1,983
Views
27
CrossRef citations to date
0
Altmetric
Technical Paper

Concentrations of aliphatic and polycyclic aromatic hydrocarbons in ambient PM2.5 and PM10 particulates in Doha, Qatar

, , , , &
Pages 162-177 | Received 03 Jul 2018, Accepted 04 Sep 2018, Published online: 20 Dec 2018

References

  • Abdallah, M. A., and N. N. Atia. 2014. Atmospheric concentrations, gaseous-particulate distribution, and carcinogenic potential of polycyclic aromatic hydrocarbons in Assiut, Egypt. Environ. Sci. Pollut. Res. 21 (13):8059–8069. doi:10.1007/s11356-014-2746-6.
  • Ahmed, T. M., B. Ahmed, B. K. Aziz, C. Bergvall, and R. Westerholm. 2015. Native and oxygenated polycyclic aromatic hydrocarbons in ambient air particulate matter from the city of Sulaimaniyah in Iraq. Atmos. Environ. 116:44–50. doi:10.1016/j.atmosenv.2015.06.020.
  • Alghamdi, M. A., M. S. Alam, J. Yin, C. Stark, E. Jang, R. M. Harrison, M. Shamy, M. I. Khoder, and I. I. Shabbaj. 2015. Receptor modelling study of polycyclic aromatic hydrocarbons in Jeddah, Saudi Arabia. Sci. Total Environ. 506–507:401–408. doi:10.1016/j.scitotenv.2014.10.056.
  • Alves, C., T. Nunes, A. Vicente, C. Goncalves, M. Evtyugina, T. Marques, C. Pio, and F. Bate-Epey. 2014. Speciation of organic compounds in aerosols from urban background sites in the winter season. Atmospheric Res. 150:57–68. doi:10.1016/j.atmosres.2014.07.012.
  • Andreae, T. W., M. O. Andreae, C. Ichoku, W. Maenhaut, J. Cafmeyer, A. Karnieli, and L. Orlovsky. 2002. Light scattering by dust and anthropogenic aerosol at a remote site in the Negev desert, Israel. J. Geophys. Res. 107 (D2):4008. doi:10.1029/2001jd900252.
  • Bi, X. H., G. Y. Sheng, P. Peng, Y. J. Chen, and J. M. Fu. 2005. Size distribution of n-alkanes and polycyclic aromatic hydrocarbons (PAHs) in urban and rural atmospheres of Guangzhou, China. Atmos. Environ. 39 (3):477–487. doi:10.1016/j.atmosenv.2004.09.052.
  • Bian, Q. J., B. Alharbi, J. Collett, S. Kreidenweis, and M. J. Pasha. 2016. Measurements and source apportionment of particle-associated polycyclic aromatic hydrocarbons in ambient air in Riyadh, Saudi Arabia. Atmos. Environ. 137:186–198. doi:10.1016/j.atmosenv.2016.04.025.
  • Brown, K. W., W. Bouhamra, D. P. Lamoureux, J. S. Evans, and P. Koutrakis. 2008. Characterization of particulate matter for three sites in Kuwait. J. Air Waste Manage. Assoc. 58 (8):994–1003. doi:10.3155/1047-3289.58.8.994.
  • Cassee, F. R., M. E. Heroux, M. E. Gerlofs-Nijland, and F. J. Kelly. 2013. Particulate matter beyond mass: Recent health evidence on the role of fractions, chemical constituents and sources of emission. Inhal. Toxicol. 25 (14):802–812. doi:10.3109/08958378.2013.850127.
  • Castro, L. M., C. A. Pio, R. M. Harrison, and D. J. T. Smith. 1999. Carbonaceous aerosol in urban and rural European atmospheres: Estimation of secondary organic carbon concentrations. Atmos. Environ. 33 (17):2771–2781. doi:10.1016/S1352-2310(98)00331-8.
  • Choi, J. K., J. B. Heo, S. J. Ban, S. M. Yi, and K. D. Zoh. 2012. Chemical characteristics of PM2.5 aerosol in Incheon, Korea. Atmos. Environ. 60:583–592. doi:10.1016/j.atmosenv.2012.06.078.
  • Choi, N. R., S. P. Lee, J. Y. Lee, C. H. Jung, and Y. P. Kim. 2016. Speciation and source identification of organic compounds in PM10 over Seoul, South Korea. Chemosphere 144:1589–1596. doi:10.1016/j.chemosphere.2015.10.041.
  • Chow, J. C., J. G. Watson, L. W. Chen, M. C. Chang, N. F. Robinson, D. Trimble, and S. Kohl. 2007. The IMPROVE_A temperature protocol for thermal/optical carbon analysis: Maintaining consistency with a long-term database. J. Air Waste Manage. Assoc. 57 (9):1014–1023. doi:10.3155/1047-3289.57.9.1014.
  • Cincinelli, A., M. D. Bubba, T. Martellini, A. Gambaro, and L. Lepri. 2007. Gas-particle concentration and distribution of n-alkanes and polycyclic aromatic hydrocarbons in the atmosphere of Prato (Italy). Chemosphere 68 (3):472–478. doi:10.1016/j.chemosphere.2006.12.089.
  • Eeftens, M., M.-Y. Tsai, C. Ampe, B. Anwander, R. Beelen, T. Bellander, G. Cesaroni, M. Cirach, J. Cyrys, K. de Hoogh, et al. 2012. Spatial variation of PM2.5, PM10, PM2.5 absorbance and PM coarse concentrations between and within 20 European study areas and the relationship with NO2 – Results of the ESCAPE project. Atmos. Environ. 62:303–317. doi:10.1016/j.atmosenv.2012.08.038.
  • El-Mubarak, A. H., A. I. Rushdi, K. F. Al-Mutlaq, A. Y. Bazeyad, S. L. Simonich, and B. R. Simoneit. 2014. Identification and source apportionment of polycyclic aromatic hydrocarbons in ambient air particulate matter of Riyadh, Saudi Arabia. Environ. Sci. Pollut. Res. 21 (1):558–567. doi:10.1007/s11356-013-1946-9.
  • Engelbrecht, J. P., E. V. McDonald, J. A. Gillies, R. Jayanty, G. Casuccio, and A. W. Gertler. 2009. Characterizing mineral dusts and other aerosols from the Middle East—Part 1: Ambient sampling. Inhal. Toxicol. 21 (4):297–326. doi:10.1080/08958370802464273.
  • Grange, S. K., A. C. Lewis, and D. C. Carslaw. 2016. Source apportionment advances using polar plots of bivariate correlation and regression statistics. Atmos. Environ. 145:128–134. doi:10.1016/j.atmosenv.2016.09.016.
  • Guo, B., W. Javed, B. Figgis, and T. Mirza. 2015. Effect of dust and weather conditions on photovoltaic performance in Doha, Qatar. Paper read at Smart Grid and Renewable Energy (SGRE), 2015 First Workshop on.
  • Halek, F., M. Kianpour-Rad, and A. Kavousi. 2008. Characterization and source apportionment of polycyclic aromatic hydrocarbons in the ambient air (Tehran, Iran). Environ. Chem. Lett. 8 (1):39–44. doi:10.1007/s10311-008-0188-4.
  • Hamad, S. H., J. J. Schauer, J. Heo, and A. K. H. Kadhim. 2015. Source apportionment of PM2.5 carbonaceous aerosol in Baghdad, Iraq. Atmospheric Res. 156:80–90. doi:10.1016/j.atmosres.2014.12.017.
  • Hassan, S. K., and M. I. Khoder. 2012. Gas-particle concentration, distribution, and health risk assessment of polycyclic aromatic hydrocarbons at a traffic area of Giza, Egypt. Environ. Monit. Assess. 184 (6):3593–3612. doi:10.1007/s10661-011-2210-8.
  • Heo, J. B., M. Dulger, M. R. Olson, J. E. McGinnis, B. R. Shelton, A. Matsunaga, C. Sioutas, and J. J. Schauer. 2013. Source apportionments of PM2.5 organic carbon using molecular marker Positive Matrix Factorization and comparison of results from different receptor models. Atmos. Environ. 73:51–61. doi:10.1016/j.atmosenv.2013.03.004.
  • Hoseini, M., M. Yunesian, R. Nabizadeh, K. Yaghmaeian, R. Ahmadkhaniha, N. Rastkari, S. Parmy, S. Faridi, A. Rafiee, and K. Naddafi. 2016. Characterization and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in urban atmospheric Particulate of Tehran, Iran. Environ. Sci. Pollut. Res. 23 (2):1820–1832. doi:10.1007/s11356-015-5355-0.
  • Huma, B., S. Yadav, and A. K. Attri. 2016. Profile of particulate-bound organic compounds in ambient environment of Srinagar: A high-altitude urban location in the North-Western Himalayas. Environ. Sci. Pollut. Res. 23 (8):7660–7675. doi:10.1007/s11356-015-5994-1.
  • Janahi, I. A., A. Bener, and A. Bush. 2006. Prevalence of asthma among Qatari schoolchildren: International study of asthma and allergies in childhood, Qatar. Pediatr. Pulmonol. 41 (1):80–86. doi:10.1002/ppul.20331.
  • Javed, W., B. Guo, and B. Figgis. 2017. Modeling of photovoltaic soiling loss as a function of environmental variables. Solar Energy 157:397–407. doi:10.1016/j.solener.2017.08.046.
  • Jedynska, A., G. Hoek, M. Eeftens, J. Cyrys, M. Keuken, C. Ampe, R. Beelen, G. Cesaroni, F. Forastiere, M. Cirach, et al. 2014. Spatial variations of PAH, hopanes/steranes and EC/OC concentrations within and between European study areas. Atmos. Environ. 87:239–248. doi:10.1016/j.atmosenv.2014.01.026.
  • Khan, M. B., M. Masiol, G. Formenton, A. Di Gilio, G. de Gennaro, C. Agostinelli, and B. Pavoni. 2016. Carbonaceous PM2.5 and secondary organic aerosol across the Veneto region (NE Italy). Sci. Total Environ. 542:172–181. doi:10.1016/j.scitotenv.2015.10.103.
  • Khedidji, S., C. Balducci, R. Ladji, A. Cecinato, M. Perilli, and N. Yassaa. 2017. Chemical composition of particulate organic matter at industrial, university and forest areas located in Bouira province, Algeria. Atmos. Pollut. Res. 8 (3):474–482. doi:10.1016/j.apr.2016.12.005.
  • Khodeir, M., M. Shamy, M. Alghamdi, M. Zhong, H. Sun, M. Costa, L.-C. Chen, and P. Maciejczyk. 2012. Source apportionment and elemental composition of PM2.5 and PM10 in Jeddah City, Saudi Arabia. Atmos. Pollut. Res. 3 (3):331–340. doi:10.5094/APR.2012.037.
  • Kocak, M., N. Mihalopoulos, and N. Kubilay. 2007. Contributions of natural sources to high PM10 and PM2.5 events in the eastern Mediterranean. Atmos. Environ. 41 (18):3806–3818. doi:10.1016/j.atmosenv.2007.01.009.
  • Li, J., G. Wang, S. G. Aggarwal, Y. Huang, Y. Ren, B. Zhou, K. Singh, P. K. Gupta, J. Cao, and R. Zhang. 2014. Comparison of abundances, compositions and sources of elements, inorganic ions and organic compounds in atmospheric aerosols from Xi’an and New Delhi, two megacities in China and India. Sci. Total Environ. 476–477:485–495. doi:10.1016/j.scitotenv.2014.01.011.
  • Liu, J., R. Man, S. Ma, J. Li, Q. Wu, and J. Peng. 2015. Atmospheric levels and health risk of polycyclic aromatic hydrocarbons (PAHs) bound to PM2.5 in Guangzhou, China. Mar. Pollut. Bull. 100 (1):134–143. doi:10.1016/j.marpolbul.2015.09.014.
  • Mancilla, Y., A. Mendoza, M. P. Fraser, and P. Herckes. 2016. Organic composition and source apportionment of fine aerosol at Monterrey, Mexico, based on organic markers. Atmos. Chem. Phys. 16 (2):953–970. doi:10.5194/acp-16-953-2016.
  • Mandalakis, M., M. Tsapakis, A. Tsoga, and E. G. Stephanou. 2002. Gas-particle concentrations and distribution of aliphatic hydrocarbons, PAHs, PCBs and PCDD/Fs in the atmosphere of Athens (Greece). Atmos. Environ. 36 (25):4023–4035. doi:10.1016/S1352-2310(02)00362-X.
  • Manoli, E., D. Voutsa, and C. Samara. 2002. Chemical characterization and source identification/apportionment of fine and coarse air particles in Thessaloniki, Greece. Atmos. Environ. 36 (6):949–961. doi:10.1016/S1352-2310(01)00486-1.
  • Mar, T. F., G. A. Norris, J. Q. Koenig, and T. V. Larson. 2000. Associations between air pollution and mortality in Phoenix, 1995-1997. Environ. Health Perspect. 108 (4):347–353. doi:10.2307/3454354.
  • Melki, P. N., F. Ledoux, S. Aouad, S. Billet, B. El Khoury, Y. Landkocz, R. M. Abdel-Massih, and D. Courcot. 2017. Physicochemical characteristics, mutagenicity and genotoxicity of airborne particles under industrial and rural influences in Northern Lebanon. Environ. Sci. Pollut. Res. 24 (23):18782–18797. doi:10.1007/s11356-017-9389-3.
  • Mikuška, P., K. Křůmal, and Z. Večeřa. 2015. Characterization of organic compounds in the PM2.5 aerosols in winter in an industrial urban area. Atmos. Environ. 105:97–108. doi:10.1016/j.atmosenv.2015.01.028.
  • Murillo, J. H., J. F. R. Marin, S. R. Roman, V. H. B. Guerrero, D. S. Arias, A. C. Ramos, B. C. Gonzalez, and D. G. Baumgardner. 2013. Temporal and spatial variations in organic and elemental carbon concentrations in PM10/PM2.5 in the metropolitan area of Costa Rica, Central America. Atmos. Pollut. Res. 4 (1):53–63. doi:10.5094/Apr.2013.006.
  • Oliveira, T. S., C. A. Pio, C. A. Alves, A. J. D. Silvestre, M. Evtyugina, J. V. Afonso, P. Fialho, M. Legrand, H. Puxbaum, and A. Gelencser. 2007. Seasonal variation of particulate lipophilic organic compounds at nonurban sites in Europe. J. Geophys. Res. 112:D23. doi:10.1029/2007jd008504.
  • Ostro, B. D., R. Broadwin, and M. J. Lipsett. 2000. Coarse and fine particles and daily mortality in the Coachella Valley, California: A follow-up study. J. Expo. Sci. Environ. Epidemiol. 10 (5):412–419. doi:10.1038/sj.jea.7500094.
  • Panda, S., S. K. Sharma, P. S. Mahapatra, U. Panda, S. Rath, M. Mahapatra, T. K. Mandal, and T. Das. 2015. Organic and elemental carbon variation in PM2.5 over megacity Delhi and Bhubaneswar, a semi-urban coastal site in India. Nat. Hazards. 80 (3):1709–1728. doi:10.1007/s11069-015-2049-3.
  • Pindado, O., R. M. Perez, S. Garcia, M. Sanchez, P. Galan, and M. Fernandez. 2009. Characterization and sources assignation of PM2.5 organic aerosol in a rural area of Spain. Atmos. Environ. 43 (17):2796–2803. doi:10.1016/j.atmosenv.2009.02.046.
  • Pipal, A. S., and P. G. Satsangi. 2015. Study of carbonaceous species, morphology and sources of fine (PM2.5) and coarse (PM10) particles along with their climatic nature in India. Atmospheric Res. 154:103–115. doi:10.1016/j.atmosres.2014.11.007.
  • Pongpiachan, S., D. Tipmanee, C. Khumsup, I. Kittikoon, and P. Hirunyatrakul. 2015. Assessing risks to adults and preschool children posed by PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) during a biomass burning episode in Northern Thailand. Sci. Total Environ. 508:435–444. doi:10.1016/j.scitotenv.2014.12.019.
  • Ravindra, K., R. Sokhi, and R. Van Grieken. 2008. Atmospheric polycyclic aromatic hydrocarbons: Source attribution, emission factors and regulation. Atmos. Environ. 42 (13):2895–2921. doi:10.1016/j.atmosenv.2007.12.010.
  • Rogge, W. F., L. M. Hildemann, M. A. Mazurek, G. R. Cass, and B. R. T. Simoneit. 1993. Sources of fine organic aerosol .3. road dust, tire debris, and organometallic brake lining dust - roads as sources and sinks. Environ. Sci. Technol. 27 (9):1892–1904. doi:10.1021/Es00046a019.
  • Rushdi, A. I., A. H. El-Mubarak, L. Lijotra, M. T. Al-Otaibi, M. A. Qurban, K. F. Al-Mutlaq, and B. R. T. Simoneit. 2017. Characteristics of organic compounds in aerosol particulate matter from Dhahran city, Saudi Arabia. Arabian J. Chem. 10:S3532–S3547. doi:10.1016/j.arabjc.2014.03.001.
  • Sanchez-Soberon, F., B. L. van Drooge, J. Rovira, J. O. Grimalt, M. Nadal, J. L. Domingo, and M. Schuhmacher. 2016. Size-distribution of airborne polycyclic aromatic hydrocarbons and other organic source markers in the surroundings of a cement plant powered with alternative fuels. Sci. Total Environ. 550:1057–1064. doi:10.1016/j.scitotenv.2016.01.059.
  • Saraga, D., T. Maggos, E. Sadoun, E. Fthenou, H. Hassan, V. Tsiouri, S. Karavoltsos, A. Sakellari, C. Vasilakos, and K. Kakosimos. 2017. Chemical characterization of indoor and outdoor particulate matter (PM2. 5, PM10) in Doha, Qatar. Aerosol Air Qual. Res. 17:1156–1168. doi:10.4209/aaqr.2016.05.0198.
  • Sarti, E., L. Pasti, I. Scaroni, P. Casali, A. Cavazzini, and M. Rossi. 2017. Determination of n-alkanes, PAHs and nitro-PAHs in PM2.5 and PM1 sampled in the surroundings of a municipal waste incinerator. Atmos. Environ. 149:12–23. doi:10.1016/j.atmosenv.2016.11.016.
  • Sarver, T., A. Al-Qaraghuli, and L. L. Kazmerski. 2013. A comprehensive review of the impact of dust on the use of solar energy: History, investigations, results, literature, and mitigation approaches. Renew. Sust. Energ. Rev. 22:698–733. doi:10.1016/j.rser.2012.12.065.
  • Shirmohammadi, F., S. Hasheminassab, A. Saffari, J. J. Schauer, R. J. Delfino, and C. Sioutas. 2016. Fine and ultrafine particulate organic carbon in the Los Angeles basin: Trends in sources and composition. Sci. Total Environ. 541:1083–1096. doi:10.1016/j.scitotenv.2015.09.133.
  • Simoneit, B. R. T., M. Kobayashi, M. Mochida, K. Kawamura, M. Lee, H. J. Lim, B. J. Turpin, and Y. Komazaki. 2004. Composition and major sources of organic compounds of aerosol particulate matter sampled during the ACE-Asia campaign. J. Geophys. Res. 109:D19. doi:10.1029/2004jd004598.
  • Sorek-Hamer, M., D. M. Broday, R. Chatfield, R. Esswein, M. Stafoggia, J. Lepeule, A. Lyapustin, and I. Kloog. 2017. Monthly analysis of PM ratio characteristics and its relation to AOD. J. Air Waste Manage. Assoc. 67 (1):27–38. doi:10.1080/10962247.2016.1208121.
  • Stone, E., J. Schauer, T. A. Quraishi, and A. Mahmood. 2010. Chemical characterization and source apportionment of fine and coarse particulate matter in Lahore, Pakistan. Atmos. Environ. 44 (8):1062–1070. doi:10.1016/j.atmosenv.2009.12.015.
  • Tang, M., D. J. Cziczo, and V. H. Grassian. 2016. Interactions of water with mineral dust aerosol: Water adsorption, hygroscopicity, cloud condensation, and ice nucleation. Chem. Rev. 116 (7):4205–4259. doi:10.1021/acs.chemrev.5b00529.
  • Tsapakis, M., and E. G. Stephanou. 2005. Occurrence of gaseous and particulate polycyclic aromatic hydrocarbons in the urban atmosphere: Study of sources and ambient temperature effect on the gas/particle concentration and distribution. Environ. Pollut. 133 (1):147–156. doi:10.1016/j.envpol.2004.05.012.
  • Turpin, B. J., and H. J. Lim. 2001. Species contributions to PM2.5 mass concentrations: Revisiting common assumptions for estimating organic mass. Aerosol Sci. Technol. 35 (1):602–610. doi:10.1080/02786820119445.
  • Wang, F., Z. Guo, T. Lin, and N. L. Rose. 2016a. Seasonal variation of carbonaceous pollutants in PM2.5 at an urban ‘supersite’ in Shanghai, China. Chemosphere 146:238–244. doi:10.1016/j.chemosphere.2015.12.036.
  • Wang, F., T. Lin, J. Feng, H. Fu, and Z. Guo. 2015a. Source apportionment of polycyclic aromatic hydrocarbons in PM2.5 using positive matrix factorization modeling in Shanghai, China. Environ. Sci. 17 (1):197–205. doi:10.1039/c4em00570h.
  • Wang, F. W., T. Lin, Y. Y. Li, T. Y. Ji, C. L. Ma, and Z. G. Guo. 2014. Sources of polycyclic aromatic hydrocarbons in PM2.5 over the East China Sea, a downwind domain of East Asian continental outflow. Atmos. Environ. 92:484–492. doi:10.1016/j.atmosenv.2014.05.003.
  • Wang, J., S. S. H. Ho, J. Cao, R. Huang, J. Zhou, Y. Zhao, H. Xu, S. Liu, G. Wang, Z. Shen, and Y. Han. 2015b. Characteristics and major sources of carbonaceous aerosols in PM2.5 from Sanya, China. Sci. Total Environ. 530–531:110–119. doi:10.1016/j.scitotenv.2015.05.005.
  • Wang, J., S. S. H. Ho, S. Ma, J. Cao, W. Dai, S. Liu, Z. Shen, R. Huang, G. Wang, and Y. Han. 2016b. Characterization of PM2.5 in Guangzhou, China: Uses of organic markers for supporting source apportionment. Sci. Total Environ. 550:961–971. doi:10.1016/j.scitotenv.2016.01.138.
  • Wang, Q., N. Jiang, S. Yin, X. Li, F. Yu, Y. Guo, and R. Zhang. 2017. Carbonaceous species in PM2.5 and PM10 in urban area of Zhengzhou in China: Seasonal variations and source apportionment. Atmospheric Res. 191:1–11. doi:10.1016/j.atmosres.2017.02.003.
  • WHO. 2014. WHO’s ambient air pollution database: Update 2014. Ginebra, Suiza: Author.
  • Yadav, S., A. Tandon, and A. K. Attri. 2013. Characterization of aerosol associated non-polar organic compounds using TD-GC-MS: A four year study from Delhi, India. J. Hazard. Mater. 252–253:29–44. doi:10.1016/j.jhazmat.2013.02.024.
  • Yan, B., M. Zheng, Y. Hu, X. Ding, A. P. Sullivan, R. J. Weber, J. Baek, E. S. Edgerton, and A. G. Russell. 2009. Roadside, urban, and rural comparison of primary and secondary organic molecular markers in ambient PM2.5. Environ. Sci. Technol. 43 (12):4287–4293.
  • Yu, S. C., R. L. Dennis, P. V. Bhave, and B. K. Eder. 2004. Primary and secondary organic aerosols over the United States: Estimates on the basis of observed organic carbon (OC) and elemental carbon (EC), and air quality modeled primary OC/EC ratios. Atmos. Environ. 38 (31):5257–5268. doi:10.1016/j.atmosenv.2004.02.064.
  • Yunker, M. B., R. W. Macdonald, R. Vingarzan, R. H. Mitchell, D. Goyette, and S. Sylvestre. 2002. PAHs in the Fraser River basin: A critical appraisal of PAH ratios as indicators of PAH source and composition. Org. Geochem. 33 (4):489–515. doi:10.1016/S0146-6380(02)00002-5.
  • Zhang, M., J. F. Xie, Z. T. Wang, L. J. Zhao, H. Zhang, and M. Li. 2016. Determination and source identification of priority polycyclic aromatic hydrocarbons in PM2.5 in Taiyuan, China. Atmospheric Res. 178:401–414. doi:10.1016/j.atmosres.2016.04.005.
  • Zhang, R. J., J. Tao, K. F. Ho, Z. X. Shen, G. H. Wang, J. J. Cao, S. X. Liu, L. M. Zhang, and S. C. Lee. 2012. Characterization of atmospheric organic and elemental carbon of PM2.5 in a typical semi-arid area of Northeastern China. Aerosol Air Qual. Res. 12 (5):792–802. doi:10.4209/aaqr.2011.07.0110.
  • Zhou, J. B., Z. Y. Xing, J. J. Deng, and K. Du. 2016. Characterizing and sourcing ambient PM2.5 over key emission regions in China I: Water-soluble ions and carbonaceous fractions. Atmos. Environ. 135:20–30. doi:10.1016/j.atmosenv.2016.03.054.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.