17,031
Views
149
CrossRef citations to date
0
Altmetric
Technical Paper

Forecasting air quality time series using deep learning

ORCID Icon, , ORCID Icon &
Pages 866-886 | Received 05 Dec 2017, Accepted 14 Feb 2018, Published online: 24 May 2018

References

  • Abadi, M., A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G.S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng (2015) TensorFlow: Large-scale machine learning on heterogeneous systems. tensorflow.org (accessed January 16, 2018).
  • Abdul-Wahab, S.A. 2001. IER photochemical smog evaluation and forecasting of short-term ozone pollution levels with artificial neural networks. Process Saf. Environ. Prot. 79 (2):117–128. doi:10.1205/09575820151095201.
  • Achcar, J.A., E.R. Rodrigues, and G. Tzintzun. 2011. Modeling the time between ozone exceedances. Braz. J. Probab. Stat. 25 (2):183–204. doi:10.1214/10-BJPS116.
  • Al-Alawi, S.M., S.A. Abdul-Wahab, and C.S. Bakheit. 2008. Combining principal component regression and artificial neural networks for more accurate predictions of ground-level ozone. Environ. Modell. Software 23 (4):396–403. doi:10.1016/j.envsoft.2006.08.007.
  • Al-Rfou, R., G. Alain, A. Almahairi, C. Angermueller, D. Bahdanau, N. Ballas, F. Bastien, J. Bayer, A. Belikov, A. Belopolsky, et al. 2016, May. Theano: A Python framework for fast computation of mathematical expressions. arXiv e-prints abs/1605.02688.
  • Amann, M., D. Derwent, B. Forsberg, O. Hnninen, F. Hurley, M. Krzyzanowski, F.D. Leeuw, S.J. Liu, C. Mandin, J. Schneider, P. Schwarze, and D. Simpson (2008). Health risks of ozone from long-range transboundary air pollution. Report, WHO Regional Office for Europe. http://www.euro.who.int/__data/assets/pdf_file/0005/78647/E91843.pdf (accessed January 17, 2018).
  • Arhami, M., N. Kamali, and M.M. Rajabi. 2013. Predicting hourly air pollutant levels using artificial neural networks coupled with uncertainty analysis by Monte Carlo simulations. Environ. Sci. Pollut. Res. 20 (7):4777–4789. doi:10.1007/s11356-012-1451-6.
  • Beck, J., M. Krzyzanowski, and B. Koffi (1998). Tropospheric ozone in the European Union: The consolidated report. Report, European Environment Agency. https://publications.europa.eu/en/publication-detail/-/publication/3cacc7e4-1113-44e4-810d-ac630234fd76 (accessed January 17, 2018).
  • Bei, N., G. Li, Z. Meng, Y. Weng, M. Zavala, and L. Molina. 2014. Impacts of using an ensemble Kalman filter on air quality simulations along the California-Mexico border region during Cal-Mex 2010 field campaign. Sci. Total Environ. 499 (Supplement C):141–153. doi:10.1016/j.scitotenv.2014.07.121.
  • Bengio, Y. (2012). Practical recommendations for gradient-based training of deep architectures. CoRR 1206.5533. http://arxiv.org/abs/1206.5533.
  • Biancofiore, F., M. Busilacchio, M. Verdecchia, B. Tomassetti, E. Aruffo, S. Bianco, S. Di Tommaso, C. Colangeli, G. Rosatelli, and P. Di Carlo. 2017. Recursive neural network model for analysis and forecast of PM10 and PM2:5. Atmos. Pollut. Res. 8 (4):652–659. doi:10.1016/j.apr.2016.12.014.
  • Biancofiore, F., M. Verdecchia, P. Di Carlo, B. Tomassetti, E. Aruffo, M. Busilacchio, S. Bianco, S. Di Tommaso, and C. Colangeli. 2015. Analysis of surface ozone using a recurrent neural network. Sci. Total Environ. 514:379–387. doi:10.1016/j.scitotenv.2015.01.106.
  • Brown, S. S., and J. Stutz. 2012. Nighttime radical observations and chemistry. Chem. Soc. Rev. 41 (19):6405–6447. doi:10.1039/C2CS35181A.
  • Calvert, J., J. Orlando, W. Stockwell, and T. Wallington. 2015. The mechanisms of reactions influencing atmospheric ozone. New York, NY: Oxford University Press. ISBN: 978-0-19-023302-0.
  • Central Intelligence Agency (2015). CIA World Factbook: Middle East: Kuwait. https://www.cia.gov/library/publications/the-world-factbook/geos/ku.html. (accessed January 26, 2018)
  • Chai, T., and R.R. Draxler. 2014. Root mean square error (RMSE) or mean absolute error (MAE)?-Arguments against avoiding RMSE in the literature. Geosci. Model Dev. doi:10.5194/gmd-7-1247-2014.
  • Chatterjee, S. K., S. Das, K. Maharatna, E. Masi, L. Santopolo, I. Colzi, S. Mancuso, and A. Vitaletti. 2017. Comparison of decision tree based classification strategies to detect external chemical stimuli from raw and filtered plant electrical response. Sens. Actuators, B 249 (Supplement C):278–295. doi:10.1016/j.snb.2017.04.071.
  • Che, Z., S. Purushotham, K. Cho, D. Sontag, and Y. Liu (2016). Recurrent neural networks for multivariate time series with missing values. CoRR abs/1606.01865. http://arxiv.org/abs/1606.01865.
  • Cho, J.H., and P.U. Kurup. 2011. Decision tree approach for classification and dimensionality reduction of electronic nose data. Sens. Actuators, B 160 (1):542–548. doi:10.1016/j.snb.2011.08.027.
  • Chollet, F. et al. 2015. Keras: Deep learning library for Theano and Tensor ow. github.com/fchollet/keras. http://github.com/fchollet/keras.(accessed February 12, 2018).
  • Cooper, O.R., A. Stohl, M. Trainer, A.M. Thompson, J.C. Witte, S.J. Oltmans, G. Morris, K. E. Pickering, J.H. Crawford, G. Chen, R.C. Cohen, T.H. Bertram, P. Wooldridge, A. Perring, W.H. Brune, J. Merrill, J.L. Moody, D. Tarasick, P. Ndlec, G. Forbes, M.J. Newchurch, F.J. Schmidlin, B.J. Johnson, S. Turquety, S.L. Baughcum, X. Ren, F.C. Fehsenfeld, J.F. Meagher, N. Spichtinger, C. C. Brown, S.A. Mc-Keen, I.S. McDermid, and T. Leblanc. 2006. Large upper tropospheric ozone enhancements above midlatitude North America during summer: In situ evidence from the IONS and MOZAIC ozone measurement network. Journal of Geophysical Research: Atmospheres 111 (D24). doi:10.1029/2006JD007306.
  • Crosman, E.T., and J.D. Horel. 2010. Sea and lake breezes: A review of numerical studies. Boundary Layer Meteorol. 137 (1):1–29. doi:10.1007/s10546-010-9517-9.
  • CSB (2016). Chapter 3 population. Report, State of Kuwait Central Statistic Bureau. https://www.csb.gov.kw/Socan_Statistic_EN.aspx?ID=67.(accessed February 12, 2018).
  • Cuxart, J., M.A. Jimnez, M.T. Prtenjak, and B. Grisogono. 2014. Study of a sea-breeze case through momentum, temperature, and turbulence budgets. J. Appl. Meteorol. Climatol. 53 (11):2589–2609. doi:10.1175/JAMC-D-14-0007.1.
  • de Oña, J., and C. Garrido. 2014. Extracting the contribution of independent variables in neural network models: A new approach to handle instability. Neural Comput. Appl. 25 (3):859–869. doi:10.1007/s00521-014-1573-5.
  • Dozat, T. (2016). Incorporating Nesterov momentum into ADAM. In 4th International Conference on Learning Representations. https://openreview.net/pdf?id=OM0jvwB8jIp57ZJjtNEZ.(accessed February 12, 2018).
  • Duchi, J., E. Hazan, and Y. Singer. 2011. Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn. Res. 12:2121–2159. http://dl.acm.org/citation.cfm?id=1953048.2021068.
  • Elangasinghe, M.A., N. Singhal, K.N. Dirks, J.A. Salmond, and S. Samarasinghe. 2014. Complex time series analysis of PM10 and PM2:5 for a coastal site using artificial neural network modelling and k-means clustering. Atmos. Environ. 94:106–116. doi:10.1016/j.atmosenv.2014.04.051.
  • Ettouney, R.S., F.S. Mjalli, J.G. Zaki, M.A. ElRifai, and H.M. Ettouney. 2009. Forecasting of ozone pollution using artificial neural networks. Manage. Environ. Qual. Int. J. 20 (6):668–683. doi:10.1108/14777830910990843.
  • Fan, J., Q. Li, J. Hou, X. Feng, H. Karimian, and S. Lin (2017). A spatiotemporal prediction framework for air pollution based on deep RNN. In 2nd International Symposium on Spatiotemporal Computing, Volume V-4/W2, pp. 15–22. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences. DOI:10.5194/isprs-annals-IV-4-W2-15-2017.
  • Feng, Y., W. Zhang, D. Sun, and L. Zhang. 2011. Ozone concentration forecast method based on genetic algorithm optimized back propagation neural networks and support vector machine data classification. Atmos. Environ. 45 (11):1979–1985. doi:10.1016/j.atmosenv.2011.01.022.
  • Finlayson-Pitts, B., and J.J.N. Pitts. 1993. Atmospheric chemistry of tropospheric ozone formation: Scientific and regulatory implications. Air Waste 43 (8):1091–2100. doi:10.1080/1073161X.1993.10467187.
  • Freeman, B., B. Gharabaghi, J. Thé, M. Munshed, S. Faisal, M. Abdullah, and A.A. Aseed. 2017a. Mapping air quality zones for coastal urban centers. J. Air Waste Manage. Assoc. 67 (5):565–581. doi:10.1080/10962247.2016.1265025.
  • Freeman, B., E. McBean, B. Gharabaghi, and J. Thé. 2017b. Evaluation of air quality zone classification methods based on ambient air concentration exposure. J. Air Waste Manage. Assoc. 67 (5):550–564. doi:10.1080/10962247.2016.1263585.
  • Gal, Y., and Z. Ghahramani 2016. A theoretically grounded application of dropout in recurrent neural networks. ArXiv e-prints 1512.05287. https://arxiv.org/abs/1512.05287v5.
  • Gardner, M.W., and S.R. Dorling. 1998. Artificial neural networks (the multilayer perceptron) A review of applications in the atmospheric sciences. Atmos. Environ. 32 (1415):2627–2636. doi:10.1016/S1352-2310(97)00447-0.
  • Gheyas, I.A., and L.S. Smith. 2011. A novel neural network ensemble architecture for time series forecasting. Neurocomputing 74 (18):3855–3864. doi:10.1016/j.neucom.2011.08.005.
  • Glavas, S.D., and E. Sazakli. 2011. Ozone long-range transport in the Balkans. Atmos. Environ. 45 (8):1615–1626. doi:10.1016/j.atmosenv.2010.11.030.
  • Gomez, P., Nebot, Angela, Ribeiro, Sabrine, Alquézar, René, Mugica, Francisco,Wotawa and Franz. 2003. Local maximum ozone concentration prediction using soft computing methodologies. Syst. Anal. Modell. Simul. 43 (8):1011–1031. doi:10.1080/0232929031000081244.
  • Goodfellow, I., Y. Bengio, and A. Courville. 2016. Deep Learning. Cambridge, MA: MIT Press. ISBN: 9780262035613.
  • Graves, A. (2013). Generating sequences with recurrent neural networks. CoRR abs/1308.0850. http://arxiv.org/abs/1308.0850.
  • Graves, A., A. Mohamed, and G.E. Hinton 2013. Speech recognition with deep recurrent neural networks. CoRR abs/1303.5778. http://arxiv.org/abs/1303.5778.
  • Hinton, G.E., and S. Osindero. 2006, July. A fast learning algorithm for deep belief nets. Neural Comput. 18(7):1527–1554. doi:10.1162/neco.2006.18.7.1527.
  • Hochreiter, S., and J. Schmidhuber. 1997. Long short-term memory. Neural Comput. 9 (8):1735–1780. doi:10.1162/neco.1997.9.8.1735.
  • Hyndman, R., and G. Athanasopoulos. 2013. Forecasting: Principles and practice, Chapter 8.7 ARIMA modelling in R. Melbourne. Australia: OTexts.
  • Junger, W.L., and A. Ponce De Leon. 2015. Imputation of missing data in time series for air pollutants. Atmos. Environ. 102:96–104. doi:10.1016/j.atmosenv.2014.11.049.
  • Junninen, H., H. Niska, K. Tuppurainen, J. Ruuskanen, and M. Kolehmainen. 2004. Methods for imputation of missing values in air quality data sets. Atmos. Environ. 38 (18):2895–2907. doi:10.1016/j.atmosenv.2004.02.026.
  • KAMCO 2013. State of Kuwait: Economic & financial facts. Report, KIPCO Asset Management Company KSC. http://www.kamconline.com/Temp/Reports/48218661-476e-43f1-8d12-ecc124e90e93.pdf.(accessed February 12, 2018).
  • KEPA. 2017, June. Decree no. 8 of 2017 Promulgating the bylaws in accordance with the protection of external air against pollution. Kuwait: Kuwait Al Yom. 1345.
  • Kingma, D.P., and J. Ba. 2014. Adam: A method for stochastic optimization. CoRR abs/1412.6980. http://arxiv.org/abs/1412.6980. (accessed February 18, 2018).
  • Kuhlbusch, T.A.J., P. Quincey, G.W. Fuller, F. Kelly, I. Mudway, M. Viana, X. Querol, A. Alastuey, K. Katsouyanni, E. Weijers, A. Borowiak, R. Gehrig, C. Hueglin, P. Bruckmann, O. Favez, J. Sciare, B. Hoffmann, K. EspenYttri, K. Torseth, U. Sager, C. Asbach, and U. Quass. 2014. New directions: The future of European urban air quality monitoring. Atmos. Environ. 87:258–260. doi:10.1016/j.atmosenv.2014.01.012.
  • Kurt, A., B. Gulbagci, F. Karaca, and O. Alagha. 2008. An online air pollution forecasting system using neural networks. Environ. Int. 34 (5):592–598. doi:10.1016/j.envint.2007.12.020.
  • Le, H.Q., S.A. Batterman, and R.L. Wahl. 2007. Reproducibility and imputation of air toxics data. J. Environ. Monit. 9 (12):1358–1372. doi:10.1039/B709816B.
  • Lelieveld, J., and F. Dentener. 2000. What controls tropospheric ozone? J. Geophys. Res. 105 (D3):3531–3551. doi:10.1029/1999JD901011.
  • Liu, P.-W.G. 2007. Establishment of a Box-Jenkins multivariate timeseries model to simulate ground-level peak daily one-hour ozone concentrations at Ta-Liao in Taiwan. J. Air Waste Manage. Assoc. 57 (9):1078–1090. doi:10.3155/1047-3289.57.9.1078.
  • Loh, W.-Y. 2011. Classification and regression trees. Data Min. Knowl. Discovery 1 (1):14–23. doi:10.1002/widm.8.
  • Lu, W.Z., and W.J. Wang. 2005. Potential assessment of the support vector machine method in forecasting ambient air pollutant trends. Chemosphere 59 (5):693–701. doi:10.1016/j.chemosphere.2004.10.032.
  • Luna, A.S., M.L.L. Paredes, G.C.G. de Oliveira, and S.M. Corra. 2014. Prediction of ozone concentration in tropospheric levels using artificial neural networks and support vector machine at Rio de Janeiro, Brazil. Atmos. Environ. 98:98–104. doi:10.1016/j.atmosenv.2014.08.060.
  • Malley, C.S., D.K. Henze, J.C. Kuylenstierna, H.W. Vallack, Y. Davila, S.C. Anenberg, M.C. Turner, and M.R. Ashmore. 2017. Updated global estimates of respiratory mortality in adults >30 years of age attributable to long-term ozone exposure. Environ. Health Perspect. 125 (8). doi:10.1289/EHP1390.
  • Narang, S., G. Diamos, S. Sengupta, and E. Elsen, 2017. Exploring sparsity in recurrent neural networks. CoRR abs/1704.05119. http://arxiv.org/abs/1704.05119.
  • Nesterov, Y. 1983. A method of solving a convex programming problem with convergence rate O(1/k2). Sov. Math. Dokl. 27 (2):372–376. https://arxiv.org/pdf/1510.08740.pdf.
  • Papaleonidas, A., and L. Iliadis. 2013. Neurocomputing techniques to dynamically forecast spatiotemporal air pollution data. Evolving Syst. 4 (4):221–233. doi:10.1007/s12530-013-9078-5.
  • Pascanu, R., T. Mikolov, and Y. Bengio 2013. On the difficulty of training recurrent neural networks. In 30th International Conference on Machine Learning, Volume 28. W&CP., http://proceedings.mlr.press/v28/pascanu13.pdf.
  • Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011, November. Scikit-learn: Machine learning in python. J. Mach. Learn. Res. 12:2825–230. http://dl.acm.org/citation.cfm?id=1953048.2078195.
  • Prybutok, V.R., J. Yi, and D. Mitchell. 2000. Comparison of neural network models with ARIMA and regression models for prediction of Houston’s daily maximum ozone concentrations. Eur. J. Oper. Res. 122 (1):31–40. doi:10.1016/S0377-2217(99)00069-7.
  • Raa, P., G. Aneiros, and J.M. Vilar. 2015. Detection of outliers in functional time series. Environmetrics 26 (3):178–191. doi:10.1002/env.2327.
  • Raschka, S. 2016. Python machine learning. Birmingham UK: Packt Publishing. ISBN: 978-1-78355-513-0.
  • Silipo, R., I. Adae, A. Hart, and M. Berthold 2014. Seven techniques for data dimensionality reduction. Report, KNIME.com AG. January 12, 2018).
  • Singh, K.P., S. Gupta, A. Kumar, and S.P. Shukla. 2012. Linear and nonlinear modeling approaches for urban air quality prediction. Sci. Total Environ. 426 (Supplement C):244–255. doi:10.1016/j.scitotenv.2012.03.076.
  • Singh, K.P., S. Gupta, and P. Rai. 2013. Identifying pollution sources and predicting urban air quality using ensemble learning methods. Atmos. Environ. 80 (Supplement C):426–437. doi:10.1016/j.atmosenv.2013.08.023.
  • Song, F., J. Young Shin, R. Jusino Atresino, and Y. Gao. 2011. Relationships among the springtime ground level NOx, O3 and NO3 in the vicinity of highways in the US East Coast. Atmos. Pollut. Res. 2 (3):374–383. doi:10.5094/APR.2011.042.
  • Srivastava, N., G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. 2014, January. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15 (1):1929–1958. http://dl.acm.org/citation.cfm?id=2627435.2670313.
  • Sutskever, I., J. Martens, G. Dahl, and G. Hinton 2013. On the importance of initialization and momentum in deep learning. In Proceedings of the 30th International Conference on Machine Learning, Volume 28. http://www.datascienceassn.org/content/importanceinitialization-and-momentum-deep-learning. (accessed February 28, 2018).
  • Tarasick, D., and R. Slater. 2008. Ozone in the troposphere: Measurements, climatology, budget, and trends. Atmos. Ocean 46 (1):93–115. doi:10.3137/ao.460105.
  • Taspnar, F. 2015. Improving artificial neural network model predictions of daily average PM10 concentrations by applying principle component analysis and implementing seasonal models. J. Air Waste Manage. Assoc. 65 (7):800–809. doi:10.1080/10962247.2015.1019652.
  • Theano Development Team 2016. Theano: A Python framework for fast computation of mathematical expressions. arXiv e-prints abs/1605.02688. http://arxiv.org/abs/1605.02688.
  • Thornton Joel A., Kercher, James P., Riedel, Theran P., Wagner, Nicholas L., Cozic, Julie, Holloway, John S.,  Dube, William P., Wolfe, Glenn M., Quinn, Patricia K., Middlebrook, Ann M., Alexander, Becky, Brown, Steven S. 2010. A large atomic chlorine source inferred from mid continental reactive nitrogen chemistry. Nature 464: 271–274. doi: 10.1038/nature08905.
  • Tieleman, T., and G. Hinton 2012. Lecture 6.5 - RMSprop: Divide the gradient by a running average of its recent magnitude. COURSERA: Neural Networks for Machine Learning, 4. http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf (accessed February 12, 2018).
  • Vlachogianni, A., P. Kassomenos, A. Karppinen, S. Karakitsios, and J. Kukkonen. 2011. Evaluation of a multiple regression model for the forecasting of the concentrations of NOx and PM10 in Athens and Helsinki. Sci. Total Environ. 409 (8):1559–1571. doi:10.1016/j.scitotenv.2010.12.040.
  • Voukantsis, D., K. Karatzas, J. Kukkonen, T. Rasanen, A. Karppinen, and M. Kolehmainen. 2011. Intercomparison of air quality data using principal component analysis, and forecasting of PM10 and PM2:5 concentrations using artificial neural networks, in Thessaloniki and Helsinki. Sci. Total Environ. 409 (7):1266–1276. doi:10.1016/j.scitotenv.2010.12.039.
  • Walid, and Alamsyah. 2017. Recurrent neural network for forecasting time series with long memory pattern. J. Phys. Conf. Ser. 824 (1):012038. http://stacks.iop.org/1742-6596/824/i=1/a=012038.
  • Wang, D., and W.-Z. Lu. 2006. Ground-level ozone prediction using multilayer perceptron trained with an innovative hybrid approach. Ecol. Modell. 198 (34):332–340. doi:10.1016/j.ecolmodel.2006.05.031.
  • Wang, P., Y. Liu, Z. Qin, and G. Zhang. 2015. A novel hybrid forecasting model for PM10 and SO2 daily concentrations. Sci. Total Environ. 505 (Supplement C):1202–1212. doi:10.1016/j.scitotenv.2014.10.078.
  • Wang, Y., X. Ma, and M.J. Joyce. 2016. Reducing sensor complexity for monitoring wind turbine performance using principal component analysis. Renew. Energy 97:444–456. doi:10.1016/j.renene.2016.06.006.
  • Welch, E., X. Gu, and L. Kramer. 2005. The effects of ozone action day public advisories on train ridership in Chicago. Transp. Res. Part D: Transp. Environ. 10 (6):445–458. doi:10.1016/j.trd.2005.06.002.
  • Willmott, C.J., and K. Matsuura. 2005. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim. Res. 30 (1):79–82. doi:10.3354/cr030079.
  • Wirtz, D.S., M.G. El-Din, A.G. El-Din, and A. Idriss. 2005. Systematic development of an artificial neural network model for real-time prediction of ground-level ozone in Edmonton, Alberta, Canada. J. Air Waste Manage. Assoc. 55 (12):1847–1857. doi:10.1080/10473289.2005.10464780.
  • Zickus, M., A.J. Greig, and M. Niranjan. 2002. Comparison of four machine learning methods for predicting PM10 concentrations in Helsinki, Finland. Water Air Soil Pollut. Focus 2 (5–6):717–729. doi:10.1023/A:1021321820639.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.