2,363
Views
13
CrossRef citations to date
0
Altmetric
Technical Papers

Emission factors of fine particulate matter, organic and elemental carbon, carbon monoxide, and carbon dioxide for four solid fuels commonly used in residential heating by the U.S. Navajo Nation

, & ORCID Icon
Pages 1020-1035 | Received 17 Jan 2017, Accepted 12 May 2017, Published online: 24 Jul 2017

References

  • Affolter, R.H. 2000. Quality characterization of cretaceous coal from the Colorado Plateau Coal Assessent Area. In M.A. Kirschbaum, L.N.R. Roberts, and L.R.H. Biewick (Eds.), Geologic Assessment of Coal in the Colorado Plateau: Arizona, Colorado, New Mexico, and Utah, Vol. 1, G1–G136. Denver, CO: U.S. Geological Survey. https://pubs.usgs.gov/pp/p1625b/ (accessed March 24, 2016).
  • Alves, C., C. Gonçalves, A.P. Fernandes, L. Tarelho, and C. Pio. 2011. Fireplace and woodstove fine particle emissions from combustion of western Mediterranean wood types. Atmos. Res. 101:692–700. doi: 10.1016/j.atmosres.2011.04.015.
  • American Society for Testing and Materials. 2010. Standard Test Method for Determining Particulate Matter Emissions from Wood Heaters. E2780-10 ASTM International: 1–13]. West Conshohocken, PA: American Society for Testing and Materials. doi: 10.1520/E2780-10.2.
  • Andreae, M.O., and P. Merlet. 2001. Emission of trace gases and aerosols from biomass burning. Glob. Biogeochem. Cycles 15:955–66. doi: 10.1029/2000GB001382.
  • Arizona Bureau of Mines. 1977. Chemical Analyses of Coal Samples from the Black Mesa Field, Arizona. http://repository.azgs.az.gov/uri_gin/azgs/dlio/1067 (accessed March 24, 2016).
  • Arizona Rural Policy Institute. 2010. Demographic Analysis of the Navajo Nation Using 2010 Census and 2010 American Community Survey Estimates. http://gotr.azgovernor.gov/sites/default/files/navajo_nation_0.pdf (accessed September 3, 2015).
  • Bäfver, L.S., B. Leckner, C. Tullin, and M. Berntsen. 2011. Particle emissions from pellets stoves and modern and old-type wood stoves. Biomass Bioenergy 35:3648–55. doi: 10.1016/j.biombioe.2011.05.027.
  • Baker, D.E. 1993. Wood Stove Maintenance and Operation. University of Missouri Extension Web site. http://extension.missouri.edu/p/G1731 (accessed April 10, 2017).
  • Ballard-Tremeer, G., and H.H. Jawurek. 1999. The “hood method” of measuring emissions of rural cooking devices. Biomass Bioenergy 16:341–5. doi: 10.1016/S0961-9534(99)00012-4.
  • Bilbao, R., J.F. Mastral, M.E. Aldea, J. Ceamanos, M. Betrán, and J.A. Lana. 2001. Experimental and theoretical study of the ignition and smoldering of wood including convective effects. Combust. Flame 126:1363–72. doi: 10.1016/S0010-2180(01)00251-6.
  • Birch, M.E., and R.A. Cary. 1996. Elemental carbon-based method for monitoring occupational exposures to particulate diesel exhaust. Aerosol Sci. Technol. 25:221–41. doi: 10.1080/02786829608965393.
  • Bond, T.C., S.J. Doherty, D.W. Fahey, P.M. Forster, T. Berntsen, B.J. DeAngelo, M.G. Flanner, S. Ghan, B. Kärcher, D. Koch, S. Kinne, Y. Kondo, P.K. Quinn, M.C. Sarofim, M.G. Schultz, M. Schulz, C. Venkataraman, H. Zhang, S. Zhang, N. Bellouin, S. K. Guttikunda, P.K. Hopke, M.Z. Jacobson, J.W. Kaiser, Z. Klimont, U. Lohmann, J. P. Schwarz, D. Shindell, T. Storelvmo, S.G. Warren, and C.S. Zender. 2013. Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res. Atmos. 118:5380–552. doi: 10.1002/jgrd.50171.
  • Bond, T.C., D.G. Streets, K.F. Yarber, S.M. Nelson, J.H. Woo, and Z. Klimont. 2004. A technology-based global inventory of black and organic carbon emissions from combustion. J. Geophys. Res. D Atmos. 109:D14203. doi: 10.1029/2003JD003697.
  • Brown, L.F., D.D. Hickmott, R.P. Currier, S.C. Semken, T. Lameman, S. Martin, and S. Yazzie. 1996. Reducing Adverse Health Effects and Improving Performance of Stoves on the Navajo Reservation—A Plan for Action. Los Alamos, NM: Los Alamos National Laboratory.
  • Bunnell, J.E., L.V Garcia, J.M. Furst, H. Lerch, R.A. Olea, S.E. Suitt, and A. Kolker. 2010. Navajo coal combustion and respiratory health near Shiprock, New Mexico. J. Environ. Public Health 2010:260525. doi: 10.1155/2010/260525.
  • Butcher, S.S., and M.J. Ellenbecker. 1982. Particulate emission factors for small wood and coal stoves. J. Air Pollut. Control Assoc. 32:380–4. doi: 10.1080/00022470.1982.10465413.
  • Butcher, S.S., U. Rao, K.R. Smith, J.F. Osborn, P. Azuma, and H. Fields. 1984. Emission factors and efficiencies for small-scale open biomass combustion: Towards standard measurement techniques. Abstr. Pap. Am. Chem. Soc. 188:122–8.
  • Butcher, S.S., and E.M. Sorenson. 1979. A study of wood stove particulate emissions. J. Air Pollut. Control Assoc. 29:724–8. doi: 10.1080/00022470.1979.10470854.
  • Cartledge, B.T., and B.J. Majestic. 2015. Metal concentrations and soluble iron speciation in fine particulate matter from light rail activity in the Denver-metropolitan area. Atmos. Pollut. Res. 6:495–502. doi: 10.5094/APR.2015.055.
  • Champion, W.M., P.H. Charley, B. Klein, K. Stewart, P.A. Solomon, and L.D. Montoya. 2017. Perception, cultural, and technical assessment of heating alternatives to improve indoor air quality in the Navajo Nation. Sci. Total Environ. 580:297–306. doi: 10.1016/j.scitotenv.2016.11.053.
  • Chen, L.W.A., H. Moosmüller, W.P. Arnott, J.C. Chow, J.G. Watson, R.A. Susott, R.E. Babbitt, C.E. Wold, E.N. Lincoln, and M.H. Wei. 2007. Emissions from laboratory combustion of wildland fuels: Emission factors and source profiles. Environ. Sci. Technol. 41:4317–25. doi: 10.1021/es062364i.
  • Chen, W., K. Annamalai, R.J. Ansley, and M. Mirik. 2012. Updraft fixed bed gasification of mesquite and juniper wood samples. Energy 41:454–61. doi: 10.1016/j.energy.2012.02.052.
  • Chen, Y., G. Shen, W. Liu, W. Du, S. Su, Y. Duan, N. Lin, S. Zhuo, X. Wang, B. Xing, and S. Tao. 2016. Field measurement and estimate of gaseous and particle pollutant emissions from cooking and space heating processes in rural households, northern China. Atmos. Environ. 125:265–71. doi: 10.1016/j.atmosenv.2015.11.032.
  • Chen, Y., G. Sheng, X. Bi, Y. Feng, B. Mai, and J. Fu. 2005. Emission factors for carbonaceous particles and polycyclic aromatic hydrocarbons from residential coal combustion in China. Environ. Sci. Technol. 39:1861–7. doi: 10.1021/es0493650.
  • Curkeet, R., and R. Ferguson. 2010. EPA Wood Heater Test Method Variability Study: Analysis of Uncertainty, Repeatability and Reproducibility Based on the EPA Accredited Laboratory Proficiency Test Database, 1–43. http://www.hpba.org/government-affairs/nsps-members/Wood-Heater-Emission-Test-Method-Variability-Paper.pdf/at_download/file&usg=AFQjCNElr1GG5j (accessed April 4, 2016).
  • Dutton, S.J., J.J. Schauer, S. Vedal, and M.P. Hannigan. 2009. PM2.5 characterization for time series studies: Pointwise uncertainty estimation and bulk speciation methods applied in Denver. Atmos. Environ. 43:1136–46. doi: 10.1016/j.atmosenv.2008.10.003.PM.
  • Engle, R.F., and C.W.J. Granger. 1987. Co-integration and error correction: Representation, estimation, and testing. Econometrica 55:251–76. doi: 10.2307/1913236.
  • Fine, P.M., G.R. Cass, and B.R.T. Simoneit. 2004. Chemical characterization of fine particle emissions from the wood stove combustion of prevalent united states tree species. Environ. Eng. Sci. 21:705–21. doi: 10.1089/ees.2004.21.705.
  • Fitzpatrick, E.M., J.M. Jones, M. Pourkashanian, A.B. Ross, A. Williams, and K.D. Bartle. 2008. Mechanistic aspects of soot formation from the combustion of pine wood. Energy Fuels 22:3771–8.
  • Forouzanfar, M.H., L. Alexander, H.R. Anderson, V.F. Bachman, S. Biryukov, M. Brauer, R. Burnett, D. Casey, M.M. Coates, A. Cohen, et al., 2015. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks in 188 countries, 1990–2013: A systematic analysis for the global burden of disease study 2013. Lancet 386:2287–323. doi: 10.1016/S0140-6736(15)00128-2.
  • Frenklach, M. 2002. Reaction mechanism of soot formation in flames. Physical Chemistry Chemical Physics 4:2028–37. doi: 10.1039/b110045a.
  • Gaur, S., and T. B. Reed. 1998. Thermal Data for Natural and Synthetic Fuels. New York, NY: Marcel Dekker. http://drtlud.com/BEF/proximat.htm (accessed March 1, 2016).
  • Gonçalves, C., C. Alves, A. P. Fernandes, C. Monteiro, L. Tarelho, M. Evtyugina, and C. Pio. 2011. Organic compounds in PM2.5 emitted from fireplace and woodstove combustion of typical Portuguese wood species. Atmos. Environ. 45:4533–45. doi: 10.1016/j.atmosenv.2011.05.071.
  • Hickmott, D.D., L.F. Brown, R.P. Currier, S.C. Semken, T. Lameman, M. Suzette, and S. Yazzie. 1997. Environmentally Conscious Coal Combustion. Los Alamos, NM: Los Alamos National Laboratory. http://www.osti.gov/scitech/servlets/purl/516052 (accessed August 1, 2016).
  • Hosier, R.H., and J. Dowd. 1987. Household fuel choice in Zimbabwe. Resour. Energy 9:347–61. doi: 10.1016/0165-0572(87)90003-X.
  • Houck, J.E., L.Y. Pitzman, and P. Tiegs. 2008. Emission Factors for Aged Uncertified Residential Cordwood Heaters. Proceedings of the 17th International Emission Inventory Conference, Inventory Evaluation—Portal to Improved Air Quality. http://search.proquest.com/docview/19587803?accountid=171201 ( accessed June 2, 2016).
  • Intergovernmental Panel on Climate Change. 2006. Guidelines for National Greenhouse Gas Inventories. http://www.ipcc-nggip.iges.or.jp/public/2006gl/index.html (accessed July 24, 2016).
  • International Agency for Research on Cancer. 2010. Household Use of Solid Fuels and High-Temperature Frying. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, Vol. 95. Lyon, France: International Agency for Research on Cancer, World Health Organization. http://monographs.iarc.fr/ENG/Monographs/vol95/mono95.pdf (accessed November 10, 2015).
  • Jeong, C., G.J. Evans, T. Dann, M. Graham, D. Herod, E. Dabek-zlotorzynska, D. Mathieu, L. Ding, and D. Wang. 2008. Influence of biomass burning on wintertime fine particulate matter: Source contribution at a valley site in rural British Columbia Atmospheric Environment 42:3684–99. doi: 10.1016/j.atmosenv.2008.01.006.
  • Jetter, J., Y. Zhao, K.R. Smith, B. Khan, T. Yelverton, P. Decarlo, and M.D. Hays. 2012. Pollutant emissions and energy efficiency under controlled conditions for household biomass cookstoves and implications for metrics useful in setting international test standards. Environ. Sci. Technol. 46:10827–34. doi: 10.1021/es301693f.
  • Jordan, T.B., and A.J. Seen. 2005. Effect of airflow setting on the organic composition of woodheater emissions. Environ. Sci. Technol. 39:3601–10. doi: 10.1021/es0487628.
  • Junker, C., and C. Liousse. 2006. A global emission inventory of carbonaceous aerosol from historic records of fossil fuel and biofuel consumption for the period 1860–1997. Atmos. Chem. Phys. Discuss. 6:4897–927. doi: 10.5194/acpd-6-4897-2006.
  • Karanasiou, A., M.C. Minguillón, M. Viana, A. Alastuey, J.-P. Putaud, W. Maenhaut, P. Panteliadis, G. Močnik, O. Favez, and T.A.J. Kuhlbusch. 2015. Thermal-optical analysis for the measurement of elemental carbon (EC) and organic carbon (OC) in ambient air a literature review. Atmos. Meas. Tech. Discuss 8:9649–712. doi: 10.5194/amtd-8-9649-2015.
  • Kirschbaum, B.M.A., and L.R.H. Biewick. 2000. A Summary of the Coal Deposits in the Colorado Plateau: Arizona, Colorado, New Mexico, and Utah. U.S. Geological Survey Professional Paper 1625-B. Boulder, CO: U.S. Geological Survey.
  • Klasen, E.M., B. Wills, N. Naithani, R.H. Gilman, J.M. Tielsch, M. Chiang, S. Khatry, P.N. Breysse, D. Menya, C. Apaka, E.J. Carter, C.B. Sherman, J.J. Miranda, W. Checkley, L. Grajeda, D. Haustein, A. Huaman, S. Kimaiyo, S. LeClerq, M. Levano, S. Levy, P. Mosol, F. Ogaro, E. Rhodes, and R.A. Wise. 2015. Low correlation between household carbon monoxide and particulate matter concentrations from biomass-related pollution in three resource-poor settings. Environ. Res. 142:424–31. doi: 10.1016/j.envres.2015.07.012.
  • Kortelainen, A., J. Joutsensaari, L. Hao, J. Leskinen, P. Tiitta, A. Jaatinen, P. Miettinen, O. Sippula, T. Torvela, J. Tissari, J. Jokiniemi, D.R. Worsnop, J.N. Smith, A. Laaksonen, and A. Virtanen. 2015. Real-time chemical composition analysis of particulate emissions from woodchip combustion. Energy Fuels 29:1143–50. doi: 10.1021/ef5019548.
  • Kreider, J. F., and F. Kreith. 1982. Solar Heating and Cooling: Active and Passive Design. Boca Raton, FL: CRC Press.
  • Lee, T., A.P. Sullivan, L. Mack, J.L. Jimenez, S.M. Kreidenweis, T.B. Onasch, D.R. Worsnop, W. Malm, C.E. Wold, W.M. Hao, and J.L. Collett. 2010. Chemical smoke marker emissions during flaming and smoldering phases of laboratory open burning of wildland fuels. Aerosol Sci. Technol. 44:i–v. doi: 10.1080/02786826.2010.499884.
  • Lim, S., M. Lee, G. Lee, S. Kim, S. Yoon, and K. Kang. 2012. Ionic and carbonaceous compositions of PM10, PM2.5 and PM1.0 at Gosan ABC Superstation and their ratios as source signature. Atmos. Chem. Phys. 12:2007–24. doi: 10.5194/acp-12-2007-2012.
  • Lipsky, E.M., and A.L. Robinson. 2006. Effects of dilution on fine particle mass and partitioning of semivolatile organics in diesel exhaust and wood smoke. Environ. Sci. Technol. 40:155–62. doi: 10.1021/es050319p.
  • MacCarty, N., D. Still, and D. Ogle. 2010. Fuel use and emissions performance of fifty cooking stoves in the laboratory and related benchmarks of performance. Energy Sustain. Dev. 14:161–71. doi: 10.1016/j.esd.2010.06.002.
  • Majestic, B.J., J.A. Turner, and A.R. Marcotte. 2012. Respirable antimony and other trace-elements inside and outside an elementary school in Flagstaff, AZ, USA. Sci. Total Environ. 435–436:253–61. doi: 10.1016/j.scitotenv.2012.07.020.
  • McCracken, J.P., J. Schwartz, A. Diaz, N. Bruce, and K.R. Smith. 2013. Longitudinal relationship between personal CO and personal PM2.5 among women cooking with woodfired cookstoves in Guatemala. PLoS ONE 8:e55670. doi: 10.1371/journal.pone.0055670.
  • McDonald, J., B. Zielinska, E.M. Fujita, J.C. Sagebiel, J.C. Chow, and J.G. Watson. 2000. Fine particle and gaseous emission rates from residential wood combustion. Environ. Sci. Technol. 775:2080–91. doi: 10.1021/es9909632.
  • McMeeking, G.R., S.M. Kreidenweis, S. Baker, C.M. Carrico, J.C. Chow, J.L. Collett, W.M. Hao, A.S. Holden, T.W. Kirchstetter, W. C. Malm, H. Moosmüller, A.P. Sullivan, and W. Cyle. 2009. Emissions of trace gases and aerosols during the open combustion of biomass in the laboratory. J. Geophys. Res. Atmos. 114:D19210. doi: 10.1029/2009JD011836.
  • Morris, K., M. Morganlander, J. L. Coulehan, S. Gahagen, and V. C. Arena. 1990. Wood-burning stoves and lower respiratory tract infection in American Indian children. Am. J. Dis. Child. 144:105–8. doi: 10.1001/archpedi.1990.02150250117047.
  • Naeher, L.P., M. Brauer, M. Lipsett, J.T. Zelikoff, C.D. Simpson, J.Q. Koenig, and K.R. Smith. 2007. Woodsmoke health effects: A review. Inhal. Toxicol. 19:67–106. doi: 10.1080/08958370600985875.
  • Naeher, L.P., K.R. Smith, B.P. Leaderer, L. Neufeld, and D.T. Mage. 2001. Carbon monoxide as a tracer for assessing exposures to particulate matter in wood and gas cookstove households of highland Guatemala. Environ. Sci. Technol. 35:575–81. doi: 10.1021/es991225g.
  • Northcross, A., Z. Chowdhury, J. McCracken, E. Canuz, and K.R. Smith. 2010. Estimating personal PM2.5 exposures using CO measurements in Guatemalan households cooking with wood fuel. J. Environ. Monit. 12:873–8. doi: 10.1039/b916068j.
  • Nussbaumer, T., C. Czasch, N. Klippel, L. Johansson, and C. Tullin. 2008. Particulate Emissions from Biomass Combustion in IEA Countries. Zurich, Switzerland: Swiss Federal Office of Energy, Zurich, Switzerland. http://www.ieabcc.nl/publications/Nussbaumer_et_al_IEA_Report_PM10_Jan_2008.pdf (accessed April 30, 2017).
  • Obaidullah, M., I.V. Dyakov, J.D. Thomassin, T. Duquesne, S. Bram, F. Contino, and J. De Ruyck. 2014. CO Emission measurements and performance analysis of 10 kW and 20 kW wood stoves. Energy Proc. 61:2301–6. doi: 10.1016/j.egypro.2014.12.443.
  • Overend, R.P., T. Milne, and L. Mudge. 2012. Fundamentals of Thermochemical Biomass Conversion. New York, NY: Springer Science & Business Media.
  • Ozgen, S., S. Caserini, S. Galante, M. Giugliano, E. Angelino, A. Marongiu, F. Hugony, G. Migliavacca, and C. Morreale. 2014. Emission factors from small scale appliances burning wood and pellets. Atmos. Environ. 94:144–53. doi: 10.1016/j.atmosenv.2014.05.032.
  • Pankow, J.F. 1994. An absorption model of gas/particle partitioning of organic compounds in the atmosphere. Atmos. Environ. 28:185–8. doi: 10.1016/1352-2310(94)90093-0.
  • Pettersson, E., C. Boman, R. Westerholm, D. Boström, and A. Nordin. 2011. Stove performance and emission characteristics in residential wood log and pellet combustion, Part 2: Wood stove. Energy Fuels 25:315–23. doi: 10.1021/ef1007787.
  • Pollard, S.L., D.L. Williams, P.N. Breysse, P.A. Baron, L.M. Grajeda, R.H. Gilman, J.J. Miranda, and W. Checkley. 2014. A cross-sectional study of determinants of indoor environmental exposures in households with and without chronic exposure to biomass fuel smoke. Environ. Health 13:21. doi: 10.1186/1476-069X-13-21.
  • Reddy, M.S., and C. Venkataraman. 2002. Inventory of aerosol and sulphur dioxide emissions from India: I—Fossil fuel combustion. Atmos. Environ. 36:677–97. doi: 10.1016/S1352-2310(01)00463-0.
  • Robin, L.F., P.S.J. Lees, M. Winget, M. Steinhoff, L.H. Moulton, M. Santosham, and A. Correa. 1996. Word-burning stoves and lower respiratory illnessess in Navajo children. Pediatr. Infect. Dis. J. 15:859–65. doi: 10.1097/00006454-199610000-00006.
  • Roden, C.A., T.C. Bond, S. Conway, and A.B. Osorto Pinel. 2006. Emission factors and real-time optical properties of particles emitted from traditional wood burning cookstoves. Environ. Sci. Technol. 40:6750–7. doi: 10.1021/es052080i.
  • Roden, C.A., T.C. Bond, S. Conway, A.B. Osorto Pinel, N. MacCarty, and D. Still. 2009. Laboratory and field investigations of particulate and carbon monoxide emissions from traditional and improved cookstoves. Atmos. Environ. 43:1170–81. doi: 10.1016/j.atmosenv.2008.05.041.
  • Rogalsky, D.K., P. Mendola, T.A. Metts, and W.J. Martin. 2014. Estimating the number of low-income americans exposed to household air pollution from burning solid fuels. Environ. Health Perspect. 122:806–10. doi: 10.1289/ehp.1306709.
  • Shen, G., M. Xue, Y. Chen, C. Yang, W. Li, H. Shen, Y. Huang, Y. Zhang, H. Chen, Y. Zhu, H. Wu, A. Ding, and S. Tao. 2014. Comparison of carbonaceous particulate matter emission factors among different solid fuels burned in residential stoves. Atmos. Environ. 89:337–45. doi: 10.1016/j.atmosenv.2014.01.033.
  • Shen, G., Y. Yang, W. Wang, S. Tao, C. Zhu, Y. Min, M. Xue, J. Ding, B. Wang, R. Wang, H. Shen, W. Li, X. Wang, and A.G. Russell. 2010. Emission factors of particulate matter and elemental carbon for crop residues and coals burned in typical household stoves in China. Environ. Sci. Technol. 44:7157–62. doi: 10.1021/es101313y.
  • Siddiqui, A.R., K. Lee, D. Bennett, X. Yang, K.H. Brown, Z.A. Bhutta, and E.B. Gold. 2009. Indoor carbon monoxide and PM2.5 concentrations by cooking fuels in Pakistan. Indoor Air 19:75–82. doi: 10.1111/j.1600-0668.2008.00563.x.
  • Smith, K.R. 1990. Indoor air quality and the pollution transition. In Indoor Air Quality, ed. H. Kasuga, 448–56. Berlin, Germany: Springer-Verlag.
  • Smith, K.R., N. Bruce, K. Balakrishnan, H. Adair-Rohani, J. Balmes, Z. Chafe, M. Dherani, H.D. Hosgood, S. Mehta, D. Pope, and E. Rehfuess. 2014. Millions dead: How do we know and what does it mean? methods used in the comparative risk assessment of household air pollution. Annu. Rev. Public Health 35:185–206. doi: 10.1146/annurev-publhealth-032013-182356.
  • Smith, K.R., M.A.K. Khalil, R.A. Rasmussen, S.A. Thorneloe, F. Manegdeg, and M. Apte. 1993. Greenhouse gases from biomass and fossil-fuel stoves in developing-countries—A Manila pilot-study. Chemosphere 26:479–505. doi: 10.1016/0045-6535(93)90440-G.
  • Streets, D.G., T.C. Bond, G.R. Carmichael, S.D. Fernandes, Q. Fu, D. He, Z. Klimont, S.M. Nelson, N.Y. Tsai, M.Q. Wang, J.-H. Woo, and K.F. Yarber. 2003. An inventory of gaseous and primary aerosol emissions in Asia in the year 2000. J. Geophys. Res. 108(D21):8809. doi: 10.1029/2002JD003093.
  • Thomas, E., K. Wickramasinghe, S. Mendis, N. Roberts, and C. Foster. 2015. Improved stove interventions to reduce household air pollution in low and middle income countries: A descriptive systematic review. BMC Public Health 15:650. doi: 10.1186/s12889-015-2024-7.
  • Tissari, J., K. Hytönen, J. Lyyränen, and J. Jokiniemi. 2007. A novel field measurement method for determining fine particle and gas emissions from residential wood combustion. Atmos. Environ. 41:8330–44. doi: 10.1016/j.atmosenv.2007.06.018.
  • Turns, S. 1996. An Introduction to Combustion: Concepts and Applications. New York, NY: McGraw-Hill.
  • U.S. Census Bureau. 2014. American Community Survey Navajo Nation Demographic and Housing. https://factfinder.census.gov/bkmk/table/1.0/en/ACS/14_5YR/DP05/2500000US2430 (accessed March 2, 2015).
  • U.S. Census Bureau. 2015. Navajo Nation House Heating Fuel 2011–2015 American Community Survey Estimate. https://factfinder.census.gov/bkmk/table/1.0/en/ACS/15_5YR/B25040/2500000US2430 (accessed January 12, 2016).
  • U.S. Environmental Protection Agency. 1984. Guidelines on Preferred Location and Design of Measurement Ports for Air Pollution Control. https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=50000KW3.TXT (accessed December 10, 2014).
  • U.S. Environmental Protection Agency. 1986. Effects of Design Factors on Emissions from Non-Catalytic Residential Wood Combustion Appliances. http://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=9100J6Q5.TXT (accessed March 11, 2015).
  • U.S. Environmental Protection Agency. 1988. Method 28—Certification and Auditing of Wood Heaters, 1–15. https://www.epa.gov/sites/production/files/2016-06/documents/m-28.pdf (accessed October 11, 2015).
  • U.S. Environmental Protection Agency. 1996. AP-42, Fifth Edition, Chapter 1: External Combustion Sources, Residential Wood Stoves 1(10):1–10. http://www.epa.gov/ttn/chief/ap42/ch01/index.html (accessed September 1, 2014).
  • U.S. Environmental Protection Agency. 2016a. Process for Developing Improved Cordwood Test Methods for Wood Heaters. https://www.epa.gov/sites/production/files/2016-03/documents/discussion_paper_-_process_for_dev_imp_cwtm_030916.pdf (accessed March 12, 2015).
  • U.S. Environmental Protection Agency. 2016b. Basic Information of Air Emissions Factors and Quantification. https://www.epa.gov/air-emissions-factors-and-quantification/basic-information-air-emissions-factors-and-quantification (accessed September 15, 2014).
  • Vicente, E.D., M.A. Duarte, A.I. Calvo, T.F. Nunes, L. Tarelho, and C.A. Alves. 2015. Emission of carbon monoxide, total hydrocarbons and particulate matter during wood combustion in a stove operating under distinct conditions. Fuel Process. Technol. 131:182–92. doi: 10.1016/j.fuproc.2014.11.021.
  • Ward, T., J. Boulafentis, J. Simpson, C. Hester, T. Moliga, K. Warden, and C. Noonan. 2011. Lessons learned from a woodstove changeout on the Nez Perce Reservation. Sci. Total Environ. 409:664–70. doi: 10.1016/j.scitotenv.2010.11.006.
  • World Health Organization. 2014. WHO Guidelines for Indoor Air Quality: Household Fuel Combustion. http://www.who.int/indoorair/guidelines/hhfc/en (accessed February 1, 2015)
  • World Health Organization. 2016. Burning Opportunity: Clean Household Energy for Health, Sustainable Development, and Wellbeing of Women and Children. http://apps.who.int/iris/bitstream/10665/204717/1/9789241565233_eng.pdf?ua=1 (accessed December 10, 2016).
  • Yamamoto, S. S., V. R. Louis, A. Sié, and R. Sauerborn. 2014. Biomass smoke in Burkina Faso: What is the relationship between particulate matter, carbon monoxide, and kitchen characteristics? Environ. Sci. Pollut. Res. 21:2581–91. doi: 10.1007/s11356-013-2062-6.
  • Zhang, J., K. Smith, Y. Ma, S. Ye, F. Jiang, W. Qi, P. Liu, M.A. Khalil, R. Rasmussen, and S. Thorneloe. 2000. Greenhouse gases and other airborne pollutants from household stoves in China: A database for emission factors. Atmos. Environ. 34:4537–49. doi: 10.1016/S1352-2310(99)00450-1.
  • Zhang, K.M., and A.S. Wexler. 2004. Evolution of particle number distribution near roadways—Part I: Analysis of aerosol dynamics and its implications for engine emission measurement. Atmos. Environ. 38:6643–53. doi: 10.1016/j.atmosenv.2004.06.043.
  • Zhang, Y., J. J. Schauer, Y. Zhang, L. Zeng, Y. Wei, Y. Liu, and M. Shao. 2008. Characteristics of particulate carbon emissions from real-world Chinese coal combustion. Environ. Sci. Technol. 42:5068–5073. doi: 10.1021/es7022576.
  • Zhi, G., Y. Chen, Y. Feng, S. Xiong, L.I. Jun, G.A.N. Zhang, G. Sheng, and J. Fu. 2008. Emission characteristics of carbonaceous particles from various residential coal-stoves in China. Environ. Sci. Technol. 42:3310–5. doi: 10.1021/es702247q.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.