–38.
  • Wu, Z., Xu, L., Zhang, W., Ma, Y., Yuan, Q., Jin, Y., Yang, J., and Huang, W. 2013. Structure sensitivity of low-temperature NO decomposition on Au surfaces. J. Catal. 304:112–122. doi:10.1016/j.jcat.2013.04.013
  • Zhang, R., Alamdari, H., and Kaliaguine, S. 2006. Fe-based perovskites substituted by copper and palladium for NO + CO reaction. J. Catal. 242:241–253. doi:10.1016/j.jcat.2006.05.033
  • Zhao, B., Wang, R., Yao, W., Yang, X., and Zhou Bin B. 2009. The effect of copper substitution on La2Ni1−xCuxO4 catalysts activity for simultaneous removal of NOx and diesel soot. Catal. Lett. 132:41–49. doi:10.1007/s10562-009-0041-9
  • Zhao, Z., Yang, X., and Wu, Y. 1996. Comparative study of nickel-based perovskite-like mixed oxide catalysts for direct decomposition of NO. Appl. Catal. B Environ. 8:281–297. doi:10.1016/0926-3373(95)00067-4
  • Zhu, J., Xiao, D., Li, J., and Yang, X. 2009. Perovskite-like mixed oxides (LaSrMn1−xNixO4+δ, 0 ≤ x ≤ 1) as catalyst for catalytic NO decomposition: TPD and TPR studies. Catal. Lett. 129:240–246. doi:10.1007/s10562-008-9807-8
  • Zhu, J., Xiao, D., Li, J., Yang, X., and Wei, K. 2006. Effect of Ce and MgO on NO decomposition over La1-x-Cex-Sr-Ni-O/MgO. Catal. Commun. 7:432–435. doi:10.1016/j.catcom.2005.12.026
  • Zhu, J., Xiao, D., Li, J., Yang, X., and Wu, Y. 2005. Effect of Ce on NO direct decomposition in the absence/presence of O2 over La1−xCexSrNiO4 (0 ≤ x ≤ 0.3). J. Mol. Appl. Catal. A Chem. 234:99–105. doi:10.1016/j.molcata.2005.02.015
  • Zhu, J., Zhao, Z., Xiao, D., Li, J., Yang, X., and Wu, Y. 2005. CO Oxidation, NO Decomposition, and NO + CO reduction over perovskite-like oxides La2CuO4 and La2-xSrxCuO4: An MS-TPD study. Ind. Eng. Chem. Res. 44: 4227–4233. doi:10.1021/ie050317d
  • Zhu, J., Zhao, Z., Xiao, D., Li, J. Yang, X., and Wu, Y. 2006. Effect of valence of copper in La2-xThxCuO4 on NO decomposition reaction. Catal. Commun. 7: 29–32. doi:10.1016/j.catcom.2005.08.008

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.