3,519
Views
16
CrossRef citations to date
0
Altmetric
Technical Papers

Simulation of gaseous pollutant dispersion around an isolated building using the k–ω SST (shear stress transport) turbulence model

&
Pages 517-536 | Received 03 Jun 2016, Accepted 01 Sep 2016, Published online: 25 Mar 2017

References

  • Ai, Z.T., and C.M. Mak. 2013. CFD simulation of flow and dispersion around an isolated building: Effect of inhomogeneous ABL and near-wall treatment. Atmos. Environ. 77:568–578. doi: 10.1016/j.atmosenv.2013.05.034
  • ANSYS Inc. 2013. ANSYS Fluent Theory Guide. Canonsburg, PA: ANSYS Inc.
  • Aubrun, S., and B. Leitl. 2004. Unsteady characteristics of the dispersion process in the vicinity of a pig barn. Wind tunnel experiments and comparison with field data. Atmos. Environ. 38:81–93. doi: 10.1016/j.atmosenv.2003.09.039
  • Blocken, B., T. Stathopoulos, P. Saathoff, and X. Wang. 2008. Numerical evaluation of pollutant dispersion in the built environment: Comparisons between models and experiments. J. Wind Eng. Ind. Aerodyn. 96:1817–1831. doi: 10.1016/j.jweia.2008.02.049
  • Bonifacio, H.F., R.G. Maghirang, and L.A. Glasgow. 2014. Numerical simulation of transport of particles emitted from ground-level area source using AERMOD and CFD. Eng. Appl. Comput. Fluid Mech. 8:488–502. doi: 10.1080/19942060.2014.11083302
  • Bonifacio, H.F., R.G. Maghirang, E.B. Razote, S.L. Trabue, and J.H. Prueger. 2013. Comparison of AERMOD and WindTrax dispersion models in determining PM10 emission rates from a beef cattle feedlot. J. Air Waste Manage. Assoc. 63:545–556. doi: 10.1080/10962247.2013.768311
  • Campobasso, M.S., A. Piskopakis, J. Drofelnik, and A. Jackson. 2013. Turbulent Navier–Stokes analysis of an oscillating wing in a power-extraction regime using the shear stress transport turbulence model. Comput. Fluids 88:136–155. doi: 10.1016/j.compfluid.2013.08.016
  • CEDVAL. 2006. Compilation of Experimental Data for Validation of Microscale Dispersion Models. Hamburg, Germany: University of Hamburg. http://www.mi.zmaw.de/index.php?id=628 (accessed April 21, 2016).
  • Chavez, M. 2014. A comprehensive numerical study of the effects of adjacent buildings on near-field pollutant dispersion, building, civil and environmental engineering (Ph.D. thesis). Montreal, Quebec, Canada: Concordia University.
  • Chavez, M., B. Hajra, T. Stathopoulos, and A. Bahloul. 2011. Near-field pollutant dispersion in the built environment by CFD and wind tunnel simulations. J.Wind Eng. Ind. Aerodyn. 99:330–339. doi: 10.1016/j.jweia.2011.01.003
  • Cheng, W.C., and C.-H. Liu. 2011. Large-eddy simulation of flow and pollutant transports in and above two-dimensional idealized street canyons. Bound. Layer Meteorol. 139:411–437. doi: 10.1007/s10546-010-9584-y
  • Cimorelli, A.J., S.G. Perry, A. Venkatram, J.C. Weil, R.J. Paine, R.B. Wilson, R.F. Lee, W.D. Peters, R.W. Brode, and J.O. Paumier. 2004. AERMOD: Description of Model Formulation, 91. Research Triangle Park, NC: U.S. Environmental Protection Agency.
  • Di Sabatino, S., R. Buccolieri, B. Pulvirenti, and R. Britter. 2007. Simulations of pollutant dispersion within idealised urban-type geometries with CFD and integral models. Atmos. Environ. 41:8316–8329. doi: 10.1016/j.atmosenv.2007.06.052
  • Flores, F., R. Garreaud, and R.C. Muñoz. 2013. CFD simulations of turbulent buoyant atmospheric flows over complex geometry: Solver development in OpenFOAM. Comput. Fluids 82:1–13. doi: 10.1016/j.compfluid.2013.04.029
  • Franke, J. 2006. Recommendations of the COST action C14 on the use of CFD in predicting pedestrian wind environment. Presented at the Fourth International Symposium on Computational Wind Engineering (CWE 2006), Yokohama, Japan, July 16–19, 2006.
  • Franke, J., M. Sturm, and C. Kalmbach. 2012. Validation of OpenFOAM 1.6.x with the German VDI guideline for obstacle resolving micro-scale models. J. Wind Eng. Ind. Aerodyn. 104–106:350–359. doi: 10.1016/j.jweia.2012.02.021
  • Gorlé, C., P. Rambaud, and J. van Beeck. 2010a. Large eddy simulation of flow and dispersion in the wake of a rectangular building. Presented at the Fifth International Symposium on Computational Wind Engineering (CWE2010), Chapel Hill, North Carolina, USA, May 23–27, 2010.
  • Gorlé, C., J. van Beeck, and P. Rambaud. 2010b. Dispersion in the wake of a rectangular building: Validation of two Reynolds-averaged Navier–Stokes modelling approaches. Bound. Layer Meteorol. 137:115–133. doi: 10.1007/s10546-010-9521-0
  • Gorlé, C., J. van Beeck, P. Rambaud, and G. van Tendeloo. 2009. CFD modelling of small particle dispersion: The influence of the turbulence kinetic energy in the atmospheric boundary layer. Atmos. Environ. 43:673–681. doi: 10.1016/j.atmosenv.2008.09.060
  • Hargreaves, D.M., and N.G. Wright. 2007. On the use of the k–ε model in commercial CFD software to model the neutral atmospheric boundary layer. J. Wind Eng. Ind. Aerodyn. 95:355–369. doi: 10.1016/j.jweia.2006.08.002
  • Huang, Y.D., W.R. He, and C.N. Kim. 2015. Impacts of shape and height of upstream roof on airflow and pollutant dispersion inside an urban street canyon. Environ. Sci. Pollut. Res. 22:2117–2137. doi: 10.1007/s11356-014-3422-6
  • Huang, Y.D., C. Long, J.T. Deng, and C.N. Kim. 2014. Impacts of upstream building width and upwind building arrangements on airflow and pollutant dispersion in a street canyon. Environ. Forensics 15:25–36. doi: 10.1080/15275922.2013.872714
  • Jasak, H., H.G. Weller, and A.D. Gosman. 1999. High resolution NVD differencing scheme for arbitrarily unstructured meshes. Int. J. Numer. Methods Fluids 31:431–449. doi: 10.1002/(SICI)1097-0363(19990930)31:2<431::AID-FLD884>3.0.CO;2-T
  • Kakosimos, K.E., and M.J. Assael. 2013. Application of Detached Eddy Simulation to neighbourhood scale gases atmospheric dispersion modelling. J. Hazard. Mater. 261:653–668. doi: 10.1016/j.jhazmat.2013.08.018
  • Kalitzin, G., G. Medic, G. Iaccarino, and P. Durbin. 2005. Near-wall behavior of RANS turbulence models and implications for wall functions. J. Comput. Phys. 204:265–291. doi: 10.1016/j.jcp.2004.10.018
  • King, M.F., C.J. Noakes, and J.F. Barlow. 2015. Urban pollution and indoor air quality, an undisputed relationship: CFD modelling of sing-sided pollutant ingress. Presented at Healthy Buildings 2015—Europe, Eindhoven, The Netherlands, May 18–20, 2015.
  • Labovský, J., and Ľ. Jelemenský. 2013. CFD-based atmospheric dispersion modeling in real urban environments. Chem. Pap. 67:1495–1503. doi: 10.2478/s11696-013-0388-7
  • Lakes Environmental Research Inc. 2015. AERMOD View—Air Dispersion Model. Waterloo, Canada. https://www.weblakes.com/products/aermod/index.html. (accessed November 1, 2016)
  • Lakes Environmental Research Inc. 2016. Air Dispersion Modeling. Waterloo, Canada. http://www.weblakes.com/products/air_dispersion.html ( accessed April 20, 2016).
  • Lateb, M., R.N. Meroney, M. Yataghene, H. Fellouah, F. Saleh, and M.C. Boufadel. 2016. On the use of numerical modelling for near-field pollutant dispersion in urban environments—A review. Environ. Pollut. A 208:271–283. doi: 10.1016/j.envpol.2015.07.039
  • Liu, Q., F. Gómez, J.M. Pérez, and V. Theofilis. 2016. Instability and sensitivity analysis of flows using OpenFOAM®. Chin. J. Aeronaut. doi: 10.1016/j.cja.2016.02.012
  • Maître, T., E. Amet, and C. Pellone. 2013. Modeling of the flow in a Darrieus water turbine: Wall grid refinement analysis and comparison with experiments. Renew. Energy 51:497–512. doi: 10.1016/j.renene.2012.09.030
  • Mavroidis, I., S. Andronopoulos, J.G. Bartzis, and R.F. Griffiths. 2007. Atmospheric dispersion in the presence of a three-dimensional cubical obstacle: Modelling of mean concentration and concentration fluctuations. Atmos. Environ. 41:2740–2756. doi: 10.1016/j.atmosenv.2006.11.051
  • Mavroidis, I., R.F. Griffiths, and D.J. Hall. 2003. Field and wind tunnel investigations of plume dispersion around single surface obstacles. Atmos. Environ. 37:2903–2918. doi: 10.1016/S1352-2310(03)00300-5
  • Melo, A.M. V.d., J.M. Santos, I. Mavroidis, and N.C. Reis Jr. 2012. Modelling of odour dispersion around a pig farm building complex using AERMOD and CALPUFF. Comparison with wind tunnel results. Build. Environ. 56:8–20. doi: 10.1016/j.buildenv.2012.02.017
  • Menter, F.R. 1993. Zonal two equation kappa-omega turbulence models for aerodynamic flows. Presented at the 24th AIAA Fluid Dynamics Conference, Orlando, Florida, USA, July 6–9, 1993.
  • Menter, F.R. 1994. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32:1598–1605. doi: 10.2514/3.12149
  • Menter, F.R. 2009. Review of the shear-stress transport turbulence model experience from an industrial perspective. Int. J. Comput. Fluid Dyn. 23:305–316. doi: 10.1080/10618560902773387
  • Menter, F.R., J.C. Ferreira, T. Esch, and B. Konno. 2003a. The SST turbulence model with improved wall treatment for heat transfer predictions in gas turbines. Presented at International Gas Turbine Congress 2003, Tokyo, Japan, November 2–7, 2003.
  • Menter, F.R., M. Kuntz, and R. Langtry. 2003b. Ten years of industrial experience with the SST turbulence model. Presented at the 4th International Symposium on Turbulence, Heat and Mass Transfer, Antalya, Turkey, October 12–17, 2003.
  • Mochida, A., Y. Tominaga, S. Murakami, R. Yoshie, T. Ishihara, and R. Ooka. 2002. Comparison of various k-ε models and DSM applied to flow around a high-rise building—Report on AIJ cooperative project for CFD prediction of wind environment. Wind Struct. 5:227–244. doi: 10.12989/was.2002.5.2_4.227
  • Moukalled, F., L. Mangani, and M. Darwish. 2015. The Finite Volume Method in Computational Fluid Dynamics: An Advanced Introduction with OpenFOAM® and Matlab. Cham, Switzerland: Springer International Publishing.
  • Mumovic, D., J.M. Crowther, and Z. Stevanovic. 2006. Integrated air quality modelling for a designated air quality management area in Glasgow. Build. Environ. 41:1703–1712. doi: 10.1016/j.buildenv.2005.07.006
  • Nakiboğlu, G., C. Gorlé, I. Horváth, J. van Beeck, and B. Blocken. 2009. Stack gas dispersion measurements with large-scale PIV, aspiration probes and light scattering techniques and comparison with CFD. Atmos. Environ. 43:3396–3406. doi: 10.1016/j.atmosenv.2009.03.047
  • OpenCFD Ltd. 2015. OpenFOAM C++ Documentation: kOmegaSST< BasicTurbulenceModel > Class Template Reference. http://cpp.openfoam.org/v4/a01266.html (accessed April 21, 2016).
  • Perén, J.I., T. van Hooff, B.C.C. Leite, and B. Blocken. 2015. CFD analysis of cross- ventilation of a generic isolated building with asymmetric opening positions: Impact of roof angle and opening location. Build. Environ. 85:263–276. doi: 10.1016/j.buildenv.2014.12.007
  • Petersen, R.L., and S. Guerra. 2016. Critical review of the building downwash algorithms in AERMOD. Presented at Guideline on Air Quality Models: The New Path, Chapel Hill, NC, April 12–14, 2016.
  • Pontiggia, M., G. Landucci, V. Busini, M. Derudi, M. Alba, M. Scaioni, S. Bonvicini, V. Cozzani, and R. Rota. 2011. CFD model simulation of LPG dispersion in urban areas. Atmos. Environ. 45:3913–3923. doi: 10.1016/j.atmosenv.2011.04.071
  • Rakai A., and G. Kristóf. 2010. CFD simulation of flow over a mock urban setting. Presented at 5th OpenFOAM Workshop, Chalmers, Gothenburg, Sweden, June 21–24, 2010.
  • Ramponi, R., and B. Blocken. 2012. CFD simulation of cross-ventilation for a generic isolated building: Impact of computational parameters. Build. Environ. 53:34–48. doi: 10.1016/j.buildenv.2012.01.004
  • Richards, P.J., and R.P. Hoxey. 1993. Appropriate boundary conditions for computational wind engineering models using the k-ϵ turbulence model. J. Wind Eng. Ind. Aerodyn. 46:145–153. doi: 10.1016/0167-6105(93)90124-7
  • Rocha, P.A.C., H.H.B. Rocha, F.O.M. Carneiro, M.E. Vieira da Silva, and C.F. de Andrade. 2016. A case study on the calibration of the k–ω SST (shear stress transport) turbulence model for small scale wind turbines designed with cambered and symmetrical airfoils. Energy 97:144–150. doi: 10.1016/j.energy.2015.12.081
  • Rocha, P.A.C., H. H.B. Rocha, F. O.M. Carneiro, M.E. Vieira da Silva, and A.V. Bueno. 2014. k–ω SST (shear stress transport) turbulence model calibration: A case study on a small scale horizontal axis wind turbine. Energy 65:412–418. doi: 10.1016/j.energy.2013.11.050
  • Schatzmann, M., and B. Leitl. 2002. Validation and application of obstacle-resolving urban dispersion models. Atmos. Environ. 36:4811–4821. doi: 10.1016/S1352-2310(02)00424-7
  • Schatzmann, M., H. Olesen, and J. Frank (eds.). 2010. COST 732 Model Evaluation Case Studies: Approach and Results. Hamburg, Germany: University of Hamburg.
  • Schulman, L.L., D.G. Strimaitis, and J.S. Scire. 2000. Development and evaluation of the PRIME plume rise and building downwash model. J. Air Waste Manage. Assoc. 50:378–390. doi: 10.1080/10473289.2000.10464017
  • Shao, J., J. Liu, and J. Zhao. 2012. Evaluation of various non-linear k–ɛ models for predicting wind flow around an isolated high-rise building within the surface boundary layer. Build. Environ. 57:145–155. doi: 10.1016/j.buildenv.2012.04.018
  • The Association of German Engineers (VDI). 2000. Environmental Meteorology—Physical Modeling of Flow and Dispersion Processes in the Atmospheric Boundary Layer—Application of Wind Tunnels. VDI Guideline 3783, Part 12. Berlin, Germany: Beuth Verlag.
  • The Association of German Engineers (VDI). 2005. Environmental Meteorology—Prognostic Microscale Windfield Models—Evaluation for Flow around Buildings and Obstacles. VDI Guideline 3783, Part 9. Berlin, Germany: Beuth Verlag.
  • Tominaga, Y., A. Mochida, S. Murakami, and S. Sawaki. 2008a. Comparison of various revised k–ε models and LES applied to flow around a high-rise building model with 1:1:2 shape placed within the surface boundary layer. J. Wind Eng. Ind. Aerodyn. 96:389–411. doi: 10.1016/j.jweia.2008.01.004
  • Tominaga, Y., A. Mochida, R. Yoshie, H. Kataoka, T. Nozu, M. Yoshikawa, and T. Shirasawa. 2008b. AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings. J. Wind Eng. Ind. Aerodyn. 96:1749–1761. doi: 10.1016/j.jweia.2008.02.058
  • Tominaga, Y., and T. Stathopoulos. 2007. Turbulent Schmidt numbers for CFD analysis with various types of flowfield. Atmos. Environ. 41:8091–8099. doi: 10.1016/j.atmosenv.2007.06.054
  • Tominaga, Y., and T. Stathopoulos. 2009. Numerical simulation of dispersion around an isolated cubic building: Comparison of various types of k–ɛ models. Atmos. Environ. 43:3200–3210. doi: 10.1016/j.atmosenv.2009.03.038
  • Tominaga, Y., and T. Stathopoulos. 2010. Numerical simulation of dispersion around an isolated cubic building: Model evaluation of RANS and LES. Build. Environ. 45:2231–2239. doi: 10.1016/j.buildenv.2010.04.004
  • Tominaga, Y., and T. Stathopoulos. 2013. CFD simulation of near-field pollutant dispersion in the urban environment: A review of current modeling techniques. Atmos. Environ. 79:716–730. doi: 10.1016/j.atmosenv.2013.07.028
  • Wilcox, D.C. 1994. Simulation of transition with a two-equation turbulence model. AIAA J. 32:247–255. doi: 10.2514/3.59994
  • Wilcox, D.C. 2004. Turbulence Modeling for CFD. La Cañada Flintridge, CA: DCW Industries.
  • Zhang, Y., K.C.S. Kwok, X.P. Liu, and J.L. Niu. 2015. Characteristics of air pollutant dispersion around a high-rise building. Environ. Pollut. 204:280–288. doi: 10.1016/j.envpol.2015.05.004

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.