1,911
Views
7
CrossRef citations to date
0
Altmetric
Technical Paper

Investigation of aerosol and gas emissions from a coal-fired power plant under various operating conditions

, ORCID Icon, &
Pages 34-46 | Received 26 Apr 2018, Accepted 20 Jul 2018, Published online: 07 Nov 2018

References

  • Dang, Q., M. Mba Wright, and R. C. Brown. 2015. Ultra-low carbon emissions from coal-fired power plants through bio-oil co-firing and biochar sequestration. Environ. Sci. Technol. 49 (24):14688–14695. doi:10.1021/acs.est.5b03548.
  • De Gouw, J., D. Parrish, G. Frost, and M. Trainer. 2014. Reduced emissions of CO2, NOx, and SO2 from US power plants owing to switch from coal to natural gas with combined cycle technology. Earth’s Future 2 (2):75–82. doi:10.1002/2013EF000196.
  • Guttikunda, S. K., and P. Jawahar. 2014. Atmospheric emissions and pollution from the coal-fired thermal power plants in India. Atmos. Environ. 92:449–460. doi:10.1016/j.atmosenv.2014.04.057.
  • Hogan, C. J., M.-H. Lee, and P. Biswas. 2004. Capture of viral particles in soft X-ray–Enhanced corona systems: Charge distribution and transport characteristics. Aerosol Sci. Technol. 38 (5):475–486. doi:10.1080/02786820490462183.
  • Huang, C., C. Chen, L. Li, Z. Cheng, H. Wang, H. Huang, D. Streets, Y. Wang, G. Zhang, and Y. Chen. 2011. Emission inventory of anthropogenic air pollutants and VOC species in the Yangtze River Delta region, China. Atmos. Chem. Phys. 11 (9):4105–4120. doi:10.5194/acp-11-4105-2011.
  • Huang, S.-H., and -C.-C. Chen. 2002. Ultrafine aerosol penetration through electrostatic precipitators. Environ. Sci. Technol. 36 (21):4625–4632. doi:10.1021/es011157+.
  • Jing, H., X. Wang, W.-N. Wang, and P. Biswas. 2015. Elemental mercury oxidation in an electrostatic precipitator enhanced with in situ soft X-ray irradiation. J. Air Waste Manage. Assoc. 65 (4):455–465. doi:10.1080/10962247.2014.998352.
  • Juvekar, V., and M. Sharma. 1973. Absorption of CO2 in a suspension of lime. Chem. Eng. Technol. 28 (3):825–837. doi:10.1016/0009-2509(77)80017-1.
  • Kamijo, T., Y. Kajiya, T. Endo, H. Nagayasu, H. Tanaka, T. Hirata, T. Yonekawa, and T. Tsujiuchi. 2013. SO 3 impact on amine emission and emission reduction technology. Energy Procedia 37:1793–1796. doi:10.1016/j.egypro.2013.06.056.
  • Khakharia, P., L. Brachert, J. Mertens, C. Anderlohr, A. Huizinga, E. S. Fernandez, B. Schallert, K. Schaber, T. J. Vlugt, and E. Goetheer. 2015. Understanding aerosol based emissions in a post combustion CO 2 capture process: Parameter testing and mechanisms. Int. J. Greenhouse Gas Control 34:63–74. doi:10.1016/j.ijggc.2015.01.001.
  • Khakharia, P., L. Brachert, J. Mertens, A. Huizinga, B. Schallert, K. Schaber, T. J. Vlugt, and E. Goetheer. 2013. Investigation of aerosol based emission of MEA due to sulphuric acid aerosol and soot in a post combustion CO 2 capture process. Int. J. Greenhouse Gas Control 19:138–144. doi:10.1016/j.ijggc.2013.08.014.
  • Kulkarni, P., N. Namiki, Y. Otani, and P. Biswas. 2002. Charging of particles in unipolar coronas irradiated by in-situ soft X-rays: Enhancement of capture efficiency of ultrafine particles. J. Aerosol. Sci. 33 (9):1279–1296. doi:10.1016/S0021-8502(02)00067-8.
  • Li, L., J. An, M. Zhou, R. Yan, C. Huang, Q. Lu, L. Lin, Y. Wang, S. Tao, and L. Qiao. 2015a. Source apportionment of fine particles and its chemical components over the Yangtze River Delta, China during a heavy haze pollution episode. Atmos. Environ. 123:415–429. doi:10.1016/j.atmosenv.2015.06.051.
  • Li, Y., A. Suriyawong, M. Daukoru, Y. Zhuang, and P. Biswas. 2009. Measurement and capture of fine and ultrafine particles from a pilot-scale pulverized coal combustor with an electrostatic precipitator. J. Air Waste Manage. Assoc. 59 (5):553. doi:10.3155/1047-3289.59.5.553.
  • Li, Z., J. Jiang, Z. Ma, S. Wang, and L. Duan. 2015b. Effect of selective catalytic reduction (SCR) on fine particle emission from two coal-fired power plants in China. Atmos. Environ. 120:227–233. doi:10.1016/j.atmosenv.2015.08.046.
  • Liu, F., Q. Zhang, D. Tong, B. Zheng, M. Li, H. Huo, and K. He. 2015. High-resolution inventory of technologies, activities, and emissions of coal-fired power plants in China from 1990 to 2010. Fuel Process. Technol. 15 (23):13299–13317. doi:10.5194/acp-15-13299-2015.
  • Meij, R., and B. Te Winkel. 2004. The emissions and environmental impact of PM 10 and trace elements from a modern coal-fired power plant equipped with ESP and wet FGD. Fuel Process. Technol. 85 (6):641–656. doi:10.1016/j.fuproc.2003.11.012.
  • Mertens, J., L. Brachert, D. Desagher, M. Thielens, P. Khakharia, E. Goetheer, and K. Schaber. 2014. ELPI+ measurements of aerosol growth in an amine absorption column. Int. J. Greenhouse Gas Control 23:44–50. doi:10.1016/j.ijggc.2014.02.002.
  • Mertens, J., J. Knudsen, M.-L. Thielens, and J. Andersen. 2012. On-line monitoring and controlling emissions in amine post combustion carbon capture: A field test. Int. J. Greenhouse Gas Control 6:2–11. doi:10.1016/j.ijggc.2011.11.015.
  • Mertens, J., H. Lepaumier, D. Desagher, and M.-L. Thielens. 2013. Understanding ethanolamine (MEA) and ammonia emissions from amine based post combustion carbon capture: Lessons learned from field tests. Int. J. Greenhouse Gas Control 13:72–77. doi:10.1016/j.ijggc.2012.12.013.
  • Rochelle, G. T. 2009. Amine scrubbing for CO2 capture. Science 325 (5948):1652–1654. doi:10.1126/science.1176731.
  • Rubin, E. S., and D. G. Nguyen. 1978. Energy requirements of a limestone FGD system. J. Air. Pollut. Control Assoc. 28 (12):1207–1212. doi:10.1080/00022470.1978.10470728.
  • Ryu, H.-J., J. R. Grace, and C. J. Lim. 2006. Simultaneous CO2/SO2 capture characteristics of three limestones in a fluidized-bed reactor. Energy Fuels 20 (4):1621–1628. doi:10.1021/ef050277q.
  • Schaber, K. 1995. Aerosol formation in absorption processes. Chem. Eng. Technol. 50 (8):1347–1360. doi:10.1016/0009-2509(95)98846-7.
  • Shi, Y., J. Wang, and Z. Liu. 2015. On-line monitoring of ash fouling and soot-blowing optimization for convective heat exchanger in coal-fired power plant boiler. Appl. Therm. Eng. 78:39–50. doi:10.1016/j.applthermaleng.2014.12.002.
  • Sijbesma, H., K. Nymeijer, R. Van Marwijk, R. Heijboer, J. Potreck, and M. Wessling. 2008. Flue gas dehydration using polymer membranes. J. Membr. Sci. 313 (1):263–276. doi:10.1016/j.memsci.2008.01.024.
  • Strand, M., J. Pagels, A. Szpila, A. Gudmundsson, E. Swietlicki, M. Bohgard, and M. Sanati. 2002. Fly ash penetration through electrostatic precipitator and flue gas condenser in a 6 MW biomass fired boiler. Energy Fuels 16 (6):1499–1506. doi:10.1021/ef020076b.
  • Tola, V., G. Cau, F. Ferrara, and A. Pettinau. 2016. CO2 emissions reduction from coal-fired power generation: A techno-economic comparison. J. Energy Res. Technol. 138 (6):061602. doi:10.1115/1.4034547.
  • Valmari, T., T. Lind, E. Kauppinen, G. Sfiris, K. Nilsson, and W. Maenhaut. 1999. Field study on ash behavior during circulating fluidized-bed combustion of biomass. 2. Ash deposition and alkali vapor condensation. Energy Fuels 13 (2):390–395. doi:10.1021/ef9800866.
  • Wang, H., Q. Song, Q. Yao, and C.-H. Chen. 2008. Experimental study on removal effect of wet flue gas desulfurization system on fine particles from a coal-fired power plant. Proc. Chin. Soc. Electr. Eng. 28 (5):1.
  • Xiong, T., W. Jiang, and W. Gao. 2016. Current status and prediction of major atmospheric emissions from coal-fired power plants in Shandong Province, China. Atmos. Environ. 124 (Part A):46–52. doi:10.1016/j.atmosenv.2015.11.002.
  • Xu, Y., J. Hu, Q. Ying, H. Hao, D. Wang, and H. Zhang. 2017. Current and future emissions of primary pollutants from coal-fired power plants in Shaanxi, China. Sci. Total Environ. 595:505–514. doi:10.1016/j.scitotenv.2017.03.267.
  • Yang, L., J. Bao, J. Yan, J. Liu, S. Song, and F. Fan. 2010. Removal of fine particles in wet flue gas desulfurization system by heterogeneous condensation. Chem. Eng. J. 156 (1):25–32. doi:10.1016/j.cej.2009.09.026.
  • Yi, H., J. Hao, L. Duan, X. Tang, P. Ning, and X. Li. 2008. Fine particle and trace element emissions from an anthracite coal-fired power plant equipped with a bag-house in China. Fuel 87 (10):2050–2057. doi:10.1016/j.fuel.2007.10.009.
  • Ylätalo, S. I., and J. Hautanen. 1998. Electrostatic precipitator penetration function for pulverized coal combustion. Aerosol Sci. Technol. 29 (1):17–30. doi:10.1080/02786829808965547.
  • Zhang, R., J. Jing, J. Tao, S.-C. Hsu, G. Wang, J. Cao, C. S. L. Lee, L. Zhu, Z. Chen, and Y. Zhao. 2013. Chemical characterization and source apportionment of PM 2.5 in Beijing: Seasonal perspective. Atmos. Chem. Phys. 13 (14):7053–7074. doi:10.5194/acp-13-7053-2013.
  • Zhao, Y., S. Wang, L. Duan, Y. Lei, P. Cao, and J. Hao. 2008. Primary air pollutant emissions of coal-fired power plants in China: Current status and future prediction. Atmos. Environ. 42 (36):8442–8452. doi:10.1016/j.atmosenv.2008.08.021.
  • Zhuang, Y., Y. J. Kim, T. G. Lee, and P. Biswas. 2000. Experimental and theoretical studies of ultra-fine particle behavior in electrostatic precipitators. J. Electrostat. 48 (3–4):245–260. doi:10.1016/s0304-3886(99)00072-8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.